materi inverter vsd

35
4/26/2010 1 Inverter (Konverter DC – AC) Pekik Argo Dahono Penggunaan Inverter Pengendalian motor ac • UPS Catu daya ac Ballast elektronik Microwave heating Static VAR generators FACTS (Flexible AC Transmission System) Filter daya aktif • Penyearah 2 LPKEE-ITB

Upload: uyungmustofa

Post on 18-Apr-2015

93 views

Category:

Documents


6 download

DESCRIPTION

SETTING INVERTER

TRANSCRIPT

Page 1: Materi Inverter VSD

4/26/2010

1

Inverter (Konverter DC – AC)

Pekik Argo Dahono

Penggunaan Inverter

• Pengendalian motor ac

• UPS

• Catu daya ac

• Ballast elektronik

• Microwave heating

• Static VAR generators

• FACTS (Flexible AC Transmission System)

• Filter daya aktif

• Penyearah

2LPKEE-ITB

Page 2: Materi Inverter VSD

4/26/2010

2

Variable Speed DrivesS

ou

rce

A

C

rectifier Diode inverter PWM

Link DC

Motor AC

3LPKEE-ITB

Uninterruptibe AC Power Supplies

chargerBattery

Bettery

Inverter

Filter

Switch Bypass Static

Switch eMaintenanc Mechanical

Loads Critical

source

normal AC

generator

Standby

4LPKEE-ITB

Page 3: Materi Inverter VSD

4/26/2010

3

Properties of Ideal Inverters

• DC input is free of ripple

• AC output is sinusoidal or has a

controllable waveshape

5LPKEE-ITB

Klasifikasi Inverter

1) Menurut jumlah fasa

- satu-fasa

- banyak fasa

2) Menurut sumber dc:

- sumber tegangan

- sumber arus

3) Menurut metoda komutasi:

- komutasi paksa

- komutasi natural

4) Menurut metoda pengaturan gelombang ac:

- gelombang persegi

- pulse amplitude modulation (PAM)

- pulse width modulation (PWM)

5) Menurut jumlah level gelombang keluaran:

- dua level

- banyak level

6LPKEE-ITB

Page 4: Materi Inverter VSD

4/26/2010

4

Basic Concepts

oV E

L

oI

dE

dI

Inv

ert

er

oV

Lo XjI

E

E

E

Lo XjI

Lo XjI

oV

oV

E Lo XjI

oVlagging

0=PF

1=PF

leading

0=PF

1−=PF

oI

oI

oI

oI

7LPKEE-ITB

Basic Concept

LPKEE-ITB 8

Voltage-Source Inverter Current-Source Inverter

Voltage across the switch is

unidirectional but the current

is bidirectional

Reverse conducting switches

are required

Current through the switch is

unidirectional but the voltage

is bidirectional.

Reverse blocking switches

are required.

Page 5: Materi Inverter VSD

4/26/2010

5

Inverter Satu-Fasa

dE

1S

1D

2S

2D

ov Load

oi

•1N

1N

2Ndi

dE

1S1D

2S 2D

dE

Load u0

ovoi

dE

1S1D

2S 2D

Load

3S 3D

4S 4D

u v

ov

oi

9LPKEE-ITB

Inverter Center-Tap

dE

1S

1D

2S

2D

ov Load

oi

•1N

1N

2Ndi

dEN

N

1

2

dEN

N

1

2

0

ov

oi

di

10LPKEE-ITB

Page 6: Materi Inverter VSD

4/26/2010

6

Inverter Center-TapdE

N

N

1

2

dEN

N

1

2

0

ov

oi

di

dE

1S

1D

2S

2D

ov Load

oi

•1N

1N

2Ndi

dE

1S

1D

2S

2D

ov Load

oi

•1N

1N

2Ndi

dE

1S

1D

2S

2D

ov Load

oi

•1N

1N

2Ndi

dE

1S

1D

2S

2D

ov Load

oi

•1N

1N

2Ndi

11LPKEE-ITB

Inverter Center-Tap

BebanBeban

12LPKEE-ITB

Page 7: Materi Inverter VSD

4/26/2010

7

Analisis Tegangan OutputInverter Center-Tap

( )

( ) ( )

kVV

EN

NtdtE

N

NV

tkVv

k

dd

nk

k

/

22sin

22

sin2

:Tegangan

1

1

22/

01

21

12

=

==

=

∑∞

−=

πωω

π

ω

π

13LPKEE-ITB

Inverter Center-Tap

• Sederhana

• Komponen minimum

• Harus pakai trafo

• Cocok untuk daya rendah (< 1 kW)

• Cocok untuk tegangan dc yang rendah

• Pengaturan tegangan dilakukan dengan

menggunakan trafo ferroresonance.

