mathematics and computing- sc file

Upload: singh-ak

Post on 02-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 mathematics and computing- SC File

    1/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 1

    SCIENTIFIC COMPUTING

    LAB FILE

  • 8/10/2019 mathematics and computing- SC File

    2/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 2

    ASSIGNMENT 1

    BISECTION METHOD

    SOURCE CODE:

    % Bisection method to find the root of the function f(x)=0

    % INPUT - f is the function% - a and b are the left and right endpoints% - tol is the tolerance

    % OUTPUT - c is the root% - yc= f(c)% - err is the error estimate for c

    % PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')disp('--- Assignment 1, Bisection Method ---')

    disp('--- Date - 27/02/2013 ---')disp('__________________________________________________________________')

    % INPUTS: Enter the followingf = inline('sin(x) - tan(x^2) + exp(x)'); % Function in f(x)=0a = -1.0; % Upper initial guessb = 0.0; % Lower initial guesstol=.000001; count=0;fprintf('The initial guess a = %g \n',a);

    fprintf('The initial guess b = %g \n',b);

    % SOLUTION STARTS HEREya=f(a);yb=f(b);if (ya*yb > 0)

    disp('No root lie in this interval');return;

    endwhile( b-a > tol)

    count=count+1;

    c=(a+b)/2;yc=f(c);

  • 8/10/2019 mathematics and computing- SC File

    3/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 3

    if yc==0fprintf('The equation is sin(x) - tan(x^2) + exp(x)and the root

    is x = %g \n',c);elseif yb*yc>0

    b=c;

    yb=yc;else

    a=c;ya=yc;

    endendc=(a+b)/2;err=abs(b-a);yc=f(c);fprintf('\n The equation is sin(x) - tan(x^2) + exp(x) and the root isx = %g \n',c);

    fprintf('\n Number of iterations are = %g \n',count);% END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    4/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 4

    OUTPUT:

  • 8/10/2019 mathematics and computing- SC File

    5/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 5

    ASSIGNMENT 2

    NEWTON RAPHSON METHOD

    SOURCE CODE:

    % Newton-Raphson method to find the root of the function f(x)=0

    % INPUT - f is the function% - f1 is the derivative of f% - xn is previous value% - tol is the tolerance% - fxn=f(xn)

    % OUTPUT - xn1 is the root

    % - fxn1= f(xn1)

    % PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')disp('--- Assignment 2, Newton Raphson Method -

    --')disp('--- Date - 27/02/2013 ---')disp('__________________________________________________________________')

    % INPUTS: Enter the following% GRAPHsyms x;x= -2:0.2:2;f = inline('cos(x)-x^2-x'); % Function in f(x)=0

    f1 = inline('-sin(x)-2*x-1'); % Derivative of the functionplot(x,cos(x)-x.^2 -x,'--rs') % Plotting the graph of the functiongrid on;

    disp('------- ------- SOLUTION STARTS HERE ------ -------')disp('Since the graph crosses the x-axis at two points,')disp('The function has two roots. Therefore, we need to take')disp('two different approximations and solve them seperately.')

    % FIRST ROOT

    disp('------- ------- FIRST ROOT OF f(x) ------ -------')

  • 8/10/2019 mathematics and computing- SC File

    6/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 6

    xn=-1; % Initial guesstol=.000001; count=0;disp(sprintf('The initial approximation of the first root is %g',xn));fxn=f(xn);f1xn=f1(xn);

    xn1=xn-fxn/f1xn;while( abs(xn1-xn) > tol)

    count=count+1;if fxn==0

    xn1=xndisp(sprintf('The equation is cos(x)-x^2-x and the root is x =

    %g',xn1));else

    xn=xn1;fxn=f(xn);f1xn=f1(xn);

    xn1=xn-(fxn/f1xn);end

    enddisp(sprintf('\n The equation is cos(x)-x^2-x and the root is x =%g',xn1));disp(sprintf('\n Number of iterations are = %g',count));

