manuskript, ferdig formatert - uio

19
Chromogenic in situ hybridization of topoisomerase 2 alpha in HER2 positive breast cancer – a more specific probe Stian Wendelborg Medical Student, University of Oslo Abstract Anthracyclinebased treatment for HER2positive breast cancer is associated with serious side effects. The topoisomerase II alpha protein is the mechanical target of anthracyclines, but its role as a biomarker has yet to be established. Amplification of TOP2A is reported in 2454% of HER2 positive tumours. Coamplification has been proposed as one explanation due to the close proximity of the two genes, but it is also possible that the TOP2A DNA probes are too large, giving false positives. Chromosome 17 anomalies have also been suggested. In this study, we use new, smaller DNA probes for in situ hybridization in 153 HER2positive tumours. 33% were TOP2Aamplified, and we found only three cases of CEP17 anomaly (deletions). A smaller DNA probe is less likely to overlap with adjacent regions, and as such is more specific. The incidence of TOP2A amplification in our material was consistent with current research, indicating that DNA probe overlap cannot explain the amplification of TOP2A seen in HER2 positive tumours. Introduction Breast cancer patients with HER2amplified tumours are usually treated with anthracyclinebased chemotherapy. Such therapy is associated with serious negative side effects such as cardiotoxicity (1), acute leukemia and myelodysplasia (2). Targeting the right subgroup of patients has been the topic of much discussion. This is partly because anthracyclines are inhibitors of DNA topoisomerase, a cleavage and religation enzyme, and not HER2 itself.

Upload: others

Post on 30-Apr-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: manuskript, ferdig formatert - UiO

Chromogenic  in  situ  hybridization  of  topoisomerase  2  alpha  in  HER2  

positive  breast  cancer  –  a  more  specific  probe  

Stian  Wendelborg  

Medical  Student,  University  of  Oslo    

Abstract  

Anthracycline-­‐based  treatment  for  HER2-­‐positive  breast  cancer  is  associated  with  

serious  side  effects.  The  topoisomerase  II  alpha  protein  is  the  mechanical  target  of  

anthracyclines,  but  its  role  as  a  biomarker  has  yet  to  be  established.    Amplification  of  

TOP2A  is  reported  in  24-­‐54%  of  HER2  positive  tumours.  Co-­‐amplification  has  been  

proposed  as  one  explanation  due  to  the  close  proximity  of  the  two  genes,  but  it  is  also  

possible  that  the  TOP2A  DNA  probes  are  too  large,  giving  false  positives.  Chromosome  

17  anomalies  have  also  been  suggested.  In  this  study,  we  use  new,  smaller  DNA  probes  

for  in  situ  hybridization  in  153  HER2-­‐positive  tumours.    33%  were  TOP2A-­‐amplified,  

and  we  found  only  three  cases  of  CEP17  anomaly  (deletions).  A  smaller  DNA  probe  is  

less  likely  to  overlap  with  adjacent  regions,  and  as  such  is  more  specific.  The  incidence  

of  TOP2A  amplification  in  our  material  was  consistent  with  current  research,  indicating  

that  DNA  probe  overlap  cannot  explain  the  amplification  of  TOP2A  seen  in  HER2-­‐

positive  tumours.  

 

Introduction  

Breast  cancer  patients  with  HER2-­‐amplified  tumours  are  usually  treated  with  

anthracycline-­‐based  chemotherapy.  Such  therapy  is  associated  with  serious  negative  

side  effects  such  as  cardiotoxicity  (1),  acute  leukemia  and  myelodysplasia  (2).  Targeting  

the  right  sub-­‐group  of  patients  has  been  the  topic  of  much  discussion.  This  is  partly  

because  anthracyclines  are  inhibitors  of  DNA  topoisomerase,  a  cleavage-­‐  and  re-­‐ligation  

enzyme,  and  not  HER2  itself.    

 

Page 2: manuskript, ferdig formatert - UiO

  2  

HER2  

HER2  (human  endothelial  growth  factor  receptor  2)  is  a  receptor  tyrosine  kinase  (RTK)  

whose  gene  is  amplified  in  15-­‐45%  of  invasive  breast  cancers  (3-­‐13).  In  our  institution,  

an  average  of  11  %  of  breast  cancers  are  HER-­‐2  positive  (unpublished  results).  An  

oncogene,  located  on  the  long  arm  of  chromosome  17  (17q11.2-­‐12),  it  encodes  a  

transmembrane  glycoprotein  of  185  kD.    The  RTKs  are  a  family  of  receptors  involved  in  

essential  cellular  processes  like  metabolism,  migration,  differentiation,  proliferation,  

survival  and  intercellular  communication  during  development  (14).  

TOP2A  

Topoisomerase  II  alpha  (TOP2A),  located  on  chromosome  17q12-­‐21  (15),  encodes  an  

ATP-­‐dependent  enzyme  crucial  in  DNA  replication.  The  170  kD  protein  cleaves  double-­‐

stranded  DNA,  releasing  the  torsional  stress  of  supercoiling  during  replication  by  letting  

another  DNA-­‐duplex  pass  through  the  break,  and  subsequently  religating  the  cleavage  

site.  Disturbance  of  the  activity  of  topoisomerase  II  alpha  leads  to  breaks  in  double  

stranded  DNA,    and  to  cell  death  (16).  

Recent  studies  indicate  that  there  may  be  less  co-­‐amplification  of  HER2  and  TOP2A  than  

previously  assumed,  and  that  the  over-­‐expression  of  TOP2A  in  HER2-­‐positive  breast  

cancers  may  in  part  stem  from  probes  containing  the  DNA  sequences  of  both  genes,  and  

in  part  from  polysomy  of  chromosome  17  (17,18).  

The  aim  of  this  study  was  to  validate  the  presumed  increased  specificity  of  a  new,  

shorter  DNA  probe  for  TOP2A,  using  silver  in  situ  hybridization  (SISH).  

 

Materials  and  methods  

The  pathology  department  files  were  searched  for  HER2-­‐positive  breast  carcinomas  

dating  from  2005  until  the  first  6  months  of  2011.  HER2-­‐positive  cases  were  

immunohistochemically  (IHC)  2+/3+  positive  and/or  amplified  by  in  situ  hybridisation.  

In  situ  hybridisation  was  done  either  as  FISH  (fluorescent  in  situ  hybridisation)  or  as  

SISH.  Amplification  is  defined  as  a  minimum  HER2-­‐gene  to  CEP17  ratio  larger  than  2,0  

as  according  to  the  Food  and  Drug  Administration  (19).    

Page 3: manuskript, ferdig formatert - UiO

  3  

A  total  of  265  cases  were  found.    73  were  omitted  due  to  sub-­‐optimal  tumour  material,  

missing  paraffin  embedded  sections  or  failure  to  meet  the  HER2  positivity  criteria.  39  

were  omitted  due  to  time  constraints.  153  cases  were  included  in  this  study.  

Data  concerning  subtype,  grading,  pTNM-­‐staging,  tumour  size,  estrogen-­‐  and  

progesterone  receptor  status,  axillary  lymph  node  status  (ALN)  and  patient  age  were  

likewise  extracted  from  the  data  files.  Estrogen  and  progesterone  receptor  positivity  

was  defined  as  nuclear  positivity  in  >  10  %  of  the  tumor  cell  nuclei  (cut-­‐off  for  ER  

changed  to  >  1%  later)  

The  formalin-­‐fixed,  paraffin-­‐embedded  tissue  samples  underwent  in  situ  hybridization  

for  chromosome  17  and  TOP2A  according  to  the  manufacturer’s  procedures.  

The  hybridized  slides  were  compared  to  their  hematoxylin-­‐eosin  counterparts  in  order  

to  assure  that  signals  were  counted  from  cells  in  the  tumour  tissue.  An  average  number  

of  signals  for  CEP17  and  TOP2A  for  each  tumor  were  calculated  counting  40  cells  in  a  

bright  field  microscope  at  40x  magnification.  Single  signals  of  TOP2A  counted  as  1  (fig.  

1),  small  clusters  counted  as  5  (fig.  2)  whereas  larger  clusters  counted  as  10  signals  (fig.  