14LPKEE-ITB

Page 8: Materi Inverter VSD

4/26/2010

8

Half-Bridge Inverter

1S1D

2S 2D

2

dE

Load u0

ovoi

2

dE

1di

2di

2

dE

0

ov

oi

2

dE

1Si

1Di

1di

15LPKEE-ITB

Analisis Tegangan Output Inverter Half-Bridge

( )

( ) ( )

kVV

k

Etdt

EV

tkVv

k

dd

nk

ko

/

: orde Harmonisa

2sin

2

:dasarKomponen

sin2

:Tegangan

1

2/

01

12

=

==

=

∑∞

−=

πωω

π

ω

π

16LPKEE-ITB

Page 9: Materi Inverter VSD

4/26/2010

9

Inverter Thyristor

Beban Beban

17LPKEE-ITB

Inverter Thyristor

Beban Beban

18LPKEE-ITB

Page 10: Materi Inverter VSD

4/26/2010

10

Inverter Full-Bridge

2

dE

2

dE

0

2

dE

2

dE

0

0

dE

dE

uov

vov

uvv

uvi

β

1S 2S

4S 3S 4S

di

1S1D

2S 2D

Load

3S 3D

4S 4D

u v

ov

oi

dE

2

dE

2

dE

0

di

19LPKEE-ITB

Inverter Full-Bridge

( )

( ) ( ) ( )

( )

( )

( )

( )2/7cos7

22

2/5cos5

22

2/3cos3

22

2/cos22

2/cos22

sin22

sin2

7

5

3

1

2/

2/

12

βπ

βπ

βπ

βπ

βπ

ωωπ

ω

π

β

d

d

d

d

ddk

nk

ko

EV

EV

EV

EV

kEk

tdtkEV

tkVv

=

=

=

=

==

=

∑∞

−=

20LPKEE-ITB

Sudut β bisa dipilih untuk mengatur

besarnya komponen dasar atau

menghilangkan harmonisa tertentu.

Page 11: Materi Inverter VSD

4/26/2010

11

Arus Input

LPKEE-ITB 21

( )

( )

( ) ( )

( ) ( )( ) ( )( )[ ]

genap. ordekomponen dan dckomponen atas terdiridc sisi Arus

1cos1cos2/cos22

:input Arus

sin2/cos4

:function Switching

sin2

:sinusoidalkeluaran arus Asumsi

12

1212

122121

φωφωβ

π

ωβπ

φω

−+−+−=

=

−=

=−=−=

−=

−=

tktkk

kIi

tkkk

s

tIi

isissisisi

hkld

hk

lu

uuuud

Inverter Tiga-Fasa

( )

( ) ( ) ( )

uowowuwovovwvououv

vouowownwouovovnwovououn

wovouonownvnun

nownwonovnvonounuo

vvvvvvvvv

vvvvvvvvvvvv

vvvvvvv

vvvvvvvvv

−=−=−=

−−=−−=−−=

++=→=++

+=+=+=

23

12

3

12

3

1

3

10

1S1D

2S

2D

udE

2

dE

2

dE

0

di

3S 3D

4S

4D

v

5S 5D

6S

6D

w

n

Load

22LPKEE-ITB

Page 12: Materi Inverter VSD

4/26/2010

12

Inverter Tiga-Fasa

2

dE

2

dE

0

0

0

0

0

2

dE

2

dE

2

dE

2

dE

3

2 dE

3

dE

3

dE

3

2 dE

dE

dE

uov

vov

wov

unv

uvv

23LPKEE-ITB

( )

( )

dll

nknk

kphun

phkph

dph

nk

kphuo

EV

tkVv

kVV

EV

tkVv

π

ω

π

ω

6

:fasaantar Tegangan

sin2

netral-ke-fasaTegangan

/

2

sin2

nol-ke-fasaTegangan

1,

312

,

1,,

1,

12

,

=

=

=

=

=

≠−=

−=

Arus Input

LPKEE-ITB 24

( ) ( )[ ]

( )[ ]

( ) ( ) ( )

( )[ ] ( )[ ]

( )( )[ ] ( )( )[ ]

