manufacturing+processes+ -...

33
Manufacturing Processes (INME 4055) Pablo G. CaceresValencia (B.Sc., Ph.D., U.K.) GENERAL INFORMATION Course Number INME 4055 Course Title Manufacturing Processes Credit Hours 3 Instructor Dr. Pablo G. CaceresValencia Office LuccheG L212, Extension 2358 Office Hours MoWFr from 710am email [email protected] Website hOp://academic.uprm.edu/pcaceres

Upload: vothuan

Post on 08-May-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

Manufacturing  Processes  (INME  4055)  

Pablo  G.  Caceres-­‐Valencia  (B.Sc.,  Ph.D.,  U.K.)  

GENERAL  INFORMATION    Course  Number    INME  4055    Course  Title    Manufacturing  Processes    Credit  Hours    3    Instructor      Dr.  Pablo  G.  Caceres-­‐Valencia    Office        LuccheG  L-­‐212,  Extension  2358    Office  Hours    Mo-­‐W-­‐Fr  from  7-­‐10am    e-­‐mail        [email protected]    Web-­‐site      hOp://academic.uprm.edu/pcaceres  

Assessment  The  course  will  be  assessed  in  the  following  manner:  

q   1st  Exam            30%  

q   2nd  Exam            30%      

q   Quizzes*          30%    

q   Others**          10%      (*)  Date  due  Moodle  Quizzes  and  Pop-­‐Quizzes  (max-­‐8).  Missed  quizzes  will  be  graded  with  zero.  Lack  of  access  to  Moodle  is  not  an  excuse  for  not  submiGng  your  answers.    (**)  Class  par\cipa\on  and  A^endance.  A'er  the  third  missed  class,  one  point  will  be  deducted  in  the  final  grade  for  each  missed  class  (up  to  10  points).    

Grades   Final  Grade  Range   Final  Le^er  Grade  100  –  90   A  89  –  80   B  79  –  70   C  69  –  60   D  59  -­‐  0   F  

AOendance  A^endance  and  par\cipa\on  in  the  lecture  are  compulsory  and  will  be  considered  in  the  grading.  Students  should  bring  calculators,  rulers,  pen  and  pencils  to  be  used  during  the  lectures.  Students  are  expected  to  solve  problems  during  lecture.  Please  refer  to  the  Bulle\n  of  Informa\on  for  Undergraduate  Studies  for  the  Department  and  Campus  Policies.  

TENTATIVES  DATES  Week   Week  

08/12   IntroducYon  to  Manufacturing.   08/19   Mechanical  ProperYes.    Q1  

08/26   Mechanical  ProperYes/CasYng   09/02   CasYng  and  Molding.  Q2    

09/09   Forming  Processes   09/16   Sheet  Metal  Forming    Q3  

09/23   Powder  Metallurgy  Exam  1  

09/30     Material  Removal  Processes  -­‐  Cuang  

10/07   Grinding      Q4  

10/14   Processing  of  Polymers  and  Composite  Materials  

 

10/21     Joining  and  Fastening  Processes  Q5  

10/28     Joining  and  Fastening  Processes    

11/04   Processing  of  Ceramic  Materials   11/11   Quality  Assurance  

11/18   Quality  Assurance  Q6  

11/25   Microelectronics  and  Nanomanufacturing  

12/02   Microelectronics  and  Nanomanufacturing  

Q7  -­‐  Exam  2  

12/09   Classes  End  

Outcomes  Upon  the  comple\on  of  the  course  the  student  should  be  able  to:  •  Describe  basic  mechanical  proper\es  of  metals,  ceramics  and  polymers.  •  Evaluate  forces  and  stresses  associated  with  metal  forming  opera\ons.  •  Evaluate  forces  and  stresses  associated  with  standard  machining  and  grinding  opera\ons.  •  Iden\fy  candidate  processes  to  manufacture  a  given  component.    •  Interpret  the  advantages  and  limita\ons  of  powder  metallurgy  processes.    •  Dis\nguish  between  the  different  types  of  cas\ngs  and  describe  their  output  product  

characteris\cs.  •  Iden\fy  specific  polymer  processing  methods  based  on  material  and  component  geometric  

proper\es.  •  Predict  the  elas\c  proper\es  of  fiber  reinforced  composite  materials  

Exams  There  will  be  no  final  exam.  Neatness  and  order  will  be  taking  into  considera\on  in  the  grading  of  the  exams.  Up  to  ten  points  can  be  deducted  for  the  lack  of  neatness  and  order.  You  must  bring  calculators,  class  notes  and  blank  pages  to  the  exams.  

