mechanics of 2d materials - unitrento...exercise 4 derive the maximal graphene curvature. for...

23
MECHANICS OF 2D MATERIALS Nicola Pugno Cambridge February 23 rd , 2015

Upload: others

Post on 22-Mar-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

MECHANICS OF 2D

MATERIALS

Nicola Pugno Cambridge

February 23rd, 2015

Page 2: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

Outline

โ€ข Stretching Stress

Strain

Stress-Strain curve

โ€ข Mechanical Properties Youngโ€™s modulus

Strength

Ultimate strain

Toughness modulus

โ€ข Size effects on energy dissipated

2

Page 3: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

โ€ข Linear Elastic Fracture Mechanics (LEFM) Stress-intensity factor

Energy release rate

Fracture toughness

Size-effect on fracture strength

โ€ข Quantized Fracture Mechanics (QFM) Strength of graphene (and related materials)

โ€ข Bending Flexibility

Bending stiffness

Elastic line equation

Elastic plate equation

3

Page 4: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

Exercises by me

1. Apply QFM for deriving the strength of realistic thus defective

graphene (and related 2D materials);

2. Apply LEFM for deriving the peeling force of graphene (and

related 2D materials).

Exercises by you

1. Apply LEFM for measuring the fracture toughness of a sheet

of paper;

2. Apply the Bending theory for calculating the maximal

curvature before fracture.

4

Page 5: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

Stretching Fiber under tension

A ๐‘™

F

F

โˆ†๐‘™

2

โˆ†๐‘™

2

Stress: ๐œŽ =๐น

๐ด

Strain: ํœ€ =โˆ†๐‘™

๐‘™

5

Page 6: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

Stress-strain curve:

Signature of the material and main tool for deriving its

mechanical properties

ฯƒ

ฮต

A

C

D B

x

x x

x = failure

If the curve is monotonic, a

force-control is sufficient.

You can derive AB in

displacement control, CD in

crack-opening. The dashed

area is the kinetic energy

released per unit volume

under displacement control.

6

Page 7: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

Mechanical properties ฯƒ

ฮต

x

๐œŽ๐‘š๐‘Ž๐‘ฅ

ํœ€๐‘ข

1

๐ธ ๐ธ

๐‘‰

๐‘‘๐œŽ

๐‘‘๐œ€ 0

โ‰ก ๐ธ โ‰ก Youngโ€™s modulus

๐œŽ๐‘š๐‘Ž๐‘ฅ = maximum stress โ‰ก Strength

ํœ€๐‘ข = ultimate strain

๐œŽ๐‘‘ํœ€ =๐ธ

๐‘‰=

๐œ€๐‘ข

0 Energy dissipated per unit volume or Toughness modulus.

๐ธ = ๐น๐‘‘๐‘™ ๐‘‰ = ๐ด๐‘™

๐ธ

๐‘‰=

๐น

๐ด

๐‘‘๐‘™

๐‘™= ๐œŽ๐‘‘ํœ€

The toughness modulus is a material

property only for ductile materials.

7

Page 8: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

The post-critical behaviour is size-dependent especially for brittle

materials.

ฯƒ

ฮต

๐‘™ 0

โˆž

๐‘™ โ†’ 0 ductile

๐‘™ โ†’ โˆž brittle

Size-effects

8

Page 9: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

๐ธ = ๐บ๐‘๐ด

๐บ๐‘ โ‰ก fracture energy or energy

dissipated per unit area

๐œŽ๐‘‘ํœ€ โ‰ก๐ธ

๐‘‰=

๐บ๐‘๐ด

๐‘™๐ด=

๐บ๐‘

๐‘™

For brittle materials ๐ธ

๐‘‰ has no meaning: instead of the toughness modulus we

have to use the fracture energy.

