me 598 - lecture 1 - overview of materials characterization...

Upload: saad-salman

Post on 11-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    1/57

    -

    Lecture 1:

    Overview of materials characterization:the need for complementary techniques

    Ivan Petrov

    [email protected]

    1January 18, 2011

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    2/57

    Nanotechnology/Nanoscience

    Nanotechnology is the study of manipulating matter on an atomic

    and molecular scale.

    Nanostructures - sizes 1 to 100 nanometer in at least one dimension.

    Nanoscience the knowledge base of nanotechnology:understanding, measuring, predicting, designing properties of

    .

    1 nm equals ~ 5 atomic diameters.

    1 nm3 contains ~ 125 atoms. 98 are surface

    atoms and 27 are in the bulk.

    Surfaces and uantum effect determine new

    properties.

    DNA double-helix diameter ~ 2 nm

    2

    Nano- Biotechnology converge

    M.F. Crommie, C.P. Lutz, D.M. Eigler, E.J. Heller.Waves on a metal surface and quantum corrals.

    Surface Review and Letters 2 (1), 127-137 (1995).

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    3/57

    Nanotechnology

    Two major approaches:

    Bottom-up" approach: synthesis of molecules and structureswith controlled shape and functionality that self-assemble

    Top-down" approach: nano-objects are constructed using

    tools for exam le litho ra h or scannin robe microsco

    3

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    4/57

    This course

    , van e rov arac er za on ec n ques, nc u ng e ec ron

    microscopy, scanning probe microscopy (specifically AFM), spectroscopy,FIB, X-ray diffraction. Fundamentals of thin film growth.

    MNMS cleanroom, Bruce Flachsbart : This section will concentrate on

    other aspects of processes, emerging process and recipe development, , .

    MNTL, Rashid Bashir and colleagues: The concentration here will be on

    cr stal rowth, ALD, e-beam litho ra h , im rint litho ra h , and bioMEMS

    processing and technology.

    4

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    5/57

    Week 1Tuesday January 18th 12:30 to 1:50pm, Ivan Petrov Overview Nanocharacterization

    Thursday, January 20th 9 to 11:50am Ivan Petrov MRL tour

    Thursday, January 20th 12:30 to 1:50pm Scott MacLaren, Scanning probes

    Week 2

    Tuesday January 25th 12:30 to 1:50pm Jim Mabon, Scanning Electron Miccroscopy/Focused

    Ion BeamThursday, January 27th 9 to 11:50am MacLaren AFM, Mabon SEM

    Thursday, January 27th 12:30 to 1:50pm Rick Haasch X-ray photoelectron and Auger electron

    spectroscopy

    Week 3

    Tuesday, February 1

    st

    12:30 to 1:50pm, Tim Spila, Secondary ion mass spectrometry andRutherford backscattering spectroscopy

    Thursday, February 3rd 9 to 11:50am Haasch and Spila XPS SIMS

    Thursday, February 3rd 12:30 to 1:50pm Julio Soares Optical spectroscopies

    Week 4

    Tuesday, February 8th 12:30 to 1:50pm Mauro Sardela X-ray diffraction

    Thursday, February 10th 9 to 11:50am Soares, Sardela Thursday, February 10th 12:30 to 1:50pm Ivan Petrov Thin Film Growth

    Week 5

    Tuesday, February 15th 12:30 to 1:50pm Ivan Petrov Thin Film Growth

    5

    Thursday, February 17th 9 to 11:50am Bharat, Tao evaporation, sputtering

    Thursday, February 17th 12:30 to 1:50pm Jianguo Wen Transmission electron microscopy

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    6/57

    Why materials analysis?

    needed: In order to understand/control the s nthesis rocesses

    In order to understand why materials, micro-, and

    nanosystems and devices work or fail

    Understand

    6

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    7/57

    Main questions to answer

    1. What are the building blocks elemental and

    2. What is the arrangement of the building blocks

    3. What is the electronic structure

    4. What are the surface mor holo and bulk

    nanostructure imaging from micron to sub-

    nanometer scale

    7

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    8/57

    Wide variety of methods for materials analysis

    Ions Ions

    Primary beam

    (source, gun)Secondary beam

    (spectrometers, detectors)