    % SECOND ROOTdisp('------- ------- SECOND ROOT OF f(x) ------ -------')xn=0;% Initial guess

    tol=.000001; count=0;disp(sprintf('\nThe initial approximation of the second root is%g',xn));fxn=f(xn);f1xn=f1(xn);xn1=xn-fxn/f1xn;while( abs(xn1-xn) > tol)

    count=count+1;if fxn==0

    xn1=xndisp(sprintf('The equation is cos(x)-x^2-x and the root is x =

    %g',xn1));else

    xn=xn1;fxn=f(xn);f1xn=f1(xn);xn1=xn-(fxn/f1xn);

    endenddisp(sprintf('\n The equation is cos(x)-x^2-x and the root is x =%g',xn1));disp(sprintf('\n Number of iterations are = %g',count));

    % END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    7/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 7

    OUTPUT:

  • 8/10/2019 mathematics and computing- SC File

    8/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 8

    ASSIGNMENT 3

    GAUSS SEIDEL METHOD

    SOURCE CODE:

    % Gauss-Seidel method is used to find the solution of a system of% equations!

    % INPUT - x, y, z and w are the initial approximations.

    % OUTPUT - x, y, z and w are the solutions to the given system of% equations.

    % PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')disp('--- Assignment 3, Gauss - Seidel Method ---')disp('--- Date - 20/03/2013 ---')

    disp('__________________________________________________________________')

    % INPUTS: Enter the following

    disp(sprintf('\nSystem of equations is:\n1. 4x+y+w=2\n2. x+4y+z=-2\n3.y+4z+w=2\n4. x+z+4w=-2'));

    x=0; % Initial approximationsy=0;z=0;

    w=0;tol=.000001; % tol is the limit of while loop.count=1; % count is used to calculate no. of iterations.

    disp(sprintf('\nInitial guess =[%g %g %g %g]',x,y,z,w));

    disp('------- ------- SOLUTION STARTS HERE ------ -------')% SOLUTION starts here!

    X0=[x;y;z;w];

    x= 1/4*(2-y-w);y= 1/4*(-2-x-z);

  • 8/10/2019 mathematics and computing- SC File

    9/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 9

    z= 1/4*(2-y-w);w= 1/4*(-2-x-z);X1=[x;y;z;w];

    while(max(X1-X0) > tol)

    count=count+1;X0=[x;y;z;w];x= 1/4*(2-y-w);y= 1/4*(-2-x-z);z= 1/4*(2-y-w);w= 1/4*(-2-x-z);X1=[x;y;z;w];end

    disp(sprintf('\nNo. of iterations are: %g',count));disp(sprintf('\nThe solution of system of system of equations =[%g %g

    %g %g]',x,y,z,w));

    % END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    10/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 10

    OUTPUT:

  • 8/10/2019 mathematics and computing- SC File

    11/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 11

    ASSIGNMENT 4

    SECANT METHOD

    SOURCE CODE:

    % Secant Method to find the root of the function f(x)=0

    % INPUT - f is the function% - xn and xn0 are the previous values% - tol is the tolerance% - fxn=f(xn)% - fxn0=f(xn0)

    % OUTPUT - xn1 is the root

    % - fxn1=f(xn1)

    % PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')disp('--- Assignment 4, Secant Method -

    --')disp('--- Date - 20/03/2013 ---')disp('__________________________________________________________________')

    % INPUTS: Enter the following

    syms x;x= 0:0.2:1;f = inline('cos(x)-x.*exp(x)'); % Function in f(x)=0

    plot(x,cos(x)-x.*exp(x),'--rs') % Plotting the graph of the functiongrid on;

    disp('------- ------- SOLUTION STARTS HERE ------ -------')disp('The graph crosses the x-axis between 0 and 1.')

    xn=1; xn0=0; % Initial guesstol=.000001;count=0;disp(sprintf('The initial guesses are %g and %g.',xn0,xn));

    fxn=f(xn);