3).  Each  slide  was  primarily  examined  by  a  student  and  checked  by  an  experienced  

pathologist.  Upon  discrepancy,  a  pathologist  would  do  another  full  signal  count  (3  

cases).  The  TOP2A:CEP17  ratio  for  each  cell  was  calculated  to  determine  amplification,  

deletion  or  polysomy.  The  cut-­‐offs  were  set  to  2.0  for  amplification  and  0.8  for  deletion  

(17,20).  Ratios  of  >1,5  for  amplification  and  0,5-­‐1,0  for  deletion  have  also  been  used  in  

other  studies  (ibid).  Defining  polysomy  is  complicated  by  a  number  of  factors,  nuclear  

truncation  during  sectioning  being  an  important  one  (21).  Also,  chance  decides  wether  

the  centromere  is  included  in  the  optical  section  or  not.  The  colour  points  using  SISH  are  

less  distinct  from  each  other  than  those  seen  in  FISH,  making  it  easier  to  confuse  signals.  

Therefore,  we  used  a  relatively  low  threshold  in  order  to  increase  the  sensitivity  of  

discovering  polysomies  on  behalf  of  decreased  specificity.  Many  studies  use  a  CEP17  

copy  number  threshold  of  2-­‐5,  3  being  the  most  common,  to  define  polysomy  17  (7,22-­‐

24),  but  our  data  material  had  no  such  cases.  Polysomy  of  chromosome  17  was  therefore  

defined  using  the  lowest  previously  reported  CEP17  copy  number  of  ≥1,86  (25).  

Page 4: manuskript, ferdig formatert - UiO

  4  

Silver  in  situ  hybridization  of  TOP2A  

A  dinitrophenol  (DNP)-­‐labelled  probe  (Ventana  Medical  Systems’  TOP2A  DNA  Probe)  

spanning  67,400  base  pairs  of  the  TOP2A  gene  binds  to  the  target  DNA  and  subsequently  

binds  to  rabbit  anti-­‐DNP  antibody.  Goat  anti-­‐rabbit  antibody  is  conjugated  to  

horseradish  peroxidase  (HRP)  which  functions  as    a  chromogenic  enzyme,  reducing  

silver  ions  to  metallic  silver  atoms  by  the  addition  of  silver  acetate,  hydroquinone  and  

hydrogen  peroxide  (ultraView  SISH  Detection  Kit,  see  fig.  4).  The  precipitate  is  deposited  

in  the  nuclei,  and  after  counterstaining  the  TOP2A  gene  can  be  visualized  as  a  black  

silver  dot  using  bright  field  microscopy.  

Red  in  situ  hybridization  of  chromosome  17  

The  Ventana  Medical  Systems'  INFORM  Chromosome  17  Probe  with  DNP  label  is  a  42  

base-­‐pair  synthetic  oligonucleotide  that  binds  to  the  centromeric  region  of  chromosome  

17.  Rabbit  anti-­‐DNP  antibody  is  used  as  with  SISH  for  TOP2A.    The  ultraViewTM  Alkaline  

Phosphatase  Red  ISH  Detection  Kit  contains  an  alkaline  phosphate-­‐labelled  secondary  

antibody.  The  complex  is  visualized  as  a  red  dot  in  the  microscope  after  utilization  of  the  

naphtol  and  Fast  red  chromogens.  

 

Results  

Patients  

All  patients  (n=153,  152  female,  1  male)  included  in  the  study  had  histopathologically  

proven  invasive  breast  carcinoma.  Average  patient  age  at  diagnosis  was  57,5  years  

(range  28-­‐92  years).  Average  tumour  size  was  23,6  mm  (range  3-­‐100  mm).    The  

majority  (144  cases,  93%)  were  of  ductal  subtype,  the  remainder  were  either  lobular  (7  

cases,  5%),  mucinous  (1  case,  0,6%)  or  of  a  mixed  ductal  and  lobular  subtype  (1  case,  

0,6%).  142  cases  tested  2+  or  3+  on  immunhistochemistry  for  HER2  (94%,  21  and  121  

cases,  respectively).  127  cases  were  amplified  for  the  HER2  gene  (83%).  21  cases  (14%)  

were  not  registered  with  ISH  for  HER2,  but  in  all  instances  there  was  a  3+  IHC  result  for  

HER2.  3  cases  (2%)  showed  no  HER2  amplification  with  ISH  but  3+  on  IHC.    83  tumours  

(54%)  were  estrogen  receptor  positive.  66  tumours  (43%)  were  progesterone  receptor  

positive.  An  overview  of  SISH-­‐results,  HER2  status,  age,  tumour  size,  grade,  stage  and  

Page 5: manuskript, ferdig formatert - UiO

  5  

receptor  status  for  each  sample  is  shown  in  table  2.  A  summary  of  data  is  shown  in  table  

1.  

SISH  

Of  the  153  HER2  positive  tumours  undergoing  dual  chromogenic  in  situ  hybridization,  

we  found  that  33%  were  amplified  for  TOP2A  (51  cases)  using  a  cut-­‐off  ratio  of  ≥2,0.  5%  

had  TOP2A  deletion  (8  cases,  cut-­‐off  ratio  ≤0,8).  The  remaining  62%  had  normal  TOP2A  

gene  copy  number  (TOP2A:CEP17  ratio  0,8-­‐2,0).  Using  a  cut-­‐off  of  CEP17>1,86  gives  a  

total  of  3  tumours  polysomic  for  chromosome  17.  

 

Discussion  

Finding  valid  biomarkers  for  the  benefit  of  anthracycline-­‐based  chemotherapy  has  so  far  

been  unsatisfactory.  Ongoing  research  concerning  the  role  of  TOP2A  and  chromosome  

17  copy  number  aberrations  shows  no  clear  conclusion  yet,  but  there  are  indications  

that  gene-­‐adjacent  regions  may  have  an  important  role  to  play.  Therefore,  we  wanted  to  

investigate  the  specificity  of  a  new  TOP2A  DNA-­‐probe,  in  the  hope  that  better  tools  

might  lead  to  more  consistent  results  in  future  research.  The  DNP-­‐labelled  SISH  probe  

under  investigation  spans  a  considerably  shorter  segment  of  base  pairs,  respectively  

30%  and  42%  the  size  of  those  targeted  by  two  well-­‐known  probes  used  in  FISH  

analysis  of  TOP2A  (20).  

HER2  amplification  has  traditionally  been  regarded  as  a  useful  marker  in  identifying  the  

subset  of  patients  who  may  benefit  from  anthracycline-­‐based  chemotherapy.  This  is,  

however,  not  intuitively  comprehensible,  as  anthracyclines  do  not  target  the  receptor  

coded  by  the  HER2  gene.  Rather,  the  topoisomerase  II  alpha  protein  is  one  of  the  

intracellular  targets  of  such  therapy,  and  the  TOP2A  gene  is  amplified  in  only  24-­‐54%  of  

HER2-­‐amplified  tumors  (15,26,27),  creating  some  confusion  regarding  the  mechanism  

of  action  of  the  hitherto  important  anthracyclines.  TOP2A  and  HER2  are  believed  to  have  

been  co-­‐amplified  due  to  their  very  close  location  on  the  long  arm  of  chromosome  17  

(20,28,29).  Studies  by  Arriola  and  Kauraniemi  have  observed  common  regions  of  

amplification  around  HER2  spanning  280-­‐746  thousand  base  pairs,  containing  over  20  

genes  (28,30),  with  even  more  additional  genes  located  next  to  these  regions  (29).  

Page 6: manuskript, ferdig formatert - UiO

  6  

TOP2A  may  be  one  such  gene,  potentially  influencing  amplification  and  expression  of  

HER2  and  thus  its  clinical  phenotype  (14).    