Fracture

The reality is in between: energy dissipated on a fractal domain:

๐ธ

๐‘‰โˆ ๐‘™ ๐ทโˆ’3 ๐‘™ = ๐‘‰

3

D is the fractal exponent, 2 โ‰ค ๐ท โ‰ค 3

9

Page 10: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

10

Fracture Mechanics

ฯƒ

๐œŽ๐‘ก๐‘–๐‘

2a r

๐พ๐ผ โ‰ก Stress intensity factor

๐œŽ๐‘ก๐‘–๐‘~๐พ๐ผ

2๐œ‹๐‘Ÿ

constant

Elastic solution is singular:

We cannot say

๐œŽ๐‘“: ๐œŽ๐‘ก๐‘–๐‘ = ๐œŽ๐‘š๐‘Ž๐‘ฅ

๐œŽ๐‘“ stress at fracture

Page 11: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

11

Linear Elastic Fracture Mechanics

(LEFM) Griffithโ€™s approach

๐บ = โˆ’๐‘‘๐‘Š

๐‘‘๐ด ๐‘Š = ๐ธ โˆ’ ๐ฟ

Energy release

rate Crack surface

area

Total potential

energy

Stored elastic

energy

External work

Crack propagation criterion:

๐‘ฎ = ๐‘ฎ๐‘ช ๐บ๐‘ โ‰ก fracture energy

๐บ =๐พ๐ผ

๐ธ Elastic solution

๐พ๐ผ only for a function of external load and geometry

๐‘ฒ๐‘ฐ = ๐‘ฒ๐‘ฐ๐‘ช ๐พ๐ผ๐ถ = ๐บ๐ถ๐ธ Fracture toughness

Page 12: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

12

๐พ๐ผ values reported in stress-intensity factor Handbooks

E.g., infinite plate (i.e. width โ‰ซ crack length ~ graphene)

๐พ๐ผ = ๐œŽ ๐œ‹๐‘Ž

Strength of graphene with a crack of length 2๐‘Ž

๐พ๐ผ = ๐œŽ ๐œ‹๐‘Ž = ๐พ๐ผ๐ถ

๐œŽ๐‘“ =๐พ๐ผ๐ถ

๐œ‹๐‘Ž

Assuming statistically ๐‘Ž โˆ ๐‘™ โ‰ก structural size:

๐œŽ๐‘“ โˆ ๐‘™ โˆ’1

2

Size effect on a fracture strength larger is weaker

problem of the scaling upโ€ฆ.

Page 13: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

13

Paradox ๐œŽ๐‘“ โ†’ โˆž ๐‘Ž โ†’ 0

With graphene pioneer Rod Ruoff we invented Quantized Fracture

Mechanics (2004).

The hypothesis of the continuous crack growth is removed: existence of

fracture quanta due to the discrete nature of matter.

Page 14: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

14

Related papers:

N. M. Pugno, โ€œDynamic quantized fracture mechanicsโ€, Int. J. Fract, 2006

N. M. Pugno, โ€œNew quantized failure criteria: application to nanotubes and

nanowiresโ€, Int. J. Fract, 2006

Page 15: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

15

Quantized Fracture Mechanics (QFM)

๐บโˆ— = โˆ’โˆ†๐‘Š

โˆ†๐ด

Quantized energy

release rate

โˆ†๐ด = fracture quantum of surface area = ๐‘ž๐‘ก

Plate

thickness

Fracture

quantum

of length

๐‘ฎโˆ— = ๐‘ฎ๐‘ช

๐บ = โˆ’๐‘‘๐‘Š

๐‘‘๐ด โˆ†๐‘Š = โˆ’ ๐บ๐‘‘๐ด = โˆ’

๐พ๐ผ2

๐ธ๐‘‘๐ด

๐บโˆ— = โˆ’โˆ†๐‘Š

โˆ†๐ด=

๐พ๐ผ

2

๐ธ ๐‘‘๐ด

โˆ†๐ด ๐บโˆ— = ๐บ๐‘

1

โˆ†๐ด

๐พ๐ผ2

๐ธ๐‘‘๐ด =

๐พ๐ผ๐ถ2

๐ธ

Quantized stress-intensity factor (generalized): ๐พ๐ผโˆ— =

1

โˆ†๐ด ๐พ๐ผ

2 ๐‘‘๐ด = ๐พ๐ผ๐ถ

Page 16: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

16

Monolayer graphene and examples

Tennis racket made of

graphene (Head ยฉ)