    ElectronsPhotons

    ElectronsPhotons

    * with ions and electrons: the sample is in vacuum

    ** exception: scanning probe microscopy

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    9/57

    Wide variety of methods for materials analysis

    9

    http://www.eaglabs.com/

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    10/57

    FSMRL Center for Microanalysis of Materials

    ompre ens ve se o ec n ques rom rou ne o mos a vance

    24 h access to qualified users

    Staff 14 scientists and engineers for > 40 major instruments

    . ur ace na ys s

    Cameca IMS 5f SIMSPHI 660 AugerPHI 5400 XPSSmall-spot imaging XPSPHI TOF-SIMS 2003

    . ransm ss on ec ron croscopy

    Philips CM12JEOL 2010 F STEM/TEMJEOL 2011 TEMIBM Low-Energy Electron MicroscopyJEOL 2100 Cryo (2006)

    Van de Graaff for ion beam analysis

    6. Laser and Optical SpectroscopiesRaman spectroscopy/

    PhotoluminescenceS ectro hotometr /FTIR

    JEOL 2200FSTEM/STEM (2008)

    2. Scanning Electron MicroscopySEM/Focused ion-beam microscopy

    Hitachi S-4700, SEM S-4800 (2008)JEOL 6060 low-vacuum SEM(2004)Pump/probe spectroscopySum frequency generationEllipsometryNear-Field Scanning Optical MicroscopySolar cell efficiency (2010)Solar spectrum simulator (2010)

    ana yt ca

    3. Scanning Probe MicroscopyDigital Instruments AFM

    Advanced Asylum Research AFM (2) (2005)Asylum Research Cypher (2010)

    a vern nstruments etas zerContact Angle Goniometers (2010)Ultrafast Confocal microscope (2011)MicroRaman (2011)

    7. Property Measurement

    m cron -

    4. X-ray ScatteringPhilips X'pert: high-resolution, reciprocal mapsPhilips X'pert: powder, pole figuresRigaku D-Max: powder

    10

    erent a scan. ca or metry ermogr. ana ys sHysitron TI 950 Triboindenter (2010)Hysitron Picoindenter (2010)

    Quantum Design MPMS (2011)Quantum Design PPMS (2011)

    -Anton Paar DHS900 hot stage (2010)Energy Dispersive X-Ray Fluorescence

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    11/57

    A comprehensive characterization approach

    interaction with ANL:

    High-power lithium-ion battery failure mechanisms

    6000

    7000

    8000

    graphite

    -(CF2-CH2)n--(CF2-CH2)n-

    -(CH2)n-

    -C-O-

    -OCO2-

    XPS, C1s spectrumPositive electrode

    50C, 60% SOC, 16 wk test

    -C=O

    Imaging Spectroscopy (XPS) Elemental analysisFresh

    0.5 m

    Aged

    3000

    4000

    5000

    6000

    7000

    8000 LiF

    -(CF2-CH2)n-

    XPS, F1s spectrum50C, 60% SOC, 16 wk test

    0

    1000

    2000

    3000

    4000

    5000

    2 82 2 83 2 84 2 85 2 86 2 87 2 88 2 89 2 90 2 91 2 92 2 93 2 94

    Binding Energy, eV

    -O-C=O

    C Li

    0.5 m 01000

    2000

    682 683 684 685 686 687 688 689 690 691 692

    Binding energy, eV

    0.00

    0.01

    0.02

    Bulk O K-edge

    HRTEM, Crystallography, and EELS(003)

    -structure

    refinement

    Ni All

    530 535 540 545 550 555 560 565 570 575 580 585 590eV

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.10

    0.11

    m

    0.00

    0.02

    Bulk

    Ni L-edge

    Particle Surface

    (006)(113)

    (110)

    (018)

    (107)(015)

    (012)

    (101)

    C(002)

    Intensity(a.u.)