Chromosome  17,  site  of  both  genes  in  question,  is  the  most  gene  dense  chromosome  in  

our  genome.  Interestingly,  chromosome  17  also  contains  the  p53  and  BRCA1  genes,  

which  are  important  in  cancerogenesis.  Some  investigations  have  highlighted  polysomy  

17  as  a  possible  mechanism  of  increased  protein  expression,  including  that  of  increased  

topoisomerase  II  alpha.  A  trial  published  in  2011  comparing  cyclophosphamide,  

epirubicin  (antracycline)  and  fluorouracil  (CEF)  against  cyclophosphamide,  

methotrexate  and  fluorouracil  (CMF)  suggested  that  tumours  with  duplication  of  CEP17  

showed  borderline  responsiveness  to  anthracycline-­‐based  chemotherapy  (17),  whereas  

eusomy  17  showed  no  apparent  benefit.  The  authors  proposed  that  CEP17-­‐duplication  

may  indicate  changes  such  as  unbalanced  translocations,  sub-­‐chromosomal  

amplification  or  deletion,  or  duplication  of  the  entire  genome,  and  that  CEP17  may  be  a  

more  reliable  marker  than  HER2  and  TOP2A.  This  remains  to  be  confirmed  by  further  

research.  

Trying  to  determine  the  cause  of  increased  benefit  with  anthracyclines  depends  on  valid  

techniques.  In  situ  hybridization  is  widely  accessible  and  has  been  the  preferred  method  

for  identifying  changes  in  HER2  and  TOP2A  copy  number  (19,31,32).  The  close  

proximity  of  the  two  genes,  and  the  possible  modifying  regions  neighbouring  them,  

postulates  that  a  very  specific  DNA  probe  is  necessary  –  one  that  overlaps  as  little  as  

possible  with  bases  outside  the  gene  itself.  Moelans  et  al.  used  multiplex  ligation-­‐

dependent  probe  amplification-­‐based  copy  number  analysis  (MLPA)  as  a  control  when  

evaluating  the  DAKO  pharmTM  probe  (228  kb  of  the  TOP2A  region)  and  the  

PathvysionTM  probe  (160  kb  of  the  TOP2A  region).  They  found  no  difference  in  

detection  of  TOP2A  deletions,  but  discovered  that  the  larger  of  the  probes  resulted  in  

“overdetection”  of  HER2,  most  likely  because  of  TOP2A  overlap  with  the  adjacent  HER2  

region  (20).  

Studies  by  Järvinen  show  that  overexpression  of  HER2  alone  does  not  influence  the  

sensitivity  to  anthracyclines  (15).  Indeed,  patients  with  HER2-­‐positivity  who  also  have  

TOP2A  amplification  have  shown  longer  survival  and  increased  response  to  

anthracyclines  than  those  without  TOP2A  amplification  (33-­‐36).  Moelans  et  al.  (20)  

discuss  the  wide  variability  of  TOP2A  amplifications  (33-­‐60%  in  some  studies)  and  

Page 7: manuskript, ferdig formatert - UiO

  7  

deletions  (20-­‐42%)  (36-­‐39),  highlighting  that  although  changes  in  TOP2A  is  very  rare  

when  there  is  no  HER2  amplification,  some  studies  report  a  10-­‐20%  TOP2A  

amplification  rate  in  HER2-­‐negative  breast  cancer.  According  to  Moelans,  this  variability  

is  likely  related  to  the  FISH  technology  used  to  determine  gene  status,  a  technique  

whose  reproducibility  is  questioned  by  other  authors  (18).  A  2011  study  of  1614  HER2-­‐

negative  cases  discovered  no  TOP2A  amplification,  but  3%  TOP2A  deletion  (19).  

Elsewhere,  results  indicate  that  a  significant  number  of  HER2-­‐negative  tumours  

exhibited  high  levels  of  TOP2A  (40).  

The  predictive  value  of  HER2  and  TOP2A  for  anthracycline-­‐based  chemotherapy  is  still  

the  subject  of  much  debate.  Some  retrospective  analyses  of  randomized  studies  

indicated  that  adjuvant  anthracycline  therapy  could  be  most  effective  when  TOP2A  was  

amplified  (19,31,32).  In  2008,  the  results  of  two  meta-­‐analyses  indicated  that  only  

HER2-­‐positive  patients  benefited  from  anthracycline-­‐based  chemotherapy  (41,42).  

However  the  same  year,  the  BR9601/NEAT  study  (n=1870)  (8,43)  showed  no  consistent  

predictive  value  of  neither  HER2  nor  TOP2A.  Furthermore,  this  study  suggested  that  

polysomy  17  might  have  a  part  to  play.  

In  a  meta-­‐analysis  of  four  trials  (n=1944),  Di  Leo  et  al.  showed  a  modest  and  borderline  

statistical  predictive  value  using  HER2  and  TOP2A  as  biomarkers  (44,45).  In  a  new  

meta-­‐analysis  in  Lancet  Oncology  in  2011,  Di  Leo  et  al.  once  again  compared  CMF  to  

anthracycline-­‐based  therapy.  Although  HER2  amplification  and  combined  amplification  

or  deletion  of  TOP2A  may  play  a  role  in  predicting  response  to  anthracycline-­‐based  

therapy,  their  findings  did  not  support  the  use  of  this  therapy  in  only  these  two  groups  

of  patients  (18).  

Two  studies  suggest  that  TOP2A  deletion  may  provide  increased  sensitivity  to  

anthracyclines,  but  there  is  still  no  biological  rationale  for  this  (6,34).    

Another  problem  in  the  search  for  valid  biomarkers  for  breast  cancer  is  the  degree  of  

correlation  between  gene  status  and  protein  levels.  Findings  by  O’Malley  et  al.  suggest  

that  the  expression  of  the  topoisomerase  protein  is  not  regulated  by  the  copy  number  of  

the  TOP2A  gene,  but  rather  at  an  RNA  or  post-­‐translational  level  (46,47).  Their  study  

found  no  significant  correlation  between  TOP2A  gene  status  and  topoisomerase  protein  

levels  (46).  Some  studies  favor  TOP2A  expression  over  amplification  as  a  positive  

Page 8: manuskript, ferdig formatert - UiO

  8  

predicitve  marker  of  anthracycline  benefit  (24,48).  It  would  be  both  convenient  and  

logical  if  TOP2A  protein  expression  should  show  itself  a  valid  biomarker,  considering  

the  mechanical  effect  of  protein  inhibition  believed  to  be  offered  by  anthracyclines  

(47,49-­‐51).  

There  has  been  little  progress  regarding  biomarkers  that  predict  response  to  

chemotherapy  in  breast  cancer.  Results  are  inconsistent,  and  conclusions  differ  as  to  the  

value  of  TOP2A  regarding  anthracyclines.  If  such  treatment  response  cannot  be  

routinely  predicted  by  HER2  and  TOP2A,  as  according  Di  Leo  and  his  associates  (18),  

who  then  should  receive  this  widely  used  type  of  chemotherapy?  

CEP17  copy  number  aberration  was  not  often  seen  in  our  data.  Using  the  most  sensitive  

criterion  reported,  we  found  only  3  tumours  polysomic  for  chromosome  17.  This  may  

indicate  that  increased  number  of  TOP2A  signals  is  not  the  result  of  increased  number  of  

chromosomes,  and  is  consistent  with  other  studies  that  show  that  polysomy  17  is  a  rare  

event  in  breast  cancer  (52).  Abnormal  signals  of  CEP17  is  probably  due  to  

pericentromeric  gains  or  losses  on  chromosome  17  (53).  In  light  of  our  results,  CEP17  

polysomy  does  not  seem  a  good  marker  of  anthracycline  responsiveness.  

A  euploid  human  cell  contains  two  chromosomes.  However,  in  our  material  the  average  

number  of  CEP17  signals  was  1,21  (0,53-­‐2,55).  This  can  be  explained  by  the  cutting  of  

nuclei  in  two,  leaving  only  one  chromosome  in  the  slide.  Alternatively,  it  can  be  

explained  by  an  underestimation  due  to  poor  signal  strength  or  partially  overlapping  

cells  that  obscure  each  other,  combined  with  observer  lack  of  experience  in  evaluation  of  

chromogenic  in  situ  hybridization.  