Youngโ€™s modulus โ‰ก ๐ธ = 1 TPa

Intrinsic strength ๐œŽ๐‘–๐‘›๐‘ก = 130 GPa

Ultimate strain ํœ€๐‘ข = 25 %

C. Lee, X. Wei, J.W. Kysar, J. Hone,

โ€œMeasurement of the elastic properties and intrinsic strength of monolayer grapheneโ€, Science, 2008 :

Monolayer graphene hanging on a

silicon substrate (scale bar: 50ยตm) Tensile test on macro samples

of graphene composites

Page 17: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

17

Carbon nanotubes

The MWCNTs breaks in the outermost layer

(โ€œsword-in-sheathโ€ failure),

Youngโ€™s modulus โ‰ก ๐ธ =250 to 950 GPa

Tensile strength ฯƒ = 11 to 63 GPa

Ultimate strain ํœ€๐‘ข = 12 %

Min-Feng Yu, Oleg Lourie, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly, Rodney S. Ruoff, โ€œStrength and

Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Loadโ€, Science, 2000:

Multiwalled carbon nanotubes (MWCNTs)

The singlewalled carbon nanotubes

(SWCNTs) presents:

Youngโ€™s modulus โ‰ก ๐ธ =1000 GPa

Tensile strength ฯƒ = 300 GPa

Ultimate strain ํœ€๐‘ข = 30 %

Page 18: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

18

Exercise 1

E.g., infinite plate

๐พ๐ผ = ๐œŽ ๐œ‹๐‘Ž

๐พ๐ผโˆ— =

1

๐‘ž๐‘ก ๐œŽ2๐œ‹๐‘Ž๐‘ก ๐‘‘๐‘Ž

๐‘Ž+๐‘ž

๐‘Ž

= ๐œŽ๐œ‹

2๐‘ž๐‘Ž + ๐‘ž 2 โˆ’ ๐‘Ž2 = ๐œŽ ๐œ‹ ๐‘Ž +

๐‘ž

2

Strength of graphene ๐พ๐ผโˆ— = ๐พ๐ผ๐ถ

๐œŽ๐‘“ =๐พ๐ผ๐ถ

๐œ‹ ๐‘Ž +๐‘ž2

๐‘Ž โ†‘ ๐œŽ๐‘“ โ†“

Unstable crack growth

Page 19: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

19

๐‘ž โ†’ 0 Correspondence Principle ๐‘„๐น๐‘€ โ†’ ๐ฟ๐ธ๐น๐‘€

๐‘Ž โ†’ 0 ๐œŽ๐‘“ = ๐œŽ๐‘–๐‘‘๐‘’๐‘Ž๐‘™

๐œŽ๐‘–๐‘‘๐‘’๐‘Ž๐‘™ =๐พ๐ผ๐ถ

๐œ‹๐‘ž2

โŸน ๐‘ž =2

๐œ‹

๐พ๐ผ๐ถ2

๐œŽ๐‘–๐‘‘๐‘’๐‘Ž๐‘™2

๐‘ž

๐œŽ๐‘–๐‘‘๐‘’๐‘Ž๐‘™ ~ 100 GPa

๐œŽ๐‘“ =๐พ๐ผ๐ถ

๐œ‹ ๐‘Ž +๐‘ž2

๐พ๐ผ๐ถ ~ 3MPa m

(QFM 2004)

Very close to predictions

by MD and DFT

Very close to experimental

measurement (2014)

๐œŽ๐‘–๐‘‘๐‘’๐‘Ž๐‘™ ~ ๐ธ

10 ๐ธ~1 TPa

P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P. E. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, P. M. Ajayan, T.