    11

    20 nm

    850 860 870 880 890 900 910eV

    0.04

    0.06

    0.08

    0.10

    m

    2-theta (o)

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    12/57

    8 monolayers AuPd

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    13/57

    40 monolayers AuPd

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    14/57

    8 monolayers AuPd

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    15/57

    40 monolayers AuPd

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    16/57

    8 ML 40 ML

    2 nm

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    17/57

    Wide variety of methods for materials analysis

    Ions Ions

    Primary beam

    (source, gun)Secondary beam

    (spectrometers, detectors)

    ElectronsPhotons ElectronsPhotons

    * with ions and electrons: the sample is in vacuum

    ** exception: scanning probe microscopy

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    18/57

    Scattering cross section one target atom

    nbeam[beam particles cm-3]

    Beam Flux: Jbeam= nbeamv[beam particles cm-2s-1]

    vbeam particle velocity

    vt= r2

    Nevents= nbeamV = nbeamvt = Jbeamt

    18

    = Nevents_per-seccond/Jbeam

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    19/57

    Scattering cross section many target atoms

    Nevents-per-second= JbeamNtarget

    =Nevents-per-second

    JbeamNtar et

    19

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    20/57

    Scattering cross section binary target

    Detector

    Igreen = Tinstr*Nevents-per-second= JbeamT

    instrgrNgrgr gr

    20

    Iorange = Tns r*Nevents-per-second= Jbeam T

    ns rorNoror or

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    21/57

    Mean free path

    = r2

    vt V = vt

    = n V = n t

    Traveled distance vt

    = Number of events = ntargetvt

    21

    = 1/ ntarget (cm/events)

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    22/57

    Scattering cross-section -

    probability that a scattering process occurs

    beam target v

    N number of events of certain type per sec (elastic, inner shell ionization, etc)

    beam

    ntarget target atom density (atoms/cm3)

    mean free path

    = 1/ ntar et (cm/events)

    If several different scattering processes can occur (i)

    22

    total i

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    23/57

    X-ray scattering

    X-ray/Matter InteractionsCoherent

    scatteringh0

    h0

    Fluorescence

    Incoherent

    scatteringIncident x-ray photons XRD

    XRF

    1h2 Photoelectron

    Auger electrone-

    e- XPS

    Coherent scattering (Thompson scattering / diffraction):

    50 m 5 cm

    m

    Sample

    volumeh: photone-: electron

    incident photon ho interacts with e- with no energy loss and no phase change

    Incoherent scattering (Compton scattering): (a) e- absorbes incident energy ho (excited photoelectron);(b) part of the energy is emitted at different energy h1 and different phase.

    - - - o cascade down filling the holes causing secondary photons emission (h2).

    Photoelectron emission:

    h0 energy is used to eject electron e- with kinetic energy = ho B.E.(binding energy).

    23

    Auger electron emission:

    (a) incident h0 used to eject e- from atom; (b) 2nd e- falls to lower levels to fill the holeand a photon isemitted; (c) the emitted photon is absorbed by valance e-, which ionizes and leaves the atom.

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    24/57

    Electron-Beam/Matter Interactions

    Incident

    BeamUV/Visible/IR

    LightEDS/WDSEDS/WDS

    CLCLBackscattered

    electrons (BSE)

    SecondaryCharacteristicX-rays Augerelectrons ImagingImaging

    X-rays

    Elastic Scattering

    Heat

    Inelastic Scattering

    Micron-size Interaction Volume

    Specimen CurrentImagingImaging

    Is c

    24

    Is c Ib Ib Ib Ib 1

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    25/57

    Ion-Beam/Matter Interactions

    Inelastic Effects

    Ion beam with an energy

    Ei+

    IElastic EffectsSIMS

    depth profile

    UV/visible photonsSputtered Particles

    T0, T*, Tn T+, I+

    T-, I-

    (+)(-) Ions(AES,XPS)

    X-rays

    Secondary

    ElectronsReflected Particles, I0

    ,I

    *

    RBS,ERD

    Implanted Particles Target

    25Figure after G.M. McCracken, Rep. Prog Phys. 28, 241 (1975).