( )( )[ ] ( )( )[ ]

enam.kelipatan harmonisa plus dckomponen atas terdiridc sisi Arus

1cos1cos22

1cos1cos22

1cos1cos22

sin2sin2sin2

sin2

2

1

sin2

2

1sin2

2

1

12

32

32

12

32

32

12

32

32

12

32

12

32

12

∑∑

−=

−=

−=

−=

−=

−=

−++−++−+

−−+−+−−+

−+−+−=

−+−−=−=

++=

−+=+=

++=

hkl

hkl

hkld

lwlvlu

hkw

hkv

hku

wwvvuud

k

tktkI

k

tktkI

k

tktkIi

tIitIitIi

k

tks

k

tks

k

tks

isisisi

φωφω

π

φωφω

π

φωφω

π

φωφωφω

ω

π

ω

π

ω

π

ππ

ππ

ππ

π

π

Page 13: Materi Inverter VSD

4/26/2010

13

Simulation

25LPKEE-ITB

Simulated Result

26LPKEE-ITB

Line-line voltage

Line-neutral voltage

Line current

Input current

Page 14: Materi Inverter VSD

4/26/2010

14

Teknik PWM

1. Sampling Based PWM:

• Natural sampling (Carrier Based)

• Regular sampling

2. Programmed PWM:

• Eliminated Harmonics

• Minimum Harmonics

27LPKEE-ITB

Teknik PWM

1S

2

dE

Load0

ovoi

2

dE

1di

2di

1D

2S

2D

u

+

o2

dE

0

2

dE

uov

If fc/fr integer, the technique is called synchronous otherwise asynchronous

28LPKEE-ITB

Page 15: Materi Inverter VSD

4/26/2010

15

Natural Sampling

LPKEE-ITB 29

Regular Sampling

2

dE

0

2

dE

uov

30LPKEE-ITB

Page 16: Materi Inverter VSD

4/26/2010

16

Simulation

31LPKEE-ITB

carrier

reference

Simulation Results

32LPKEE-ITB

Page 17: Materi Inverter VSD

4/26/2010

17

Analisis Tegangan Keluaran Inverter PWM Satu-Fasa

( )

( )

( ) ( ) ( ) ( )

( )

[ ] ( )∑

∫∫

=

=

+=

=

=

−=

+=

=

=−=−

=

1

0

1

cossinsin2

sin2

sin

sin2

coscos

cos

./

2212

2

n

sdd

o

r

dn

ssssd

n

n

snoo

sON

rddd

s

OFFONo

tnknk

EEkv

kv

nn

EC

tdtntdtnE

C

tnCvv

TT

vEEE

T

TTv

ωθππ

θ

θ

αππ

ωωωωπ

ω

α

α

π

απ

απ

maka Jika

:FourierDeret

mana yang

:tegangan rata-rata Nilai

0

0

2

dE

2

dE−

rvcar

ONT

sT

33LPKEE-ITB

Control characteristic

LPKEE-ITB 34

Page 18: Materi Inverter VSD

4/26/2010

18

Simulation result under nonsinusoidal reference

35LPKEE-ITB

Analisis Tegangan keluaran

• Maximum peak output voltage is Ed/2. This

value is less than the fundamental

component of square-wave output voltage.

• The output current waveform is almost

sinusoidal when the switching frequency is

high.

• Because the switching frequency is high,

the switching losses are also high.

36LPKEE-ITB

Page 19: Materi Inverter VSD

4/26/2010

19

Analisis Riak

0

2

dE−

2

dE

ruv

carrier

ot 1t 2t 3t 4t

sT

1ToToT

ui~

uv

( )

( )

( )

( )