This  study  does  not  make  a  comparison  of  different  TOP2A  probes  on  the  same  tissue  

samples.  Such  data  would  be  necessary  to  determine  with  confidence  any  increased  

probe  specificity,  as  the  number  of  TOP2A-­‐amplified  tumours  in  our  data  (33%)  is  

within  the  range  reported  (24-­‐54%)  in  the  literature  using  larger  DNA  probes.  With  

such  differing  rates  of  amplification  of  TOP2A,  another  investigation  using  larger  probes  

on  our  material  could  be  helpful.  However,  it  is  reasonable  to  assume  that  much  smaller  

TOP2A  DNA  probes  will  overlap  less  with  adjacent  regions.    

The  majority  of  research  being  done  on  use  of  biomarkers  and  anthracyclines  compares  

CEF  (with  anthracycline)  and  CMF  (without  anthracycline).  Such  a  study  was  beyond  the  

Page 9: manuskript, ferdig formatert - UiO

  9  

scope  of  our  investigation.  A  retrospective  analysis  of  treatment  results  in  our  study  is  

theoretically  possible,  but  with  our  small  sample  size,  it  uncertain  wether  there  are  

enough  patients  treated  with  anthracyclines  versus  non-­‐anthracycline  therapy  to  make  

a  statistically  significant  comparison.  

In  conclusion,  a  new  TOP2A  DNA  probe  of  67,400  base  pairs  detects  amplification  of  

TOP2A  in  HER2-­‐positive  breast  cancers  at  a  rate  comparable  to  that  reported  in  

previous  studies  using  larger  DNA  probes.  A  smaller  DNA  probe  is  less  likely  to  overlap  

with  adjacent  regions,  and  would  be  considered  more  specific.  Our  results  suggest  that  

the  amplification  of  TOP2A  seen  in  HER2-­‐positive  tumours  cannot  be  explained  by  DNA  

probes  spanning  outside  their  designated  target  region.  Our  investigation  cannot  

conclude  wether  there  is  co-­‐amplifiation  or  not,  although  it  seems  more  likely  now  than  

before.  Certainly,  a  more  specific  DNA  probe  is  no  step  backward.  

   

Page 10: manuskript, ferdig formatert - UiO

  10  

References    

1.   Ryberg  M,  Nielsen  D,  Cortese  G,  Nielsen  G,  Skovsgaard  T,  Andersen  PK.  New  insight  into  epirubicin  cardiac  toxicity:  competing  risks  analysis  of  1097  breast  cancer  patients.  J  Natl  Cancer  Inst.  2008  Aug.  6;100(15):1058–67.    

2.   Diamandidou  E,  Buzdar  AU,  Smith  TL,  Frye  D,  Witjaksono  M,  Hortobagyi  GN.  Treatment-­‐related  leukemia  in  breast  cancer  patients  treated  with  fluorouracil-­‐doxorubicin-­‐cyclophosphamide  combination  adjuvant  chemotherapy:  the  University  of  Texas  M.D.  Anderson  Cancer  Center  experience.  J  Clin  Oncol.  1996  Oct.;14(10):2722–30.    

3.   Fritz  P,  Cabrera  C,  Dippon  J,  Gerteis  A,  Simon  W,  Aulitzky  W,  et  al.  c-­‐erbB2  and  topoisomerase  IIα  protein  expression  independently  predict  poor  survival  in  primary  human  breast  cancer:  a  retrospective  study.  Breast  Cancer  Research  2005  7:R374.  2005  Mar.  21;7(3):R374–84.    

4.   Nielsen  KV,  Ejlertsen  B,  Møller  S,  Jørgensen  JT,  Knoop  A,  Knudsen  H,  et  al.  The  value  of  TOP2A  gene  copy  number  variation  as  a  biomarker  in  breast  cancer:  Update  of  DBCG  trial  89D.  Acta  Oncol.  2008;47(4):725–34.    

5.   Schindlbeck  C,  Mayr  D,  Olivier  C,  Rack  B,  Engelstaedter  V,  Jueckstock  J,  et  al.  Topoisomerase  IIalpha  expression  rather  than  gene  amplification  predicts  responsiveness  of  adjuvant  anthracycline-­‐based  chemotherapy  in  women  with  primary  breast  cancer.  J  Cancer  Res  Clin  Oncol.  2010  Jul.  1;136(7):1029–37.    

6.   O'Malley  FP,  Chia  S,  Tu  D,  Shepherd  LE,  Levine  MN,  Bramwell  VH,  et  al.  Topoisomerase  II  alpha  and  responsiveness  of  breast  cancer  to  adjuvant  chemotherapy.  J  Natl  Cancer  Inst.  2009  May  6;101(9):644–50.    

7.   Tubbs  R,  Barlow  WE,  Budd  GT,  Swain  E,  Porter  P,  Gown  A,  et  al.  Outcome  of  patients  with  early-­‐stage  breast  cancer  treated  with  doxorubicin-­‐based  adjuvant  chemotherapy  as  a  function  of  HER2  and  TOP2A  status.  J  Clin  Oncol.  2009  Aug.  20;27(24):3881–6.    

8.   Bartlett  JMS,  Munro  AF,  Dunn  JA,  McConkey  C,  Jordan  S,  Twelves  CJ,  et  al.  Predictive  markers  of  anthracycline  benefit:  a  prospectively  planned  analysis  of  the  UK  National  Epirubicin  Adjuvant  Trial  (NEAT/BR9601).  Lancet  Oncol.  2010  Mar.  1;11(3):266–74.    

9.   Durbecq  V,  Paesmans  M,  Cardoso  F.  Topoisomerase-­‐IIα  expression  as  a  predictive  marker  in  a  population  of  advanced  breast  cancer  patients  randomly  treated  either  with  single-­‐agent  doxorubicin  or  ….  Molecular  cancer  ….  2004.    

10.   Paik  S,  Bryant  J,  Tan-­‐Chiu  E,  Yothers  G,  Park  C,  Wickerham  DL,  et  al.  HER2  and  choice  of  adjuvant  chemotherapy  for  invasive  breast  cancer:  National  Surgical  Adjuvant  Breast  and  Bowel  Project  Protocol  B-­‐15.  J  Natl  Cancer  Inst.  2000  Dec.  20;92(24):1991–8.    

11.   Moliterni  A,  Ménard  S,  Valagussa  P,  Biganzoli  E,  Boracchi  P,  Balsari  A,  et  al.  HER2  overexpression  and  doxorubicin  in  adjuvant  chemotherapy  for  resectable  breast  cancer.  J  Clin  Oncol.  2003  Feb.  1;21(3):458–62.    

12.   Colozza  M,  Sidoni  A,  Mosconi  AM,  Cavaliere  A,  Bisagni  G,  Gori  S,  et  al.  HER2  overexpression  as  a  predictive  marker  in  a  randomized  trial  comparing  adjuvant  cyclophosphamide/methotrexate/5-­‐fluorouracil  with  epirubicin  in  patients  with  stage  I/II  breast  cancer:  long-­‐term  results.  Clin.  Breast  Cancer.  2005  Aug.;6(3):253–9.    

13.   Di  Leo  A,  Chan  S,  Paesmans  M,  Friedrichs  K,  Pinter  T,  Cocquyt  V,  et  al.  HER-­‐2/neu  as  a  predictive  marker  in  a  population  of  advanced  breast  cancer  patients  randomly  treated  either  with  single-­‐agent  doxorubicin  or  single-­‐agent  docetaxel.  Breast  Cancer  Res  Treat.  2004  Aug.;86(3):197–206.    

14.   Glynn  RW,  Miller  N,  Kerin  MJ.  17q12-­‐21  -­‐  the  pursuit  of  targeted  therapy  in  breast  cancer.  Cancer  Treat  Rev.  2010  May  1;36(3):224–9.    

15.   Järvinen  TA,  Tanner  M,  Rantanen  V,  Bärlund  M,  Borg  A,  Grénman  S,  et  al.  Amplification  and  deletion  of  topoisomerase  IIalpha  associate  with  ErbB-­‐2  amplification  and  affect  sensitivity  to  topoisomerase  II  

Page 11: manuskript, ferdig formatert - UiO

  11  

inhibitor  doxorubicin  in  breast  cancer.  Am  J  Pathol.  2000  Mar.  1;156(3):839–47.    