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    26/57

    Beam particles properties

    0.0122

    26

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    27/57

    Main questions to answer

    . at are t e u ng oc s e ementa an c em caanalysis

    crystallographic analysis3. What is the electronic structure

    4. What are the surface morphology and bulk nanostructure

    imaging from micron to sub-nanometer scale

    using

    elastic (coherent) electron and x-ray scatteringdiffraction analysis (reciprocal space mapping)

    27

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    28/57

    Coherent diffraction by a crystal

    plane normal1 1

    Plane wave(x-ray or electron)

    2 2

    i Kd

    = oe2x/

    B

    dKi

    K= oe x

    b definition wave vector K = 1/

    C

    n sinragg s aw:,

    scattering vector: |K|/2 = |Kd| sin

    28

    |K|= 2sin/ = 1/d

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    29/57

    Fundaments of diffractionReal space Reciprocal spaceF

    d

    1/d

    origin

    29

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    30/57

    Fundaments of diffractionReal space Reciprocal spaceF

    origin

    30

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    31/57

    Real and reciprocal space

    001 zone axis 011 zone axis 111 zone axis

    31

    TEM

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    32/57

    Real and reciprocal space in TEMTEM

    Sam le

    Incident Electrons

    < 500 nm

    Objective Lens

    d

    Back Focal Plane

    First Image Plane

    Reciprocal space image

    Real space imageBraggs Law2 d sin = n|K|= 2sin/= 1/d

    32

    JG WEN

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    33/57

    Main questions to answer

    . a are e u ng oc s e emen a anchemical analysis

    .

    crystallographic analysis3. What is the electronic structure

    4. What are the surface morphology and bulk nanostructure

    imaging from micron to sub-nanometer scale

    using

    inelastic electron and x-ray scattering

    (ionization and relaxation processes)

    33

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    34/57

    Inelastic scattering of x-rays and electrons

    Ionization XPS and EELS

    Relaxation Auger electron spectroscopy and characteristic x-rays (EDS, WDS, XRF)

    34

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    35/57

    Elemental analysis by inelastic processes

    60

    photoelectrons characteristic x-rays Auger electrons

    40

    50 3s3p3d4s4p

    30

    A

    to

    m

    ic

    N

    u

    m

    b

    er

    2s

    2p

    10

    20

    1s

    0

    0 200 400 600 800 1000 1200 1400

    Binding Energy (eV)

    35

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    36/57

    Ionization

    BE = h (known) KE(measured) BE = Eo(measured) Eloss(measured)

    o oe ec ron pec roscopy Electron Energy-Loss Spectroscopy

    Eincident X-ray = h Eincident electron = EoSpectrometer, KE

    Conduction BandConduction Band

    Fermi

    Conduction BandConduction Band

    Valence Band

    eve

    2pBE

    Valence Band

    2pBE

    2s

    1s

    2s

    36Spectrometer, Eo, Eloss

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    37/57

    Elemental Shifts:An Example

    Metal and N Auger Lines

    N1s

    Sc2p

    Sc2s

    rs - ow rans on e a r es: c , , , an r

    ScN

    its) Ti2p

    Ti2s

    Sc3p

    Sc3s

    TiN

    (

    arb.u

    N1s

    V2p

    V2s

    Ti3s

    Ti3p

    VN

    Count

    Cr2pV3s

    p

    CrN

    s

    Cr3s

    r p

    37

    Binding energy (eV)

    Surface Science Spectra, 7, 167-280, 2000.

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    38/57

    Relaxation

    Incident particle Ejected Electron Emitted Auger Electron

    Emitted X-ray Photonionization

    Conduction BandConduction BandFermi

    Conduction Band

    ree ec ron eve

    Valence Band

    Level

    Valence Band

    2s

    2, 3

    L1

    1s K

    KLL Auger electron

    38

    Auger - 2,3 - 2,3

    EX-ray = E(K) E(L2,3)

    STEM

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    39/57

    Elemental analysis by electron microscopy

    1O primary e-beam

    0.5-30 keV

    Scanning electron microscopy (SEM)primary e-beam

    100-300 keV

    cann n ransm ss onelectron microscopy (STEM)

    backscatteredelectrons

    characteristic &

    Bremsstrahlun

    secondary

    electrons 1 keV, the cascade is linear, i.e. approximated by a series of binary collisions

    41P.Sigmund, Sputtering by ion bombardment: theoretical concepts, in Sputtering by particle bombardment I, edited by R. Behrish, Springer-Verlag, 1981

    .