≤≤−−

≤≤−−

+−

≤≤−−

=

−≈

+=−=

++=

−==

+=+=

++=

434

311

1

for

for 2

for

1~

Thus,

~~~

21

2

2

Then

~ and ~ assume usLet

:equation tageOutput vol

tttttL

v

tttttL

vE

TL

v

tttttL

v

dtvvL

i

dt

idLiRvvv

edt

idLiR

E

T

TEvv

iiivvv

edt

diLRiv

uo

uod

ouo

oouo

uouou

uuuououo

uu

u

d

s

ONdruo

uuuuououo

uu

uuo

37LPKEE-ITB

Analisis Riak

38LPKEE-ITB

θsin

2

1

2

1

2

1

2

12

1

kv

vT

T

vT

T

r

u

r

s

r

u

s

o

=

+=

−=

=

=+

π

θπ

2

0

2

,

22

~

2

1~

:ripple of value RMS

~1~

:ripple of valuesquareMean

dII

dtiT

I

uavu

Tt

tu

s

u

so

o

Page 20: Materi Inverter VSD

4/26/2010

20

Programmed PWM

0

2

dE

2

dE−

π

ganjil. Untuk n

nn

Eb

nn

Ea

M

k

kkd

n

M

k

kkd

n

−−=

−+=

=

=

2

1

2

1

sin)1(2

cos)1(12

απ

απ

39LPKEE-ITB

Programmed PWM

LPKEE-ITB 40

Page 21: Materi Inverter VSD

4/26/2010

21

Teknik PWM Untuk Inverter Satu-Fasa Full-Bridge

2

dE

2

dE

uov

vov

uvv

1S1D

2S 2D

Load

3S 3D

4S 4D

u v

ov

oi

dE

2

dE

2

dE

0

di

+

+

1S

2S

3S

4S

41LPKEE-ITB

PWM Characteristic

LPKEE-ITB 42

Page 22: Materi Inverter VSD

4/26/2010

22

Three-Phase PWM Inverter

1S1D

2S

2D

udE

2

dE

2

dE

0

di

3S 3D

4S

4D

v

5S 5D

6S

6D

w

n

Load

43LPKEE-ITB

Teknik PWM Inverter Tiga-Fasa

ruv r

vv rwv

uov

vov

uvvr

wd

wo

rv

dvo

ru

duo

uowowu

wovovw

vououv

dwo

dwo

rw

dvo

dvo

r

v

duo

duo

ru

vE

v

vE

v

vE

v

vvv

vvv

vvv

Ev

Evcarv

Ev

Evcarv

Ev

Evcarv

2

2

2

22

22

22

=

=

=

−=

−=

−=

−==>

−==>

−==>

ELSE THEN IF

ELSE THEN IF

ELSE THEN IF

44LPKEE-ITB

Page 23: Materi Inverter VSD

4/26/2010

23

PWM Characteristics

LPKEE-ITB 45

Ripple Analysis

LPKEE-ITB 46

Page 24: Materi Inverter VSD

4/26/2010

24

Simulation

47LPKEE-ITB

Simulation Results

48LPKEE-ITB

Page 25: Materi Inverter VSD

4/26/2010

25

Inverter Input Current

LPKEE-ITB 49

Dead Time

LPKEE-ITB 50

Page 26: Materi Inverter VSD

4/26/2010

26

Teknik PWM Inverter Tiga-Fasa

n

Load

0

uov

vov

wov

wi

vi

ui

51LPKEE-ITB

Teknik PWM Inverter Tiga-Fasa

( )

( ) o

r

w

o

r

v

o

r

u

skv

skv

skv

++=

+−=

+=

32

32

sin

sin

sin

:signals Reference

π

π

θ

θ

θ

52LPKEE-ITB

PWM vector Space -

PWM ousDiscontinu

3sin4

3sin6

-

:popularmost The

=−

=

θ

θ

ks

ks

o

o

Page 27: Materi Inverter VSD

4/26/2010

27

Simulation Result

53LPKEE-ITB

Switching Function Concept

( )( )( )

function switching phase-to-phase is

ELSE THEN IF

ELSE THEN IF

ELSE THEN IF

otherwise then

signalON an receives device switchingupper the IF

uv

dwuduwuGwGwu

dvwdwvwGvGvw

duvdvuvGuGuv

dwwGdvvGduuG

wwrw

vvrv

uuru

s

EsEssvvv

EsEssvvv

EsEssvvv

EsvEsvEsv

sscarv

sscarv

sscarv

ss

=−=−=

=−=−=

=−=−=

===

==>

==>

==>

==

01

01

01

.01

54LPKEE-ITB

Page 28: Materi Inverter VSD

4/26/2010

28

Voltage-Type and Current-Type Inverters

R L e

C

1S

u

2S

3S

v

4S 6S

w

5S

dI

0

u

1S

2S

u

v

w

RL

e

3S

v

4S

5S

6S

wdE

Current-Type Inverter

Voltage-Type Inverter 55

Autosequential Commutation

Current-Source Inverters

Motor

Induction

dI

dv

56LPKEE-ITB

Page 29: Materi Inverter VSD

4/26/2010

29

Current-Source Inverter with Individual

Commutation

dI

dv

Bridge

Auxiliary

Bridge

Main

Motor

Induction

57LPKEE-ITB

Current-Source Inverter with

Fourth-Leg Commutation

dI

dv

58LPKEE-ITB

Page 30: Materi Inverter VSD

4/26/2010

30