16.   DeVita  VT,  Lawrence  TS,  Rosenberg  SA.  DeVita,  Hellman,  and  Rosenberg's  cancer.  Lippincott  Williams  &  Wilkins;  2008.  p.  3151.    

17.   Pritchard  KI,  Munro  A,  O'Malley  FP,  Tu  D,  Li  X,  Levine  MN,  et  al.  Chromosome  17  centromere  (CEP17)  duplication  as  a  predictor  of  anthracycline  response:  evidence  from  the  NCIC  Clinical  Trials  Group  (NCIC  CTG)  MA.5  Trial.  Breast  Cancer  Res  Treat.  2012;131(2):541–51.    

18.   Di  Leo  A,  Desmedt  C,  Bartlett  JMS,  Piette  F,  Ejlertsen  B,  Pritchard  KI,  et  al.  HER2  and  TOP2A  as  predictive  markers  for  anthracycline-­‐containing  chemotherapy  regimens  as  adjuvant  treatment  of  breast  cancer:  a  meta-­‐analysis  of  individual  patient  data.  Lancet  Oncol.  2011  Nov.  1;12(12):1134–42.    

19.   Press  MF,  Sauter  G,  Buyse  M,  Bernstein  L,  Guzman  R,  Santiago  A,  et  al.  Alteration  of  topoisomerase  II-­‐alpha  gene  in  human  breast  cancer:  association  with  responsiveness  to  anthracycline-­‐based  chemotherapy.  J  Clin  Oncol.  2011  Mar.  1;29(7):859–67.    

20.   Moelans  CB,  de  Weger  RA,  Monsuur  HN,  Vijzelaar  R,  van  Diest  PJ.  Molecular  profiling  of  invasive  breast  cancer  by  multiplex  ligation-­‐dependent  probe  amplification-­‐based  copy  number  analysis  of  tumor  suppressor  and  oncogenes.  Mod  Pathol.  2010  May  14;23(7):1029–39.    

21.   Reinholz  MM,  Bruzek  AK,  Visscher  DW,  Lingle  WL,  Schroeder  MJ,  Perez  EA,  et  al.  Breast  cancer  and  aneusomy  17:  implications  for  carcinogenesis  and  therapeutic  response.  Lancet  Oncol.  2009  Mar.  1;10(3):267–77.    

22.   Salido  M,  Tusquets  I,  Corominas  JM,  Suarez  M,  Espinet  B,  Corzo  C,  et  al.  Polysomy  of  chromosome  17  in  breast  cancer  tumors  showing  an  overexpression  of  ERBB2:  a  study  of  175  cases  using  fluorescence  in  situ  hybridization  and  immunohistochemistry.  Breast  Cancer  Research  2005  7:R374.  2005;7(2):R267.    

23.   Konecny  GE,  Pauletti  G,  Untch  M,  Wang  H-­‐J,  Möbus  V,  Kuhn  W,  et  al.  Association  between  HER2,  TOP2A,  and  response  to  anthracycline-­‐based  preoperative  chemotherapy  in  high-­‐risk  primary  breast  cancer.  Breast  Cancer  Res  Treat.  2010  Apr.  1;120(2):481–9.    

24.   Nikolényi  A,  Sükösd  F,  Kaizer  L,  Csörgo  E,  Vörös  A,  Uhercsák  G,  et  al.  Tumor  topoisomerase  II  alpha  status  and  response  to  anthracycline-­‐based  neoadjuvant  chemotherapy  in  breast  cancer.  Oncology.  2011;80(3-­‐4):269–77.    

25.   Beser  AR,  Tuzlali  S,  Guzey  D,  Dolek  Guler  S,  Hacihanefioglu  S,  Dalay  N.  HER-­‐2,  TOP2A  and  chromosome  17  alterations  in  breast  cancer.  Pathol  Oncol  Res.  2007;13(3):180–5.    

26.   Slamon  DJ,  Press  MF.  Alterations  in  the  TOP2A  and  HER2  genes:  association  with  adjuvant  anthracycline  sensitivity  in  human  breast  cancers.  J  Natl  Cancer  Inst.  2009  May  6;101(9):615–8.    

27.   Kellner  U,  Sehested  M,  Jensen  P,  Gieseler  F.  Culprit  and  victim-­‐DNA  topoisomerase  II.  Lancet  Oncol.  2002.    

28.   Kauraniemi  P,  Bärlund  M,  Monni  O,  Kallioniemi  A.  New  amplified  and  highly  expressed  genes  discovered  in  the  ERBB2  amplicon  in  breast  cancer  by  cDNA  microarrays.  Cancer  Res.  2001  Nov.  15;61(22):8235–40.    

29.   Kauraniemi  P,  Kallioniemi  A.  Activation  of  multiple  cancer-­‐associated  genes  at  the  ERBB2  amplicon  in  breast  cancer.  Endocr.  Relat.  Cancer.  2006  Mar.;13(1):39–49.    

30.   Arriola  E,  Marchio  C,  Tan  DSP,  Drury  SC,  Lambros  MB,  Natrajan  R,  et  al.  Genomic  analysis  of  the  HER2/TOP2A  amplicon  in  breast  cancer  and  breast  cancer  cell  lines.  Lab  Invest.  2008  May  1;88(5):491–503.    

31.   Di  Leo  A,  Gancberg  D,  Larsimont  D,  Tanner  M,  Jarvinen  T,  Rouas  G,  et  al.  HER-­‐2  amplification  and  topoisomerase  IIalpha  gene  aberrations  as  predictive  markers  in  node-­‐positive  breast  cancer  patients  randomly  treated  either  with  an  anthracycline-­‐based  therapy  or  with  cyclophosphamide,  methotrexate,  and  5-­‐fluorouracil.  Clin  Cancer  Res.  2002  May  1;8(5):1107–16.    

32.   Slamon  D,  Eiermann  W,  Robert  N,  Pienkowski  T,  Martin  M,  Rolski  J,  et  al.  Phase  III  Randomized  Trial  Comparing  Doxorubicin  and  Cyclophosphamide  Followed  by  Docetaxel  (AC-­‐>T)  with  Doxorubicin  and  

Page 12: manuskript, ferdig formatert - UiO

  12  

Cyclophosphamide  Followed  by  Docetaxel  and  Trastuzumab  (AC-­‐>TH)  with  Docetaxel,  Carboplatin  and  Trastuzumab  (TCH)  in  Her2neu  Positive  Early  Breast  Cancer  Patients:  BCIRG  006  Study.  Cancer  Res.  2010  Feb.  10;69(24  Supplement):62–2.    

33.   Järvinen  TAH,  Liu  ET.  Topoisomerase  IIalpha  gene  (TOP2A)  amplification  and  deletion  in  cancer-­‐-­‐more  common  than  anticipated.  Cytopathology.  2003  Dec.;14(6):309–13.    

34.   Knoop  AS,  Knudsen  H,  Balslev  E,  Rasmussen  BB,  Overgaard  J,  Nielsen  KV,  et  al.  retrospective  analysis  of  topoisomerase  IIa  amplifications  and  deletions  as  predictive  markers  in  primary  breast  cancer  patients  randomly  assigned  to  cyclophosphamide,  methotrexate,  and  fluorouracil  or  cyclophosphamide,  epirubicin,  and  fluorouracil:  Danish  Breast  Cancer  Cooperative  Group.  J  Clin  Oncol.  2005  Oct.  20;23(30):7483–90.    

35.   Nielsen  KV,  Müller  S,  Møller  S,  Schønau  A,  Balslev  E,  Knoop  AS,  et  al.  Aberrations  of  ERBB2  and  TOP2A  genes  in  breast  cancer.  Mol  Oncol.  2010  Apr.  1;4(2):161–8.    

36.   Park  K,  Han  S,  Gwak  G-­‐H,  Kim  H-­‐J,  Kim  J,  Kim  K-­‐M.  Topoisomerase  II-­‐alpha  gene  deletion  is  not  frequent  as  its  amplification  in  breast  cancer.  Breast  Cancer  Res  Treat.  2006  Aug.  24;98(3):337–42.    