Texbooks    Mikell  Groover,  Fundamentals  of  Modern  Manufacturing,  John  Wiley  &  Sons  4th  Edi\on,  2010  Serope  Kalpakjian  and  Steven  R.  Schmid,  Manufacturing  Processes  for  Engineering  Materials,  Pren\ce  Hall,  5th  ed  2007.    My  lecture  notes  are  available  in  the  web  at  hOp://academic.uprm.edu/pcaceres  See  syllabus  of  the  course  for  recommended  books.  

Manufacturing  –  DefiniYon  

Process  of  conver\ng  or  processing  raw  materials  into  usable  products.  From  the  La\n:    manufactus      manus  =  hands          factus  =  made    “A  series  of  interrelated  ac@vi@es  and  opera@ons  involving  design,  materials  selec@on,  planning,  produc@on,  quality  assurance,  management,  and  marke@ng  of  discrete  consumer  and  durable  goods”  (CAM-­‐I)      Manufacturing  is  one  way  by  which  na\ons  create  material  wealth.    

U.S.  Economy  

Sector   %  of  GNP  

Manufacturing   12  

Agriculture  &  Minerals   5  

Construc\on  and  U\li\es   4  

Service  Sector   80  

In  2012,  manufacturers  contributed  to  11.9  percent  of  GDP.  For  every  $1.00  spent  in  manufacturing,  another  $1.48  is  added  to  the  economy,  the  highest  mul\plier  effect  of  any  economic  sector.  Manufacturing  supports  an  es\mated  17.2  million  jobs  in  the  U.S.—about  one  in  six  private-­‐sector  jobs.      Manufacturers  in  the  U.S.  perform  two-­‐thirds  of  all  private-­‐sector  R&D  in  the  na\on,  driving  more  innova\on  than  any  other  sector.  Taken  from  the  Na\onal  Associa\on  of  Manufacturers  

Manufacturing  Importance  

 Importance  of  manufacturing  to  na\onal  economies.  The  trends  shown  are  from  1982  un\l  2006.  

(a)  Chart  showing  various  steps  involved  in  designing  and  manufacturing  a  product.    (b)  Chart  showing  general  product  flow,  from  market  analysis  to  selling  the  product,  and  depic\ng  concurrent  engineering.    

Development  Process  

Proper  Design  Facilitates  Automated  Assembly  

Design  –  Materials  –Process  RelaYonship  Product  design,  materials  selec\on,  and  materials  processing  are  highly  interrelated.  For  example:  (a)  weight  reduc\on  -­‐-­‐>  thin  cross-­‐sec\ons  -­‐-­‐>  manufacturing  problems  -­‐>  \ght  

tolerance  specs.  -­‐-­‐>  specialized/high  precision  processes  required  -­‐-­‐>  increased  cost  

(b)  aluminum  vs.  steel  beverage  cans  -­‐-­‐>  different  metal  forming  needs.  

Various   methods   of   making   a   simple   part:   (a)   cas\ng   or   powder   metallurgy,   (b)   forging   or  upseGng,  (c)  extrusion,  (d)  machining,  (e)  joining  two  pieces.  

Shaping  Process  ClassificaYon  

(a)  Mass  Conserving  (cas\ng,  forming,  powder  processing)  

(b) Mass  Reducing  (machining,  grinding)    (c)  Mass  adding  (joining  processes)  

The  quan\ty  of  products  Q  made  by  a  factory  has  an  important  influence  on  the  way  its  people,  facili\es,  and  procedures  are  organized.  

ProducYon  QuanYty  (Q)   Annual  ProducYon  QuanYYes  

Low   1-­‐100  units  

Medium   100-­‐10,000  

High   10,000-­‐millions  

Product  Variety  (P)   It  refers  to  the  produc\on  of  different  models  or  product  type  

P  is  less  exact  than  Q  because  it  depends  on  how  much  the  design  changes.  Small  changes  in  design  (Sou  Product  Variety)  or  large  differences  in  design  (  Hard  Product  Variety).  