  • 8/10/2019 mathematics and computing- SC File

    12/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 12

    fxn0=f(xn0);xn1=xn-fxn/(fxn-fxn0)*(xn-xn0);while( abs(xn1-xn) > tol)

    count=count+1;if fxn==0

    xn1=xn;xn=xn0;

    disp(sprintf('The equation is cos(x)-x*(e^x) and the root is x= %g',xn1));

    elsexn=xn1;fxn=f(xn);fxn0=f(xn0);xn1=xn-fxn/(fxn-fxn0)*(xn-xn0);

    endend

    disp(sprintf('\n The equation is cos(x)-x*(e^x) and the root is x =%g',xn1));disp(sprintf('\n Number of iterations are %g',count));

    % END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    13/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 13

    OUTPUT:

  • 8/10/2019 mathematics and computing- SC File

    14/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 14

    ASSIGNMENT 5

    CROUTS METHOD

    SOURCE CODE:

    % Crout's method is used to find the solution of a system of% equations!

    % INPUT - A and B are the matrices of the system of equations.% - A = LU% - X is the solution matrix of the system.% - L is the lower triangular matrix.% - U is the upper triangular matrix.% - Z = UX

    % OUTPUT - x, y, z and w are the solutions to the given system of% equations.

    % PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')

    disp('--- Assignment 5, Crouts Method ---')disp('--- Date - 03/04/2013 ---')disp('__________________________________________________________________')

    % INPUTS: Enter the following

    disp(sprintf('\nSystem of equations is:\n1. 2x+1y+-4z+1w= 4\n2. -4x+3y+5z-2w=-10\n3. 1x-1y+1z-1w= 2\n4. 1x+3y-3z+2w=-1'));

    % SOLUTION starts here!

    A=[2, 1, -4, 1; -4, 3, 5, -2; 1, -1, 1, -1; 1, 3, -3, 2]B=[4 ;-10 ;2 ;-1]disp('------- ------- SOLUTION STARTS HERE ------ -------')

    l11=A(1,1);l21=A(2,1);l31=A(3,1);

    l41=A(4,1);u12=A(1,2)./l11;

  • 8/10/2019 mathematics and computing- SC File

    15/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 15

    u13=A(1,3)./l11;u14=A(1,4)./l11;l22=A(2,2)-l21.*u12;l32=A(3,2)-l31.*u12;l42=A(4,2)-l41.*u12;

    u23=(A(2,3)-l21.*u13)./l22;u24=(A(2,4)-l21.*u14)./l22;l33=A(3,3)-l31*u13-l32*u23;l43=A(4,3)-l41*u13-l42*u23;u34=(A(3,4)-l31*u14-l32*u24)/l33;l44=A(4,4)-l41*u14-l42*u24-l43*u34;

    disp(sprintf('\nLower triangular matrix is\n'));L=[l11 0 0 0;l21 l22 0 0;l31 l32 l33 0; l41 l42 l43 l44]

    disp(sprintf('\nUpper triangular matrix is\n'));

    U=[1 u12 u13 u14; 0 1 u23 u24; 0 0 1 u34; 0 0 0 1]

    Z=(inv(L))*B;disp(sprintf('\nThe solution of system of system of equations is'));X=(inv(U))*ZAinv=inv(U).*inv(L)

    % END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    16/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 16

    OUTPUT:

  • 8/10/2019 mathematics and computing- SC File

    17/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 17

  • 8/10/2019 mathematics and computing- SC File

    18/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 18

  • 8/10/2019 mathematics and computing- SC File

    19/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 19

    ASSIGNMENT 6

    NEWTONS FORWARD AND BACKWARD DIFFERENCE

    INTERPOLATION METHOD

    SOURCE CODE:

    % Newton's Forward and Backward Interpolation Difference Formula!

    % INPUT - x is the matrix for which value is given.% - y is the matrix giving values corresponding to x.% - x1 is the matrix whose values are to be found.

    % PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')disp('--- Assignment 6, Interpolation ---')disp('--- Date - 06/04/2013 ---')disp('________________________________________________________________

    __')

    % INPUTS:Enter the following

    x= [0 0.1 0.2 0.3 0.4 0.5]y= [-1.5 -1.27 -0.98 -0.63 -0.22 0.25]x1= [0.15 0.25 0.45]

    % SOLUTION starts here!

    for l=1:3p=x1(l);

    disp(sprintf('\n\nApplying Newton Forward Interpolation differenceformula for x = %g',x1(l)));

    % Newton's Forward Interpolation Formula

    n = length(x); % Calculating length of xa(1) = y(1);for k = 1 : n - 1

    d(k, 1) = (y(k+1) - y(k))/(x(k+1) - x(k)); % Finite forwarddifference matrixend

  • 8/10/2019 mathematics and computing- SC File

    20/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 20

    for j = 2 : n - 1for k = 1 : n - j

    d(k, j) = (d(k+1, j - 1) - d(k, j - 1))/(x(k+j) - x(k));end

    end

    for j = 2 : na(j) = d(1, j-1);

    endDf(1) = 1;c(1) = a(1);for j = 2 : n

    Df(j)=(p - x(j-1)) .* Df(j-1);c(j) = a(j) .* Df(j);

    endfp=sum(c);disp(sprintf('\nWe get value as %g',fp)); % Finding sum

    disp(sprintf('\n\nApplying Newton Backward Interpolation differenceformula for x = %g',x1(l)));

    % Newton's Backward Interpolation Formulafor i=1:n

    diff(i,1)=y(i); % Finite backward difference operator matrixendfor j=2:n

    for i=n:-1:jdiff(i,j)=diff(i,j-1)-diff(i-1,j-1);

    end

    endanswer=y(n);h=x(n)-x(n-1);s=(p-x(n))/h;for i=1:n-1

    term=1;for j=1:i

    term=term*(s+j-1)/j;endanswer=answer+term*diff(n,i+1); % Finding sum

    end

    disp(sprintf('\nWe get value as %g',answer));end% END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    21/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 21

    OUTPUT:

  • 8/10/2019 mathematics and computing- SC File

    22/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 22

  • 8/10/2019 mathematics and computing- SC File

    23/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 23

    ASSIGNMENT 7

    TRAPEZOIDAL METHOD

    SOURCE CODE:

    % TRAPEZOIDAL METHOD to perform Numerical Integration!

    % INPUTS - f is the fucntion e^-(x^2)=0 we need to integrate.% - x0 is the lower limit of integration.% - x1 is the upper limit of integration.% - n is the number of mesh points% i.e no of intervals between x0 and x1.% - h is the length of the interval.% Area gives the result of integration of curve f between f0 and f1.

    % PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')disp('--- Assignment 7, Trapezoidal Method ---')

    disp('--- Date - 10/04/2013 ---')disp('__________________________________________________________________')

    % INPUTS:Enter the following:

    f=inline('exp(-x^2)');%inline function definitionx0=0;x1=1;n=20; % No. of intervals to be present between 0 and 1.

    f0=f(x0);f1=f(x1); % Computation of function values at end points.h=(x1-x0)/n; % Value of length of the intervals.f2=0;%initialize f2 to zeroa=x0;

    for i=1:n-1

    x2= a+i*h;f2= f2+ f(x2);

    end

    disp('The answer for integration is: ');area= h*(f0+f1)/2+ h*f2 % Prints the result of integration.

  • 8/10/2019 mathematics and computing- SC File

    24/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 24

    % END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    25/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 25

    OUTPUT:

  • 8/10/2019 mathematics and computing- SC File

    26/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 26

    ASSIGNMENT 8

    SIMPSONS METHOD

    SOURCE CODE:

    % Simpson's Method is used for Numerical Integration!