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    42/57

    Ion impact collision cascade

    Energy increasing (dependent on Mi/Mt)

    Threshold regime Linear cascade Spike regimerecoils sputtered, but

    no (limited) cascadesa series of binary collisions high density of recoils

    recoiled target atoms in turn collide with atom at rest generating a collision cascade. The initial ion energy and momentum are distributed to among the target recoil atoms.

    When Ei > 1 keV, the cascade is linear, i.e. approximated by a series of binary collisions

    42P.Sigmund, Sputtering by ion bombardment: theoretical concepts, in Sputtering by particle bombardment I, edited by R. Behrish, Springer-Verlag, 1981

    .

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    43/57

    Ion stopping cross section

    ( )( )) (en S EdE

    N N SS E Edx

    0

    '

    ( ')

    EdE

    RangeNS E

    Sn

    (E) - nuclear stopping; target atoms set in motion

    Se(E) - electronic stopping; electrons set in motion

    E/d

    x)

    Se(E)

    spercml

    og(d

    Sn(E)

    1-2 keV

    energy

    los

    1-2 MeV(log E)

    43P.Sigmund, Sputtering by ion bombardment: theoretical concepts, in Sputtering by particle bombardment I, edited by R. Behrish, Springer-Verlag, 1981

    Main questions to answer

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    44/57

    Main questions to answer

    . at are t e u ng oc s e ementa an c em caanalysis

    .

    3. What is the arrangement of the building blocks crystallographic analysis

    4. What are the surface morphology and bulk

    nanostructure imaging from micron to sub-nanometer

    usingScanning probe microscopy

    44

    Scanning electron microscopy

    At i f i

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    45/57

    Atomic force microscopy

    Split photodetector

    Reflect laser off cantilever in split photodetector

    Magnifies small displacements both vertical and twisting

    45

    V.L. Mironov, Fundamental of scanning probe microscopy, (Russian Academy of Sciences, Nizhny Novgorod, 2004) http://www.ntmdt.ru

    f h l l d

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    46/57

    AFM: Surface morphology evolution during Ge MBE

    46

    Quantitative information of height allows histograms of slopes

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    47/57

    Imaging with secondary electrons

    Reveals surface morphology with exceptional depth of focus

    47

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    48/57

    Imaging spheresAFM SEM

    48

    Main questions to answer

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    49/57

    Main questions to answer

    1. What are the building blocks elemental and chemical

    2. What is the electronic structure3. What is the arrangement of the building blocks

    crystallographic analysis

    4. What are the surface morphology and bulk nanostructure

    -

    with sub-nanometer resolution

    Transmission electron microscopy

    49

    Analytical (Scanning ) Transmission Electron Microscopy (S)TEM

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    50/57

    Analytical (Scanning ) Transmission Electron Microscopy (S)TEM

    primary e-beam

    100-300 keV

    Coherent

    Scattering

    (i.e. Interference)characteristic &

    Bremsstrahlun

    Incoherent

    x-rays

    Probe sizeScattering

    i.e. Rutherford

    0.18 nm

    Thickness

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    51/57

    p p 2 ( )

    [110] XTEM & [001] plan[110] XTEM & [001] plan--view TEMview TEM

    HighHigh--resolution [110] XTEMresolution [110] XTEM

    c

    d glue

    ZZ--contrast HRcontrast HR--STEM & EELSSTEM & EELS

    b a

    CoSi2

    Si

    rb.units)

    rb.units)

    5 nm

    d

    O K-edge

    Intensit

    y

    (

    Intensit

    y

    (

    ab Co L -edge

    2

    Co L -edge3

    Energy loss (eV)Energy loss (eV)

    Lim, Greene, Petrov, JAP, 100, 013510, (2006)

    Materials characterization: the need for complementary techniques

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    52/57

    Materials characterization: the need for complementary techniques

    T ical se uence to stud a set of sam les:

    1/ non-destructive analysis with no sample preparation to map out phasecomposition (XRD), surface morphology (AFM, SEM), elemental

    composition (RBS, EDS)

    2/ measure physical properties - electrical, mechanical, optical etc.