Manufacturing  Work  Flow  -­‐  Custom:  Limited  number  of  products  built  to  customer  specifica\ons.  -­‐  Intermi^ent/Batch:  from  10  to  1000  units,  uses  general  purpose  machinery.  -­‐  Con\nuous:  Same  product  made  repeatedly  by  dedicated  machinery  (custom  built  machine  –  NOT  CUSTOM  built  product).  Automa\on  becomes  more  cost-­‐effec\ve  

Primary  and  Secondary  Manufacturing  Primary  processes  convert  minerals  or  raw  materials  into  standard  stock  

•  bauxite  ore  à  aluminum  •  petroleum  à  polyester  resin  •  wood  à  lumber  

Secondary  processes  convert  standard  stock  into  usable  parts  •  aluminum  rod  à  fuel  valve  •  polyester  resin  à  medical  tubing  •  lumber  à  furniture  

Secondary  Manufacturing  Processes  

•  Cas\ng  and  Molding:  processes  hold  liquid  or  semi-­‐liquid  materials  in  a  mold  cavity  un\l  the  material  hardens  

•  Forming:  use  a  shaping  device  and  pressure  to  cause  a  material  to  take  on  a  new  shape  and  size  

•  Separa\ng  /  Material  Removal:  processes  remove  material  to  produce  a  desired  shape  and  surface  finish    

•  Condi\oning:  it  uses  heat,  chemical  reac\ons,  or  mechanical  means  to  change  the  proper\es  of  a  material  

•  Assembling  /  Joining:  join  two  or  more  parts  or  assemblies  through  mechanical,  thermal,  or  chemical  means  

•  Finishing:  modify  the  surface  of  a  material  to  improve  appearance  or  performance  

Micromanufacture  Example    

Gear  assembly  driven  by  resonant  combdrives.  (a)  A  view  of  the  en\re  assembly.  (b)  Details  of  the  gear  assembly.  Source:  R.  Muller,  University  of  California  at  Berkeley.      

Example  of  Primary  Manufacturing:  Steel  

To  make  steel,  you  start  with  iron  ore,  a  rock  that  contains  a  high  concentra\on  of  iron.  Common  iron  ores  include:    

   HemaYte  -­‐  Fe2O3  -­‐  70  %  iron        MagneYte  -­‐  Fe3O4  -­‐  72  %  iron        Limonite  -­‐  Fe2O3  +  H2O  -­‐  50  to  66  %  iron        Siderite  -­‐  FeCO3  -­‐  48  %  iron  

Iron  is  plen\ful  -­‐-­‐  5  percent  of  the  Earth's  crust  is  iron,  and  in  some  areas  it  concentrates  in  ores  that  contain  as  much  as  70  %  iron.    

A  blast  furnace  is  charged      (from  the  top)  with  iron  ore,  coke  (charcoal    made  from  coal)  and  limestone  (CaCO3).  

Huge  quan\\es  of  air  blast    in  at  the  bo^om  of  the    furnace.    

The  calcium  in  the  limestone  combines  with  the  silicates  to    form  slag.    

At  the  bo^om  of  the  blast  furnace,  liquid  iron  (pig  iron)  collects  along  with  a  layer  of  slag  on  top.    

To  create  1  ton  of  pig  iron,  you  start  with  2  tons  of  ore,  1  ton  of  coke  and  half-­‐ton  of  limestone.  The  fire  consumes  5  tons  of  air.  The  temperature  reaches  almost  3000  degrees  F  (about  1600  degrees  C)  at  the  core  of  the  blast  furnace!    

COKE:  Metallurgical  grade  coal  is  converted  to  coke  by  a  coking  process  that  drives  off  impuri\es  to  leave  almost  pure  carbon.  The  coking  process  consists  of  hea\ng  coking  coal  (1000-­‐1100ºC)  in  the  absence  of  oxygen  to  drive  off  the  vola\le  compounds  (pyrolysis).  This  process  results  in  a  hard  porous  material  -­‐  coke.  The  coking  process  is  \me  consuming,  between  12-­‐36  hours  in  the  coke  ovens.  

The  most  commonly  applied  process  for  conver\ng  pig  iron  into  steel  is  the  Basic  Oxygen  Furnace.  In  the  BOF,  the  liquid  pig  iron  +  steel  scrap  (less  than  30%)  and  flux  are  combined  and  a  lance  is  introduced  in  the  vessel  that  blows  99%  pure  oxygen,  that  causes  the  temperature  to  rise  to  1700°C.  The  scrap  melts,  impuri\es  are  oxidized,  and  the  carbon  content  is  reduced  by  90%,  resul\ng  in  liquid  steel.  Other  processes  can  follow  –  secondary  steel-­‐making  processes  –  where  the  proper\es  of  steel  are  determined  by  the  addi\on  of  other  elements,  such  as  boron,  chromium  and  molybdenum,  amongst  others,  ensuring  the  exact  specifica\on  can  be  met.  BOFs  produce  about  70%  of  the  world’s  steel.  A  further  29%  of  steel  is  produced  in  Electric  Arc  Furnaces.  