37.   Hicks  DG,  Yoder  BJ,  Pettay  J,  Swain  E,  Tarr  S,  Hartke  M,  et  al.  The  incidence  of  topoisomerase  II-­‐alpha  genomic  alterations  in  adenocarcinoma  of  the  breast  and  their  relationship  to  human  epidermal  growth  factor  receptor-­‐2  gene  amplification:  a  fluorescence  in  situ  hybridization  study.  Hum  Pathol.  2005  Apr.  1;36(4):348–56.    

38.   Järvinen  TA,  Tanner  M,  Bärlund  M,  Borg  A,  Isola  J.  Characterization  of  topoisomerase  II  alpha  gene  amplification  and  deletion  in  breast  cancer.  Genes  Chromosomes  Cancer.  1999  Oct.;26(2):142–50.    

39.   Olsen  KE,  Knudsen  H,  Rasmussen  BB,  Balslev  E,  Knoop  A,  Ejlertsen  B,  et  al.  Amplification  of  HER2  and  TOP2A  and  deletion  of  TOP2A  genes  in  breast  cancer  investigated  by  new  FISH  probes.  Acta  Oncol.  2004;43(1):35–42.    

40.   Glynn  RW,  Mahon  S,  Curran  C,  Callagy  G,  Miller  N,  Kerin  MJ.  TOP2A  amplification  in  the  absence  of  that  of  HER-­‐2/neu:  toward  individualization  of  chemotherapeutic  practice  in  breast  cancer.  Oncologist.  2011;16(7):949–55.    

41.   Gennari  A,  Sormani  MP,  Pronzato  P,  Puntoni  M,  Colozza  M,  Pfeffer  U,  et  al.  HER2  status  and  efficacy  of  adjuvant  anthracyclines  in  early  breast  cancer:  a  pooled  analysis  of  randomized  trials.  J  Natl  Cancer  Inst.  2008  Jan.  2;100(1):14–20.    

42.   Pritchard  KI,  Messersmith  H,  Elavathil  L,  Trudeau  M,  O'Malley  F,  Dhesy-­‐Thind  B.  HER-­‐2  and  topoisomerase  II  as  predictors  of  response  to  chemotherapy.  J  Clin  Oncol.  2008  Feb.  10;26(5):736–44.    

43.   Bartlett  JMS,  Munro  A,  Cameron  DA,  Thomas  J,  Prescott  R,  Twelves  CJ.  Type  1  receptor  tyrosine  kinase  profiles  identify  patients  with  enhanced  benefit  from  anthracyclines  in  the  BR9601  adjuvant  breast  cancer  chemotherapy  trial.  J  Clin  Oncol.  2008  Nov.  1;26(31):5027–35.    

44.   Di  Leo  A,  J  I,  F  P,  al  E.  A  meta-­‐analysis  of  phase  III  trials  evaluating  the  predictive  value  of  HER2  and  topoiso-­‐  merase  II  alpha  in  early  breast  cancer  patients  treated  with  CMF  or  anthracycline-­‐based  adjuvant  therapy  [abstract].  Breast  Cancer  Res  Treat.  2008  Mar.  8.    

45.   Di  Leo  A,  C  D,  JMS  B,  al  E.  Final  results  of  a  meta  analysis  testing  HER2  and  topoisomerase  II  genes  as  pre-­‐  dictors  of  incremental  benefit  from  anthracyclines  in  breast  can-­‐  cer  [abstract].  J  Clin  Oncol.  2010  Mar.  11.    

46.   O'Malley  FP,  Chia  S,  Tu  D,  Shepherd  LE,  Levine  MN,  Huntsman  D,  et  al.  Topoisomerase  II  alpha  protein  and  responsiveness  of  breast  cancer  to  adjuvant  chemotherapy  with  CEF  compared  to  CMF  in  the  NCIC  CTG  randomized  MA.5  adjuvant  trial.  Breast  Cancer  Res  Treat.  2011  Jul.  1;128(2):401–9.    

47.   Mueller  RE,  Parkes  RK,  Andrulis  I,  O'Malley  FP.  Amplification  of  the  TOP2A  gene  does  not  predict  high  levels  of  topoisomerase  II  alpha  protein  in  human  breast  tumor  samples.  Genes  Chromosomes  Cancer.  2004  Apr.;39(4):288–97.    

48.   Mukherjee  A,  Shehata  M,  Moseley  P,  Rakha  E,  Ellis  I,  Chan  S.  Topo2α  protein  expression  predicts  response  to  anthracycline  combination  neo-­‐adjuvant  chemotherapy  in  locally  advanced  primary  

Page 13: manuskript, ferdig formatert - UiO

  13  

breast  cancer.  Br  J  Cancer.  2010  Dec.  7;103(12):1794–800.    

49.   Di  Leo  A,  Larsimont  D,  Gancberg  D,  Jarvinen  T,  Beauduin  M,  Vindevoghel  A,  et  al.  HER-­‐2  and  topo-­‐isomerase  IIalpha  as  predictive  markers  in  a  population  of  node-­‐positive  breast  cancer  patients  randomly  treated  with  adjuvant  CMF  or  epirubicin  plus  cyclophosphamide.  Ann  Oncol.  2001  Aug.  1;12(8):1081–9.    

50.   Tandon  AK,  Clark  GM,  Chamness  GC,  Ullrich  A,  McGuire  WL.  HER-­‐2/neu  oncogene  protein  and  prognosis  in  breast  cancer.  J  Clin  Oncol.  1989  Aug.;7(8):1120–8.    

51.   Mo  YY,  Beck  WT.  Heterogeneous  expression  of  DNA  topoisomerase  II  alpha  isoforms  in  tumor  cell  lines.  Oncol.  Res.  1997;9(4):193–204.    

52.   Yeh  I-­‐T,  Martin  MA,  Robetorye  RS,  Bolla  AR,  McCaskill  C,  Shah  RK,  et  al.  Clinical  validation  of  an  array  CGH  test  for  HER2  status  in  breast  cancer  reveals  that  polysomy  17  is  a  rare  event.  Mod  Pathol.  2009  Sep.;22(9):1169–75.    

53.   Bai  Y-­‐F,  Ren  G-­‐P,  Wang  B,  Teng  L-­‐S,  Liu  X.  [Comparison  between  analysis  of  HER2  gene  and  chromosome  17  in  breast  cancer  by  dual-­‐probe  chromogenic  in  situ  hybridization  and  fluorescence  in  situ  hybridization].  Zhonghua  Bing  Li  Xue  Za  Zhi.  2010  Mar.;39(3):161–5.    

 

   

Page 14: manuskript, ferdig formatert - UiO

  14  

HER2 Ampl. No ampl. No ISH

IHC 3+ 95 3 23

IHC 2+ 21

IHC 1+ 2

IHC neg. 3

No IHC 6

Patient age Mean 57,5 (range 28-92)

Tumour size Mean 23,6mm (range 3-100)

TOP2A Amplification Deletion Polysomy

51 (32,9%) 8 (5,2%) 3 (1,9%)

PgR pos. PgR neg.

Estrogen receptor + 83 (54%) ER pos. 57 26

Progesterone receptor + 66 (43%) ER neg. 6 66

Tx 7 N0 71

T1a 4 Nx 70

T1b 16 N+ 12

T1c 56

T2 53

T3 15

T4 2

Table  1:  Summary.  N=153.  

Page 15: manuskript, ferdig formatert - UiO

  15  

 

 Figure  1:  No  TOP2A  amplification.  The  signals  can  be  counted  individually  as  dark  dots.  The  red  dots  represent  CEP17.  

 Figure  2:  TOP2A  amplification  where  dark  clusters  count  as  f ive  signals.  

Page 16: manuskript, ferdig formatert - UiO

  16  

 Figure  3:  TOP2A  amplification  where  dark  clusters  count  as  ten  signals.  

 

Figure  4:  SISH  reaction:  TOP2A  probe.  Courtesy  of  Ventana.  