Zhu & J. Lou, Fracture toughness of graphene, Nature, 2014

Page 20: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

20

Exercise 2 Peeling of graphene

๐œƒ

๐›ฟ

๐‘™

๐น

๐ธ โ†’ โˆž ๐ธ โ†’ 0

๐›ฟ = ๐‘™ โˆ’ ๐‘™ cos ๐œƒ

๐บ = โˆ’๐‘‘๐‘Š

๐‘‘๐ด=

๐‘‘๐ฟ

๐‘‘๐ด ๐ฟ = ๐น๐‘‘ ๐‘‘๐ด = ๐‘๐‘‘๐‘™

๐บ =๐‘‘

๐‘๐‘‘๐‘™๐น๐‘™ 1 โˆ’ cos ๐œƒ =

๐น 1 โˆ’ cos ๐œƒ

๐‘

๐บ = ๐บ๐ถ โŸน ๐น๐ถ =๐‘๐บ๐ถ

1 โˆ’ cos ๐œƒ

๐น๐ถ strongly dependent on ๐œƒ

N. M. Pugno, โ€œThe theory of multiple peelingโ€, Int. J. Fract, 2011

Page 21: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

21

Exercise 3

Apply LEFM for measuring the fracture

toughness of a sheet of paper with a

crack of a certain length in the middle:

Page 22: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

22

Bending theory Bending of beams

โ„Ž

๐‘

๐‘‘๐‘ง

๐‘…๐‘‹

๐‘‘๐œ‘๐‘‹

๐‘‘๐‘ง

๐‘€๐‘ฅ ๐‘€๐‘ฅ

Bending Moment

๐‘‘๐œ‘๐‘‹

2

๐‘ง ๐‘ฆ

ํœ€๐‘‘๐‘ง

2โ‰… ๐‘ฆ

๐‘‘๐œ‘๐‘‹

2

๐œŽ๐‘ง =๐‘€๐‘ฅ

๐ผ๐‘ฅ๐‘ฆ โ‰… ๐พ๐‘ฆ ๐‘€๐‘ฅ = ๐œŽ๐‘ง๐‘ฆ๐‘๐‘‘๐‘ฆ

โ„Ž2

โˆ’โ„Ž2

= ๐พ๐ผ๐‘ฅ

๐œ’๐‘ฅ =1

๐‘…๐‘ฅ=

๐‘‘๐œ‘๐‘ฅ

๐‘‘๐‘ง=

ํœ€๐‘ง

๐‘ฆ=

๐œŽ๐‘ง

๐ธ๐‘ฆ=

๐‘€๐‘ฅ

๐ผ๐‘ฅ๐ธ

๐œ’๐‘š๐‘Ž๐‘ฅ =ํœ€๐‘ง,๐‘š๐‘Ž๐‘ฅ

โ„Ž 2

Moment of inertia

๐ผ๐‘ฅ =๐‘โ„Ž3

12

Page 23: Mechanics of 2D materials - UniTrento...Exercise 4 Derive the maximal graphene curvature. For graphene โ„Ž=๐‘กโ‰…0.34 โ†’ ๐‘Ž๐‘ฅ huge โ†’ flexibility is more a structural than a

23

Exercise 4 Derive the maximal graphene curvature.

For graphene โ„Ž = ๐‘ก โ‰… 0.34 ๐‘›๐‘š โ†’ ๐œ’๐‘š๐‘Ž๐‘ฅhuge โ†’ flexibility is more a structural

than a material property

๐œ‘๐‘ฅ = โˆ’๐‘‘๐‘ฃ

๐‘‘๐‘ง โŸน

๐‘‘2๐‘ฃ

๐‘‘๐‘ง2 = โˆ’๐‘€๐‘ฅ

๐ผ๐‘ฅ๐ธ

๐‘‘๐‘ง

M M

q T T

N N

๐‘‘๐‘‡

๐‘‘๐‘ง= โˆ’๐‘ž

๐‘‘๐‘€

๐‘‘๐‘ง= ๐‘‡

โŸน ๐‘‘4๐‘ฃ

๐‘‘๐‘ง4 =๐‘ž

๐ผ๐‘ฅ๐ธ

Elastic line equation

Load per unit length

For plates: ๐›ป4๐‘Š =๐‘ž

๐ท

Elastic plane equation

Load per unit area

Bending stiffness ๐ท =๐ธ๐‘ก3

12 1 โˆ’ ๐œˆ2