Example  of  Primary  Manufacturing:  Steel  

ConYnuous  CasYng  

The world of materials

Metals:    Materials  that  are  inorganic  substances  which  are  composed  normally  of    combina\ons  of  "metallic  elements“  and  may  also  contain  some  non  metallic  elements  (alloys).  Examples  of  metallic  elements  are  iron,  copper,  aluminum,  nickel,  \tanium.  Non  metallic  elements  such  as  carbon,  nitrogen  and  oxygen  may  also  be  contained  in  metallic  materials.  These  elements,  when  combined,  usually  have  electrons  that  are  non  localized  and  as  a  consequence  have  generic  types  of  proper\es.  Metals  usually  are  good  conductors  of  heat  and  electricity.  Metals  have  a  crystalline  structure  in  which  the  atoms  are  arranged  in  an  orderly  manner.  Also,  they  are  quite  strong  but  malleable  and  tend  to  have  a  lustrous  look  when  polished.    Metals  and  alloys  are  commonly  divided  into  two  classes:  ferrous  metals  and  alloys  and  non  ferrous  metals  and  alloys  that  do  not  contain  iron  or  only  a  rela\vely  small  amount  of  iron.  

9000 - 3500BC Use of native (pure) copper (Copper Age)

3500 - 1500BC Tin added to copper forms bronze, a stronger alloy (Bronze Age)

1500BC - 100AD Iron smelting in Egypt, begins the Iron Age.

500 - 1600AD High quality iron and steel processing, (Feudal Era)

1750 – 1850 Commercial production of high quality steels.

1850 – 1900 Hall’s ore reducing process produces cheap aluminum in large quantities.

1900 - 1935 Aircraft moves from fabric to high strength aluminum alloy.

1935 - 1955 Specialty alloys produce turbines for more efficient power production.

1955 – 1970 Human body parts.

1970 – 1995 Superalloys developed for jet-engines

Metals  Historical  Timeline  

Ceramics:    Ceramics  are  generally  compounds  between  metallic  and  nonmetallic  elements  chemically  bonded  together  and  include  such  compounds  as  oxides,  nitrides,  and  carbides.  Ceramic  materials  can  be  crystalline,  non-­‐crystalline,  or  mixtures  of  both.  Typically  they  have  high  hardness  and  high-­‐temperature  strength  but  they  tend  to  have  mechanical  bri^leness.  They  are  usually  insula\ng  and  resistant  to  high  temperatures  and  harsh  environments.    Ceramics  can  be  divided  into  two  classes:  tradi\onal  and  advanced.  Tradi\onal  ceramics  include  clay  products,  silicate  glass  and  cement;  while  advanced  ceramics  consist  of  carbides  (SiC),  pure  oxides  (Al2O3),  nitrides  (Si3N4),  non-­‐silicate  glasses  and  many  others.    

Ceramics  Historical  Timeline  

26000BC Early man discovers that clay can be molded and dried to form a brittle heat resistant material

6000BC Ceramic firing is first used in ancient Greece 4000BC Glass is discovered in ancient Egypt 50BC – 50AD

Optical glass (lenses and mirrors), window glass and glass blowing production begins in Rome.

600AD Porcelain is created by the Chinese

1870 Refractory materials (able to withstand extremely high temperatures) are introduced during the industrial revolution.

1960 Discovery of laser opens the field of fiber optics 1965 Development of a photovoltaic cell, which converts light into electricity

1987 Discovery of a superconducting ceramic oxide with a critical temperature of 92K

1992 Era of the Smart Materials

PlasYcs:    Plas\cs  or  polymers  are  substances  containing  a  large  number  of  structural  units  joined  by  the  same  type  of  linkage.  These  substances  ouen  form  into  a  chain-­‐like  structure  and  are  made  of  organic  compounds  based  upon  carbon  and  hydrogen.  Usually  they  are  low  density  and  are  not  stable  at  high  temperatures.  Polymers  in  the  natural  world  have  been  around  since  the  beginning  of  \me.  Starch,  cellulose,  and  rubber  all  possess  polymeric  proper\es.    Man-­‐made  polymers  have  been  studied  since  1832.  Today,  the  polymer  industry  has  grown  to  be  larger  than  the  aluminum,  copper  and  steel  industries  combined.    Polymers  already  have  a  range  of  applica\ons  that  far  exceeds  that  of  any  other  class  of  material  available  to  man.  Current  applica\ons  extend  from  adhesives,  coa\ngs,  foams,  and  packaging  materials  to  tex\le  and  industrial  fibers,  composites,  electronic  devices,  biomedical  devices,  op\cal  devices,  and  precursors  for  many  newly  developed  high-­‐tech  ceramics.    