   

Page 17: manuskript, ferdig formatert - UiO

  17  

SISH Subtype

HER CEP17 TOP2A ratio Type Grade Size IHC FISH TNM stage ER PR Age

0,85 6,40 7,53 D 3 40 3+

pT2 pN1 pMx neg neg 71 0,90 6,15 6,83 D 3 18 3+ amplified pT1c pN0 pMx pos pos 60 0,95 6,40 6,74 D 2 35 2+ amplified pT2 pN1 pMx pos pos 46 1,00 6,70 6,70 D 2 12 3+ amplified pT1c pN1a pMx pos neg 54 0,98 6,50 6,67 D 3 17 3+ amplified pT1c pN0 pMx pos neg 56 1,03 6,60 6,44 D 3 25 3+ amplified pT2 pN0 pMx neg neg 65 1,05 6,50 6,19 D 2 23 3+

pT2 pN1 pMx pos pos 46

0,93 5,68 6,14 D 3 20 3+ amplified pT1c pN1m pMx pos pos 53 1,18 7,13 6,06 D 2 17 2+ amplified pTx pN0 pMx pos pos 57 0,95 5,58 5,87 D 3 34 3+ amplified pT2 pN0 pMx neg neg 81 0,90 5,00 5,56 D 2 10 3+ amplified pT1c pN0 pMx pos pos 42 1,05 5,55 5,29 D 2 15 3+

pT1c pN0 pMx pos neg 48

1,13 5,88 5,22 D 2 11 3+ amplified pT1c pN0 pMx pos neg 61 1,03 5,18 5,05 L 2 18 2+ amplified pT1c pN1 pMx pos pos 47 1,05 5,28 5,02 L 3 15 3+ amplified pT1c pN0 pMx pos pos 70 1,15 5,75 5,00 L 2 22 2+ amplified pT2 pNx pMx pos pos 65 1,75 8,68 4,96 D 2 15 3+ amplified pT1c pN0 pMx pos pos 43 1,45 6,90 4,76 D 2 15 3+ amplified pT1c pN1a pMx pos pos 83 0,98 4,45 4,56 M 3 30 3+ amplified pT3 pN3 pMx pos pos 64 1,38 6,25 4,55 D 1 17 3+ amplified pT1c pN0 pMx pos neg 62 1,13 5,05 4,49 D 3 13 3+

pT1c pN0 pMx neg neg 63

0,53 2,30 4,38 D 1 20 3+ amplified pT1a pNx pMx pos pos 92 0,95 4,13 4,34 D 3 12 3+ amplified pT2 pN0 pMx pos pos 56 1,08 4,35 4,05 D 2 15 3+ amplified pT1c pN0 pMx neg pos 52 0,83 3,30 4,00 D 3 27 3+

pT2 pN0 pMx neg neg 74

1,35 5,33 3,94 D 3 15 3+ not amp. pT1c pN1a pMx neg neg 60 1,30 5,08 3,90 L 2 24 3+

pT2 pN0 pMx pos pos 75

0,95 3,60 3,79 L 3 90 3+ amplified pT4 pN3 pMx pos neg 76 0,63 2,35 3,76 D 2 8 2+ amplified pT1b pN0 pMx pos pos 35 0,90 3,35 3,72 D 2 28 2+ amplified pT2 pN3 pMx pos neg 42 1,90 6,93 3,64 D 2 35 3+ amplified pT2 pN1 pMx neg neg 78 1,13 4,05 3,60 D+L 3 20 2+ amplified pT2 pN0 pMx pos pos 42 1,38 4,73 3,44 D 3 36 3+ amplified pT1c pN1 pMx neg neg 50 3,60 12,20 3,39 D 3 40 3+ amplified pT2 pN1 pMx neg neg 42 0,98 3,10 3,18 D 3 38 1+ amplified pT2 pN0 pMx neg neg 60 1,30 3,95 3,04 D 2 12 3+ amplified pT1c pNx pMx neg neg 32 1,20 3,38 2,81 D 2 13 3+ amplified pT1c pN0 pMx neg neg 45 1,25 3,43 2,74 D 2 11

amplified pT1c pN0 pMx pos pos 64

1,08 2,93 2,72 D 3 15 2+ amplified pT1c pNx pMx pos pos 37 1,35 3,35 2,48 D 3 9 3+ amplified pTx pN0 pMx pos pos 41 4,10 10,10 2,46 D 3 60 3+

pT3 pN1 pMx neg neg 83

1,10 2,68 2,43 D 3 30 3+ amplified pT2 pN2 pMx neg neg 48 1,00 2,38 2,38 D 2 60 2+ amplified pT3 pN3 pMx pos pos 43 1,10 2,50 2,27 D 2 18 3+ amplified pT1c pNx pMx pos neg 57 1,30 2,93 2,25 D 2 18 2+ amplified pT1c pNx pMx pos neg 53 1,13 2,40 2,13 D 2 23 3+

pT2 pN0 pMx pos neg 57

1,15 2,45 2,13 D 3 18 3+

pT1c pN0 pMx pos pos 38 1,33 2,75 2,08 D 2 14 3+ amplified pT1c pN0 pMx pos pos 58 0,88 1,80 2,06 D 3 30 3+ amplified pT2 pN1 pMx neg neg 65 1,10 2,25 2,05 D 2 17 3+ amplified pT1c pNx pMx pos neg 86 1,05 2,13 2,02 D 3 18 2+ amplified pT1c pN0 pMx neg neg 74 0,60 1,20 2,00 D 3 20 3+ amplified pT1c pN3 pMx neg neg 32 0,85 1,65 1,94 D 2 30

amplified pT2 pN1 pMx pos pos 50

1,18 2,28 1,94 D

25 2+ amplified pTx pN1 pMx pos pos 50 1,28 2,45 1,92 D 2 3 3+ amplified pT2 pN1 pMx pos neg 56 0,90 1,70 1,89 D 3 50 neg amplified pTx pN2 pMx pos pos 40

Page 18: manuskript, ferdig formatert - UiO

  18  

1,10 2,08 1,89 D 3 5 neg amplified pT1a pNx pMx neg neg 73 1,40 2,50 1,79 D 3 18 3+

pT1c pN1 pMx pos pos 43

0,90 1,60 1,78 D 2 25 3+ amplified pT2 pN1a pMx neg neg 75 0,88 1,55 1,77 D 3 15 3+ amplified pT1c pN0 pMx neg pos 53 1,08 1,90 1,77 D 2 12 3+ amplified pT1c pN0 pMx pos pos 60 1,00 1,75 1,75 D 3 21 3+ amplified pT2 pN0 pMx neg pos 58 1,15 2,00 1,74 D 2 50 3+ not amp. pT3 pN1 pMx pos pos 41 1,10 1,90 1,73 D 2 20 3+ amplified pTx pN1 pMx pos pos 58 0,95 1,63 1,71 D 3 6 2+ amplified pT1b pN0 pMx pos pos 65 0,83 1,38 1,67 D 3 14 3+ amplified pT1c pN0 pMx neg neg 49 1,15 1,90 1,65 D 3 11 3+ amplified pT1c pN0 pMx neg neg 52 0,98 1,60 1,64 D 2 80 3+ amplified pT3 pN2 pMx pos pos 54 0,88 1,43 1,63 D 3 21 3+ amplified pT2 pN1a pMx neg neg 50 1,00 1,63 1,63 D 3 25 3+

pT2 pN2 pMx pos neg 84

1,10 1,78 1,61 D 3 20 3+ amplified pT2 pN0 pMx neg neg 48 0,83 1,30 1,58 D 2 40 2+ amplified pTx pNx pMx pos pos 77 1,38 2,15 1,56 D 3 25 3+ amplified pT2 pN0 pMx neg neg 80 1,20 1,88 1,56 D 2 26 2+ amplified pT2 pN0 pMx pos pos 46 1,08 1,68 1,56 D 3 7 3+ amplified pT1b pN1a pMx neg pos 66 1,13 1,75 1,56 D 3 35 1+ amplified pT2 pN1 pMx pos pos 28 1,25 1,93 1,54 D 3 22 2+ amplified pT2 pN2a pMx pos pos 34 1,15 1,75 1,52 D 2 50 3+ amplified pT3 pN1 pMx neg neg 67 0,90 1,33 1,47 D 3 40 3+ amplified pT2 pN0 pMx neg neg 51 1,18 1,73 1,47 D 3 7 3+ amplified pT1b pN0 pMx neg neg 30 1,08 1,53 1,42 D 3 30