Duality Between Voltage-Type and Current-Type Inverters

0

dvuuo Esv =

dvvvo Esv =

dvwwo Esv =

ui

vi

wi

u

v

w

RL

e

u

v

w

C

G

j

diuvuv Isi =

divwvw ISi =

diwuwu Isi =

ui

vi

wi

59LPKEE-ITB

Duality Between Voltage-Type and

Current-Type Inverters

ruvi r

vwirwui

0

1

iuvs

0

1

1−

ivs

ivws 0

1

ruv r

vv rwv

0

1vus

0

1

1−

vuvs

vvs

0

1

60LPKEE-ITB

Page 31: Materi Inverter VSD

4/26/2010

31

Current-Type Inverters

.continuitycurrent sorce ensure to devices

switching lower and upper of pair one ON-turn then zero are and all IF

signal. ON an receives S6 nor S5 neither IF and

signal, ON an receives S6 THEN IF signal, ON an receives S5 THEN IF

signal. ON an receives S4 nor S3 neither IF and

signal, ON an receives S4 THEN IF signal, ON an receives S3 THEN IF

signal. ON an receives S2 nor S1 neither IF and

signal, ON an receives S2 THEN IF signal, ON an receives S1 THEN IF

ELSE THEN IF

ELSE THEN IF

ELSE THEN IF

iw

iv

iu

iw

iw

iw

iv

iv

iv

iu

iu

iu

iwu

ivw

iw

ivw

iuv

iv

iuv

iwu

iu

iwu

iwu

rwu

ivw

ivw

rvw

iuv

iuv

ruv

sss

s

ss

s

ss

s

ss

sssssssss

sscari

sscari

sscari

,,

0

11

0

11

0

11

01

01

01

=

−==

=

−==

=

−==

−=−=−=

==≥

==≥

==≥

61LPKEE-ITB

Current-Type Inverters

• At present, voltage-type inverters are more popular than current-type inverters.

• Current-type inverters are commonly used as PWM rectifiers.

• Advances on superconductor will increase the use of current-type inverters.

• At present, several manufacturers introduce reverse-blocking devices on one module.

• Current-type inverters are introduced for medium voltage ac drives because the input and output currents are almost sinusoidal, inherently four-quadrants, and short-circuit proof.

62LPKEE-ITB

Page 32: Materi Inverter VSD

4/26/2010

32

Space-Vector PWM

( )3/2

2

3

2

πj

coboaoo

ea

avvavv

=

++=r

:definitionvector Voltage

100011

101001

010 110

111000

63LPKEE-ITB

Space Vector PWM

( )

[ ]

21

1

2

2

21

22

11

21

sincos32

3

sin3

3

3

3sin

3

1

3

2cos

ttTt

E

VTt

E

VTt

ET

tV

ET

tE

T

tV

vT

tv

T

tv

T

tv

vbvaVev

so

ds

ds

ds

ds

ds

zeros

o

ss

ro

jro

−−=

−=

=

=

+=

++=

+==

θθ

θ

θ

θ

θ

rrr

rrr

dEv3

21 =r

3/2

3

2 πjd eEv =

r

rovr

θ

64LPKEE-ITB

Page 33: Materi Inverter VSD

4/26/2010

33

Space Vector PWM

a phase

b phase

c phase

2

ot

1t 2t 2

ot

0

0

0

65LPKEE-ITB

Two-Level Inverters

• High-voltage applications

need high-voltage switching

devices.

• Series connection of

switching devices are

difficult to control.

• Output waveforms can only

be improved at the expense

of switching losses.

• High-voltage applications

may need bulky and

expensive transformers.

2

dE

2

dE

u0

1S

2S

66LPKEE-ITB

Page 34: Materi Inverter VSD

4/26/2010

34

Diode clamped multilevel inverters

2

dE

2

dE

u0

1S

2S

1D

2D3S

4S

0

1D

u

1S

2S

3S

4S

4

dE

2D

3D

4D

5D

6D

5S

6S

7S

8S

4

dE

4

dE

4

dE

Three-level inverterFive-level inverter

67LPKEE-ITB

Flying capacitor inverters

2

dE u

1S

2S

3S

4S

dE

Three level invertersFive level

2

dE u

1S

2S

3S

4S

dE4

3 dE

4

dE

5S

6S

7S

8S

68LPKEE-ITB

Page 35: Materi Inverter VSD

4/26/2010

35

Cascade connection of single-phase inverters

u

1S

2S

v

3S

4S

dE

1S

2S

v

3S

4S

dE

u

1S

2S

3S

4S

dE

Three level inverter

Five level inverter 69LPKEE-ITB

END

LPKEE-ITB 70