Polymers  Historical  Timeline  

1500s The Mayans are assumed to be among the first to find an application for polymers, as balls were made from local rubber trees.

1839 Charles Goodyear discovers vulcanization by combining natural rubber with sulfur and heating it to 270 degrees Fahrenheit (automobile tires)

1907 The oldest recorded synthetic plastic is fabricated by Leo Bakeland (bakelite). It was used for electrical insulation.

1920 Staundinger published his classic paper entitled “Uber Polimerization”. It begins the development of modern polymer theory.

1927 Large scale production of vinyl-chloride resins begins. (PVC – pipes, bottles).

1930 Polystyrene is invented (videocassettes). Expanded polystyrene (Styrofoam) is used in cups, packaging and thermally insulating materials,

1938 Wallace Carothers of the Dupont Company produces Nylon (ropes and clothes)

1941 Polyethylene (PE) is developed. It is used for everything from packaging film to piping to toys.

1970 James Economy develops Ekonol (Liquid Crystal Polymer used in electronic devices)

1971 S Kwolek develops Kevlar. High strength polymer used in bullet proof vests and fire proof garments for firefighting and auto racing (300oC)

1976 Polymer/Plastic industry bigger (per volume) than steel industry.

Semiconductors  (Electronic  Materials):    Semiconductors  are  materials  which  have  a  conduc\vity  between  conductors  (generally  metals)  and  nonconductors  or  insulators  (such  as  most  ceramics).  Semiconductors  can  be  pure  elements,  such  as  silicon  or  germanium,  or  compounds  such  as  gallium  arsenide  or  cadmium  selenide.  In  a  process  called  doping,  small  amounts  of  impuri\es  are  added  to  pure  semiconductors  causing  large  changes  in  the  conduc\vity  of  the  material.    Due  to  their  role  in  the  fabrica\on  of  electronic  devices,  semiconductors  are  an  important  part  of  our  lives.  Imagine  life  without  electronic  devices.  The  developments  in  semiconductor  technology  during  the  past  50  years  have  made  electronic  devices  smaller,  faster,  and  more  reliable.    

Semiconductors  Historical  Timeline  1600 William Gilbert is the first person to use the term electricity

1824 John Berzelius isolates and identifies silicon.

1833 Faraday discovers that electrical resistivity decreases as temperature increases in silver sulfide.

1873 William Smith discovers the photoconductivity of selenium.

1927 Arnold Sommerfeld and Felix Bloch apply quantum mechanics to solids.

1943 Karl Lark-Horovitz uses high quality germanium to make diode detectors.

1947 Schockley, Brattain and Bardeed invent the transistor. The semiconductor electronic industry is born.

1958 Robert Noyce, founder of Intel Corporation develops a planar process for making semiconductors called Monolithic IC Technology

1962 W.P. Dumke shows that semiconductors such as GaAs can be used to make lasers (optoelectronics).

1970 The first charge coupled devices (CCD’s) are made.

1980 Explosion in the use of personal computers.

1993 GaN light emitting diodes are made which can produce blue light. Possible application are flat screen displays and high density memory storage.

Composites:    Composites  consist  of  a  mixture  of  two  or  more  materials.  Most  composite  materials  consist  of  a  selected  filler  or  reinforcing  material  and  a  compa\ble  resin  binder  to  obtain  the  specific  characteris\cs  and  proper\es  desired.  Usually,  the  components  do  not  dissolve  in  each  other  and  can  be  physically  iden\fied  by  an  interface  between  the  components.  Fiberglass,  a  combina\on  of  glass  and  a  polymer,  is  an  example.  Concrete  and  plywood  are  other  familiar  composites.  Many  new  combina\ons  include  ceramic  fibers  in  metal  or  polymer  matrix.    

Biomaterials  Biomaterials  are  used  in  components  implanted  into  the  human  body  for  replacement  of  diseased  or  damaged  body  parts.  For  Example:  Hip  replacement  designs.    

Intraocular  Lens  3 basic materials - PMMA, acrylic, silicone

ArYficial  Hip  Joints   SubsYtute  Heart  Valves   The  biological  phenomenon  of  microorganisms  tending  to  move  in  response  to  the  environment's  magne\c  characteris\cs  is  known  as  magnetotaxis    

50 nm

HAADF image

400 nm

BF image

Organic matter

Magnetite (Fe3O4) crystals