amplified pT2 pN3 pMx neg pos 80

1,20 1,70 1,42 D 3 20 3+ amplified pT1c pN0 pMx neg neg 48 0,98 1,38 1,41 D 3 50 3+ amplified pT3 pN3 pMx pos pos 47 1,10 1,55 1,41 D 1 8 3+ amplified pT1b pN0 pMx pos neg 58 1,15 1,58 1,37 D 3 4 3+ amplified pTx N1 pMx neg neg 60 1,03 1,40 1,37 D 2 25 3+ amplified pT2 pN1 pMx neg neg 40 1,05 1,43 1,36 D 3 20 3+ amplified pT1c pN1a pMx neg neg 53 1,15 1,55 1,35 D 2 8 2+ amplified pT1b pN0 pMx neg neg 68 1,10 1,48 1,34 D 3 40 3+

pT2 pN0 pMx neg neg 76

1,18 1,58 1,34 D 3 15

amplified pT1c pN0 pMx pos pos 53 1,05 1,40 1,33 D 3 30

amplified pT2 pN2 pMx pos pos 70

1,00 1,33 1,33 D 2 18 3+ amplified pT1c pN0 pMx neg neg 48 1,10 1,45 1,32 D 2 20 3+ amplified pT1c pN0 pMx neg neg 51 1,05 1,33 1,26 D 3 10 2+ amplified pT1b pN0 pMx neg neg 42 1,25 1,58 1,26 D 2 7 3+ amplified pT1b pN0 pMx neg neg 52 1,48 1,85 1,25 D 2 80 3+

pT3 pN1 pMx neg neg 82

1,20 1,50 1,25 D 3 25 3+ amplified pT2 pN0 pMx neg neg 51 0,90 1,13 1,25 D 3 21 3+

pT2 pN0 pMx neg neg 50

1,28 1,58 1,24 D 3 35 3+ amplified pT2 pN1 pMx neg neg 82 0,98 1,20 1,23 D 2 20 3+ amplified pT1c pN0 pMx pos pos 60 0,98 1,18 1,21 D 2 22 3+ amplified pT2 pNmi pMx pos pos 57 1,15 1,38 1,20 D 2 7 2+ amplified pT1b pN0 pMx neg neg 68 1,23 1,45 1,18 D 3 33 3+

pT2 pN1 pMx pos neg 54

1,40 1,65 1,18 D 2 10 3+ not amp. pT1b pN0 pMx pos pos 51 1,43 1,68 1,18 D 3 70 3+ amplified pT3 pN1 pMx neg neg 33 1,15 1,35 1,17 D 2 9 3+ amplified pT1b pN0 pMx neg neg 73 1,33 1,55 1,17 D 2 35 3+ amplified pT2 pN1 pMx neg neg 71 1,50 1,75 1,17 D 3 19 3+ amplified pT1c pN0 pMx pos neg 71 1,03 1,18 1,15 D 2 12 3+ amplified pT1c pN1a pMx pos pos 45 1,05 1,20 1,14 D 2 10 3+ amplified pT1c pN0 pMx pos pos 53 1,33 1,50 1,13 D 3 50 3+

pT2 pNx pMx neg neg 74

1,43 1,60 1,12 D 2 8 neg amplified pT1b pN0 pMx pos neg 77 1,55 1,70 1,10 D 3 11 3+ amplified pT1c pN3a pMx pos pos 49 1,05 1,15 1,10 D 3 26 3+ amplified pT2 pN2 pMx neg neg 39

Page 19: manuskript, ferdig formatert - UiO

  19  

1,23 1,33 1,08 D 3 21 3+ amplified pT2 pN1 pMx neg neg 49 1,10 1,18 1,07 D 2 40 3+

pT2 pN0 pMx pos neg 64

1,45 1,53 1,05 L 1 11

amplified pT1c pN0 pMx pos pos 63 1,03 1,08 1,05 D 3 4 3+ amplified pT1a pN0 pMx pos neg 68 1,48 1,53 1,03 D 3 20 3+ amplified pT1c pN2 pMx neg neg 46 1,60 1,65 1,03 L 2 22 3+

pT2 N0 pMx pos pos 61

1,08 1,10 1,02 D 3 50 3+

pT3 pN0 pMx pos pos 75 1,38 1,40 1,02 D 3 17 3+

pT1c pN0 pMx neg neg 58

1,43 1,45 1,02 D 2 35 3+ amplified pT2 pN1 pMx neg neg 66 1,33 1,33 1,00 D 2 23 3+ amplified pT2 pN2 pMx pos neg 1,73 1,73 1,00 D 3 16 3+ amplified pT2 pN0 pMx pos pos 51 1,48 1,48 1,00 D 2 50 3+

pT3 pN1 pMx neg neg 59

1,45 1,43 0,98 D 3 40 3+ amplified pT3 pN2 pMx neg neg 47 1,50 1,45 0,97 D 3 50 3+ amplified pT3 pN1 pMx neg pos 61 1,23 1,18 0,96 D 2 7 3+ amplified pT1b pN0 pMx pos pos 57 1,05 1,00 0,95 D 2 9 3+ amplified pT1b pN1m pMx neg neg 62 1,10 1,03 0,93 D 3 25 3+ amplified pT2 N0 pMx pos pos 38 1,40 1,30 0,93 D 2 12 3+ amplified pT1c pN1 pMx pos neg 61 1,68 1,53 0,91 D 2 100 3+ amplified pT3 pN2 pMx neg neg 40 1,63 1,48 0,91 D 3 12 2+ amplified pT1c pN0 pMx neg neg 55 1,80 1,63 0,90 D 2 15 3+ amplified pT1c pNx pMx pos pos 86 1,63 1,43 0,88 D 3 34 3+ amplified pT2 pN0 pMx neg neg 57 1,63 1,43 0,88 D 3 13 3+ amplified pT1c pN1 pMx neg neg 62 1,63 1,43 0,88 D 3 3 3+ amplified pT1a pN0 pMx neg neg 66 1,73 1,50 0,87 D 3 11 3+ amplified pT1c pN0 pMx neg neg 63 1,53 1,33 0,87 D 3 12 3+ amplified pT1c pN0 pMx pos neg 51 0,95 0,83 0,87 D 3 35 3+ amplified pT4 pN1 pMx neg neg 87 1,65 1,43 0,86 D 3 30 3+ amplified pT2 pN1 pMx neg neg 69 1,20 1,03 0,85 D 2 25 3+ amplified pT2 pN0 pMx pos pos 64 1,60 1,35 0,84 D 3 11 3+ amplified pT1c pN1 pMx neg neg 60 1,65 1,35 0,82 D 3 12 3+ amplified pT1c pN2 pMx neg neg 53 1,70 1,33 0,78 D 3 17 2+ amplified pT1c pN1a pMx pos pos 75 1,85 1,38 0,74 D 2 40 3+ amplified pT2 pN1 pMx pos pos 38 1,33 0,98 0,74 D 2 50 3+ amplified pT3 pN2 pMx pos neg 61 1,50 1,10 0,73 D 3 20 3+ amplified pT1c pN0 pMx neg neg 61 1,85 1,30 0,70 D 1 40 3+ amplified pT2 pN2 pMx pos pos 37 2,25 1,50 0,67 D 3 9 3+

pT1b pN0 pMx pos neg 62

1,68 1,00 0,60 D 3 9 3+ amplified PT1b pNx pMx pos pos 66 2,55 0,83 0,32 D 3 11 3+

pT1c pN1a pMx neg neg 41

Table  2:  Data.  Subtypes  Ductal ,  Lobular  and  Mucinous.  Estrogen  receptor  status  ER.  Progesterone  receptor  status  PR.  Age  in  years.  Size  in  mm.  All  tumours  with  TOP2A  amplification  are  marked  with  blue.