    3/ analysis selected samples by surface analysis (e.g. AES, XPS) depthprofiling, cross-sectional SEM

    4/ Select key samples for plan-view and cross-section TEM to understand

    critical behavior physical properties

    52

    Manipulating [AlN] in Hf1 xAlxN using Ei

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    53/57

    p g [ ] 1-x x g i

    Ei = 80eV

    Ei = 60eV

    Ei = 50eV

    Ei

    = 40eV

    Ei = 30eV

    Ei = 20eV

    Ei = 10eV

    Brandon Howe

    Manipulating [AlN] in Hf1-xAlxN using Ei

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    54/57

    p g [ ] 1-x x g i

    002 022

    002 022

    020

    Z-contrast

    Brandon Howe

    Hf0 70Al0 30N/HfN Superlattices by Ei modulation

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    55/57

    Hf0.70Al0.30N/HfN Superlattices by Ei modulation

    002 022 = 3.4 nm

    = 3.4 nm

    50nm Hf0.7Al0.3N buffer layer (Ei=10eV)ayers; sec i= e , sec i= e

    = 3.4 nm

    Brandon Howe

    Hf0 70Al0 30N/HfN Superlattices by Ei modulation

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    56/57

    Hf0.70Al0.30N/HfN Superlattices by Ei modulation

    = 1 nm

    = 3 nm

    = 2 nm

    = 4 nm

    = 6 nm

    = nm

    Hysitron TI 950 Triboindenter

    [0 0 2] map

    Brandon Howe

    FSMRL Center for Microanalysis of Materials

  • 7/23/2019 Me 598 - Lecture 1 - Overview of Materials Characterization Techniques.20110215.4d5ad7e0f3d0e6.28002081

    57/57

    y

    ompre ens ve se o ec n ques rom rou ne o mos a vance24 h access to qualified users

    Staff 14 scientists and engineers for > 40 major instruments

    . ur ace na ys sCameca IMS 5f SIMS

    PHI 660 AugerPHI 5400 XPSSmall-spot imaging XPSPHI TOF-SIMS 2003

    . ransm ss on ec ron croscopyPhilips CM12

    JEOL 2010 F STEM/TEMJEOL 2011 TEMIBM Low-Energy Electron MicroscopyJEOL 2100 Cryo (2006)

    Van de Graaff for ion beam analysis

    6. Laser and Optical SpectroscopiesRaman spectroscopy/Photoluminescence

    S ectro hotometr /FTIR

    JEOL 2200FSTEM/STEM (2008)

    2. Scanning Electron MicroscopySEM/Focused ion-beam microscopyHitachi S-4700, SEM S-4800 (2008)

    JEOL 6060 low-vacuum SEM(2004)Pump/probe spectroscopySum frequency generationEllipsometryNear-Field Scanning Optical MicroscopySolar cell efficiency (2010)Solar spectrum simulator (2010)

    ana yt ca

    3. Scanning Probe MicroscopyDigital Instruments AFM

    Advanced Asylum Research AFM (2) (2005)Asylum Research Cypher (2010)

    a vern nstruments etas zer

    Contact Angle Goniometers (2010)Ultrafast Confocal microscope (2011)MicroRaman (2011)

    7. Property Measurement

    m cron -

    4. X-ray ScatteringPhilips X'pert: high-resolution, reciprocal mapsPhilips X'pert: powder, pole figuresRigaku D-Max: powder

    57

    erent a scan. ca or metry ermogr. ana ys sHysitron TI 950 Triboindenter (2010)Hysitron Picoindenter (2010)Quantum Design MPMS (2011)

    Quantum Design PPMS (2011)

    -Anton Paar DHS900 hot stage (2010)Energy Dispersive X-Ray Fluorescence