    % INPUT - f is the function% - f0 and fn are 1st and last values% - h is the difference between 2 values of x

    % OUTPUT - fx is the required function% PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')disp('--- Assignment 8, Simpsons Method ---')disp('--- Date - 11/04/2013 ---')disp('________________________________________________________________

    __')

    % INPUTS: Enter the following

    f=inline('exp(-x^2)'); % Functionf0=f(0); % Value of the function at 0fn=f(1); % Value of the function at 1h=0.05;n=20; % No. of divisionsfx=h/3*(f0+fn);if mod(n,2)==0 % mod is used to find the remainder

    for i=1:19k=i*h;if mod(i,2)==0

    fx=fx+2*h/3*f(k); % Formula when i is a multiple of 2else

    fx=fx+4*h/3*f(k); % Formula when i is not a multiple of 2end

    endenddisp(sprintf('\nThe equation is exp(-x^2) and its integration from x

    = 0 to 1 by Simpsons method is\n %g',fx));

    % END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    27/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 27

    OUTPUT:

  • 8/10/2019 mathematics and computing- SC File

    28/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 28

    ASSIGNMENT 9

    ROMBERGS METHOD

    SOURCE CODE:

    % Romberg's Method is a method used for Numerical Integration

    % INPUT - f is the function.% - f0 and fn are 1st and last values.% - h1,h2,h3 are the difference between 2 values of x.

    % OUTPUT - Q1,Q2,Q3 are the required functions at h1,h2,h3 resp.% - R1 and R2 are the Richardson solutions.% - S is the required function value.

    % PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')disp('--- Assignment 9, Rombergs Method ---')

    disp('--- Date - 17/04/2013 ---')disp('__________________________________________________________________')

    % INPUTS: Enter the followingf=inline('(cos(x)*log(sin(x)))/(1+(sin(x)^2))'); % Given functionf0=f(pi/4); % Value of the function at 0.fn=f(pi/2); % Value of the function at 1.h1=pi/8;n1=(pi/2-pi/4)/h1; % No. of divisions

    Q1=h1/2*(f0+fn); % Applying Trapezoidal Rule.for i=1:n1

    k=i*h1;Q1=Q1+h1*f(pi/4 + k);

    endh2=h1/2;n2=(pi/2-pi/4)/h2;Q2=h2/2*(f0+fn);for i=1:n2

    k=i*h2;Q2=Q2+h2*f(pi/4 + k);

    endR1=(4*Q2-Q1)/3;

  • 8/10/2019 mathematics and computing- SC File

    29/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 29

    h3=h2/2;n3=(pi/2-pi/4)/h3;Q3=h3/3*(f0+fn); % Applying Simpson's ruleif mod(n3,2)==0 % mod is used to find remainderfor i=1:n3

    k=i*h3;if mod(i,2)==0

    Q3=Q3+2*h3/3*f(pi/4 + k); % Formula for i multiple of 2else

    Q3=Q3+4*h3/3*f(pi/4 + k); % Formula for not i multiple of 2end

    endendR2=(16*Q3-Q2)/15;S=(16*R2-R1)/15;disp(sprintf('\nThe equation is (cos(x)*log(sin(x)))/(1+(sin(x)^2))

    and its integration \nfrom x = pi/4 to pi/2 by Rombergs Method is\n%g',S));

    % END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    30/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 30

    OUTPUT:

  • 8/10/2019 mathematics and computing- SC File

    31/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 31

    ASSIGNMENT 10

    PICARDS METHOD

    SOURCE CODE:

    % Picard's Method is used to find solution of a differential equations

    % INPUT - f is the function% - y0 is the solution at initial value of x=0.4

    % OUTPUT - Y is the solution of differential equation.% - Y1 is the solution of differential equation at x=0.8.

    % PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')disp('--- Assignment 10, Picards Method ---')disp('--- Date - 29/04/2013 ---')

    disp('__________________________________________________________________')

    % INPUTS: Enter the followingf=inline('sqrt(x+y)');fint=inline('2/3*sqrt((x+y)^3)');x0=0.4;% Initial value of xy0=0.41; % Initial value of y at x=0.4Y=y0;x1=0.6;for i=1:3

    y1=Y;Y=y0+fint(x1,y1)-fint(x0,y1);

    enddisp(sprintf('\nThe solution of the differential equation dy/dx =sqrt(x+y) \nby Picards method at x = 0.6 is\n%g',Y));y0=Y;x2=0.8;Y1=Y;for i=1:3

    y1=Y1;Y1=y0+fint(x2,y1)-fint(x1,y1);

    end

  • 8/10/2019 mathematics and computing- SC File

    32/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 32

    disp(sprintf('\nThe solution of the differential equation dy/dx =sqrt(x+y) \nby Picards method at x = 0.8 is \n%g\n',Y1));

    % END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    33/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 33

    OUTPUT:

  • 8/10/2019 mathematics and computing- SC File

    34/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 34

    ASSIGNMENT 11

    EULERS METHOD

    SOURCE CODE:

    % Euler's method is used to find solution of a differential equation.

    % INPUT - f is the function.% - y0 is the solution at initial value of x=0.4.

    % OUTPUT - Y is the solution of differential equation.% - Y1 is the solution of differential equation at x=0.8.

    % PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')disp('--- Assignment 11, Eulers Method ---')disp('--- Date - 29/04/2013 ---')

    disp('__________________________________________________________________')

    % INPUTS: Enter the following

    f=inline('sqrt(x+y)');x0=0.4;% Initial value of xy0=0.41;% Initial value of y at x=0.4x1=0.6;h=0.2;

    % SOLUTION STARTS HERE

    Y=y0+h*f(x0+h/2,y0+h/2*f(x0,y0));Y1=Y+h*f(x1+h/2,Y+h/2*f(x1,Y));disp(sprintf('\nThe solution of the differential equation dy/dx =sqrt(x+y)\nby Eulers method at x = 0.6 is \n%g\n',Y));disp(sprintf('\nThe solution of the differential equation dy/dx =sqrt(x+y)\nby Eulers method at x = 0.8 is \n%g\n',Y1));

    % END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    35/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 35

    OUTPUT:

  • 8/10/2019 mathematics and computing- SC File

    36/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 36

    ASSIGNMENT 12

    RUNGE KUTTA METHOD

    SOURCE CODE:

    % Runge Kuttas 4th Order Method is used to find the solution of a% differential equation

    % INPUT - f is the function.% - y0 is the solution at initial value of x=0.4.

    % OUTPUT - Y is the solution of differential equation.% - Y1 is the solution of differential equation at x=0.8.

    % PROGRAM STARTS HERE

    clear all; close all; clc;

    disp('__________________________________________________________________')disp('--- Name: A T I N M I N O C H A, Roll No. 2K11/MC/017 ---')disp('--- Assignment 12, Runge Kutta Method ---')disp('--- Date - 29/04/2013 -

    --')disp('__________________________________________________________________')

    % INPUTS: Enter the followingsyms x;f=inline('(x+y)^(1/2)');x0=0.4;% Initial value of xy0=0.41;% Initial value of y at x=0.4Y=y0;x1=0.6;

    h=0.2;k1=h*f(x0,y0);k2=h*f(x0+h/2,y0+k1/2);k3=h*f(x0+h/2,y0+k2/2);k4=h*f(x0+h,y0+k3);Y=y0+1/6*(k1+2*k2+2*k3+k4);disp(sprintf('\nThe solution of the differential equation dy/dx =sqrt(x+y)\nby Runge Kutta 4th Order Method at x = 0.6 is \n%g\n',Y));k1=h*f(x1,Y);k2=h*f(x1+h/2,Y+k1/2);k3=h*f(x1+h/2,Y+k2/2);

    k4=h*f(x1+h,Y+k3);Y1=Y+1/6*(k1+2*k2+2*k3+k4);

  • 8/10/2019 mathematics and computing- SC File

    37/38

    www.mcdtu.wordpress.com

    www.mcdtu.wordpress.com| 37

    disp(sprintf('\nThe solution of the differential equation dy/dx =sqrt(x+y)\nby Runge Kutta 4th Order Method at x = 0.8 is \n%g\n',Y1));

    % END OF THE PROGRAM

  • 8/10/2019 mathematics and computing- SC File

    38/38

    www.mcdtu.wordpress.com

    OUTPUT: