metallurgy for engineers - uprmacademic.uprm.edu/pcaceres/courses/metaleng/meng-1.pdfcourse title...

44
Metallurgy for Engineers INME 4007 Pablo G. CaceresValencia B.Sc., Ph.D. U.K

Upload: haminh

Post on 01-Mar-2018

258 views

Category:

Documents


10 download

TRANSCRIPT

Metallurgy for EngineersINME 4007 

Pablo G. Caceres‐Valencia

B.Sc., Ph.D. U.K

GENERAL INFORMATION

Course Number  INME 4007 

Course Title Metallurgy for Engineers

Credit Hours 3 (Lecture:  2hours; Lab.: 2h per week)

Instructor Dr. Pablo G. Caceres‐Valencia

Office Luchetti Building L‐212 

Phone Extension 2358

Office Hours Mo and Wed 1:00pm to 5:00pm 

e‐mail [email protected]

[email protected]

Web‐site http://academic.uprm.edu/pcaceres

AssessmentThe course will be assessed in the following manner:

1st Partial Exam  15%

2nd Partial Exam 15% 

Final Exam 15%

Quizzes (5)*  25%

Class Attendance & Participation 5% (**)

Laboratory 25%(*) A total of five quizzes will be performed. Some of them will be pop‐quizzes (unannounced).  

(**) Class Attendance (after the second absence ‐ 1 point will be deducted for each non‐authorized absence). The participation in class will be taken into account.

Grades Final Grade Range Final Letter Grade

100 – 90 A

89 – 80 B

79 – 70 C

69 – 60 D

59 ‐ 0 F

AttendanceAttendance and participation in the lectures are mandatory and will be considered in the grading. Students should bring calculators, rulers, pen and pencils to be used during the lectures. Students are expected to keep up with the assigned reading and be prepared for the pop‐quizzes or to answer questions on these readings during lecture. Please refer to the Bulletin of Information for Undergraduate Studies for the Department and Campus Policies.

TexbooksW. D. Callister, Materials Science and Engineering: An Introduction(John Wiley Latest edition)

Donald R. Askeland and Pradeep P. Hule; The Science and Engineering of Materials; (Thomson: Brooks/Cole; Latest Edition)

William F. Smith; Foundation of Materials Science and Engineering(McGraw Hill, 2004 3th edition)

I will also post my lecture notes in the web 

http://academic.uprm.edu/pcaceres

ExamsAll exams, excepting the final exam, will be conducted during normal lecture periods in the assigned classrooms on dates specified by the lecturer with at least two weeks in advance. 

The final exam will be conducted at the time and location scheduled by the University. 

Students are allow to prepare a 3½ ” x 5½ ” index card, with any notes desired on its front and back, for use during each exam. Each index card must be handed in with the exam for which it is used.

The only other items allowed for use during the exams are calculators, pencils, pens, and rulers.

Neatness and order will be taking into consideration in the final exam grade. Up to ten points can be deducted for the lack of neatness and order.

TENTATIVES DATES

Jan/9‐11Introduction

Jan/14‐18 Phase Diagram

Jan/21‐25 Phase Diagram

Jan/28‐Feb/01 Fe Phase Diagram

Feb/04‐08 Ferrous Alloys

Feb/11‐15Solidification

March/3‐7 Crystal Structures

Mar/24‐28 Strengthening Mechanisms

April /14‐18 Non‐Ferrous Alloys

Feb/18‐22 Solidification1st Exam

Feb/25‐29 Atomic Structure and 

Bonding

March/10‐14 Strengthening Mechanisms

Mar/17‐21–No Class ‐ Holy Week

April/1‐4Mechanical Properties

April/7‐11 Mechanical Properties

Exam 2

April/22‐25 ‐ Polymers & Composites

Apr/28‐May02‐ Corrosion

OUTCOMES

After the completion of the course the students should be able to:

• characterize structure‐property‐performance relationship

• distinguish the structure of different types of materials

• specify the microstructure of an alloy from phase diagrams

• analyze the mechanical properties of materials

• select materials for various engineering applications

• describe the mechanical behavior of the materials.

Evolution of Engineering Research & Education 

1910

1960

2010

Sputnik

Quantum Mechanics

InformationTechnology

“Nano‐Bio‐Info”

Tables, formulae, etc.

“If it moves, it’s Mechanical,if it doesn’t move, it’s Civil,and If you can’t see it, it’s Electrical”

The era of science‐basedengineering

We are entering an era of integrated science &engineering, during whichthe boundaries of the disciplines will grow increasingly indistinct

Engineering disciplines

Engineering disciplines

Sciences

Engineering

Science

?Taken from Tim Sands, Prof. UC. Berkeley

Without materials there is no engineering

Chapter Outline• Historical Perspective

Stone → Bronze → Iron → Advanced materials• What is Materials Science and Engineering ?

Processing → Structure → Properties → Performance• Classification of Materials

Metals, Ceramics, Polymers, Semiconductors• Advanced Materials

Electronic materials, superconductors, etc.• Modern Material's Needs, Material of Future

Biodegradable materials, Nanomaterials, “Smart”materials

Historical Timeline• Beginning of the Material Science ‐ People began to make tools from stone – Start of the Stone Age about two million years ago. Natural materials: stone, wood, clay, skins, etc.• The Stone Age ended about 5000 years ago with introduction of Bronze in the Far East. Bronze is an alloy (a metal made up of more than one element), copper + < 25% of tin + other elements. Bronze: can be hammered or cast into a variety of shapes, can be made harder byalloying, corrode only slowly after a surface oxide film forms.• The Iron Age began about 3000 years ago and continues today. Use of iron and steel, a stronger and cheaper material changed drastically daily life of a common person.• Age of Advanced materials: throughout the Iron Age many new types of materials have been introduced (ceramic, semiconductors, polymers, composites…). Understanding of the relationship among structure, properties, processing, and performance of materials.Intelligent design of new materials. 

Evolution of Materials: A better understanding of structure‐composition‐properties relations has lead to a remarkable progress in properties of materials. 

Example is the dramatic progress in the strength to density ratio of materials, that resulted in a wide variety of new products, from dental materials to tennis racquets

• Processing

• Structure

• Properties

• Performance

What is Materials Science and Engineering ?

Material science is the investigation of the relationship among processing, structure, properties, and performance of materials.

Materials Optimization 

Loop

A Multidisciplinary Approach

Matter

Solid Liquid Vapor

Inorganics Organics

Metals Ceramics Polymers Composites

PropertiesProperties are the way the material responds to the environment and external forces.

Mechanical properties – response to mechanical forces, strength, etc.

Electrical and magnetic properties ‐ response electrical and magnetic fields, conductivity, etc.

Thermal properties are related to transmission of heat and heat capacity.

Optical properties include to absorption, transmission and scattering of light.

Chemical stability in contact with the environment – corrosion resistance.

We are going to study real, complex solids. PT should be familiaWe are going to study real, complex solids. PT should be familiar !r !

Length‐scalesAngstrom = 1Å = 1/10,000,000,000 meter = 10‐10 m

Nanometer = 10 nm = 1/1,000,000,000 meter = 10‐9 m

Micrometer = 1µm = 1/1,000,000 meter = 10‐6 m

Millimeter = 1mm = 1/1,000 meter = 10‐3 m

Interatomic distance ~ a few Å

A human hair is ~ 50 µm

Elongated bumps that make up the data track on CD are ~0.5 µm wide, minimum 0.83 µm long, and 125 nm high

DNA~2-1/2 nm diameter

Natural ThingsNatural Things

Fly ash~ 10-20 μm

Human hair~ 60-120 μm wide

Atoms of siliconspacing ~tenths of nm

Red blood cellswith white cell

~ 2-5 μm

Ant~ 5 mm

Dust mite

200 μm

ATP synthase

~10 nm diameter

Mic

row

orld

0.1 nm

1 nanometer (nm)

0.01 μm10 nm

0.1 μm100 nm

1 micrometer (μm)

0.01 mm10 μm

0.1 mm100 μm

1 millimeter (mm)

1 cm10 mm

10-2 m

10-3 m

10-4 m

10-5 m

10-6 m

10-7 m

10-8 m

10-9 m

10-10 m

Visib

le

Nan

owor

ld

1,000 nanometers =

Infra

red

Ultra

violet

Micr

owav

eSo

ft x-

ray

1,000,000 nanometers =

The Scale of Things The Scale of Things ––

Nanom

eters and More

Nanom

eters and More

Manmade Manmade ThingsThingsHead of a pin

1-2 mm

Quantum corral of 48 iron atoms on copper surfacepositioned one at a time with an STM tip

Corral diameter 14 nm

Nanotube electrode

Carbon nanotube ~1.3 nm diameter

O O

O

OO

O OO O OO OO

O

S

O

S

O

S

O

S

O

S

O

S

O

S

O

S

PO

O

The Challenge

Fabricate and combine nanoscale building blocks to make useful devices, e.g., a photosynthetic reaction center with integral semiconductor storage.

Zone plate x-ray “lens”Outer ring spacing ~35 nm

MicroElectroMechanical(MEMS) devices10 -100 μm wide

Red blood cellsPollen grain

Carbon buckyball ~1 nm diameter

Self-assembled,Nature-inspired structureMany 10s of nm

Mic

row

orld

0.1 nm

1 nanometer (nm)

0.01 μm10 nm

0.1 μm100 nm

1 micrometer (μm)

0.01 mm10 μm

0.1 mm100 μm

1 millimeter (mm)

1 cm10 mm10-2 m

10-3 m

10-4 m

10-5 m

10-6 m

10-7 m

10-8 m

10-9 m

10-10 m

Visib

le

Nan

owor

ld

1,000 nanometers =

Infra

red

Ultra

violet

Micr

owav

eSo

ft x-

ray

1,000,000 nanometers =

The

Scal

e of

Thi

ngs

The

Scal

e of

Thi

ngs ––

Nan

omet

ers a

nd M

ore

Nan

omet

ers a

nd M

ore

SolidsSolids we are interested in their mechanical properties…

metalmetal polymerpolymer

oxideoxide

polymerpolymer

CaCa1010(PO(PO44))66OHOH22

we are interested in their we are interested in their electronicelectronic propertiesproperties……

'Electronic' properties of solids:….those dominated by the behavior of the electrons

Electrical conduction: insulating, semiconducting, metallic, superconducting

Can we understand this huge variation in conductivity ?

'Electronic' properties of solids:….those dominated by the behaviour of the electrons

Optical properties: absorption, emission, amplification and modification of light

prism

SHG

laser

window

mirror

glass fibre

Magnetic properties: paramagnetism, ferromagnetism, antiferromagnetism

IBM

Chemical classification:Chemical classification:

molecularmolecularionicioniccovalentcovalentmetallicmetallic

bondingbonding

Classification of Functional Materials

Metals: Inorganic substances which are composed normally of combinations of "metallic elements“ and may also contain some non metallic elements. Examples iron (Fe), copper (Cu), aluminum (Al), nickel (Ni), titanium (Ti). Non metallic elements such as carbon(C), nitrogen (N) and oxygen (O) may also be contained in metallic materials.Metals usually are good conductors of heat and electricity. Metals have a crystalline structure in which the atoms are arranged in an orderly manner. Also, they are quite strong but malleable and tend to have a lustrous look when polished. Metals and alloys are commonly divided into two classes: ferrous metals and alloys and non ferrous metals and alloys that do not contain iron or only a relatively small amount of iron.

Ceramics: They are generally compounds between metallic and nonmetallic elements chemically bonded together and include suchcompounds as oxides, nitrides, and carbides. Ceramic materials can be crystalline, non-crystalline, or mixtures of both.Typically they have high hardness and high-temperature strength but they tend to have mechanical brittleness. They are usually insulating and resistant to high temperatures and harsh environments. Ceramics can be divided into two classes: traditional and advanced. Traditional ceramics include clay products, silicate glass and cement; while advanced ceramics consist of carbides (SiC), pure oxides (Al2O3), nitrides (Si3N4), non-silicate glasses and many others.

Plastics: Plastics or polymers are substances containing a large number of structural units joined by the same type of linkage. These substances often form into a chain-like structure and are made of organic compounds based upon carbon and hydrogen. Usually they are low density and are not stable at high temperatures.Polymers in the natural world have been around since the beginning of time. Starch, cellulose, and rubber all possess polymeric properties. Man-made polymers have been studied since 1832. Today, the polymer industry has grown to be larger than the aluminum, copper and steel industries combined. Polymers already have a range of applications that far exceeds that of any other class of material available to man. Current applications extend from adhesives, coatings, foams, and packaging materials to textile and industrial fibers, composites, electronic devices, biomedical devices, optical devices, and precursors for many newly developed high-tech ceramics.

Semiconductors (Electronic Materials): Semiconductors are materials which have a conductivity between conductors (generally metals) and nonconductors or insulators (such as most ceramics). Semiconductors can be pure elements, such as silicon or germanium, or compounds such as gallium arsenide or cadmium selenide. In a process called doping, small amounts of impurities are added to pure semiconductors causing large changes in the conductivity of the material. Due to their role in the fabrication of electronic devices, semiconductors are an important part of our lives. Imagine life without electronic devices. The developments in semiconductor technology during the past 50 years have made electronic devicessmaller, faster, and more reliable.

Composites:Composites consist of a mixture of two or more materials. Most composite materials consist of a selected filler or reinforcing material and a compatible resin binder to obtain the specific characteristics and properties desired. Usually, the components do not dissolve in each other and can be physically identified by an interface between the components.Fiberglass, a combination of glass and a polymer, is an example.Concrete and plywood are other familiar composites. Many new combinations include ceramic fibers in metal or polymer matrix.

What is Concrete? Brain Storming Activity 1: Concrete Survey1. When was concrete first made?

9000 BC 500 BC 100 AD 1756 1824 2. Circle the possible components of concrete.

water cement gravel sand air steel rods 3. What is the purpose of cement in concrete? 4. What role does water play in producing concrete? 5. Why does concrete harden? 6. Why does concrete set (harden) slowly? 7. How can you make concrete set: (a) faster (b) slower? 8. Is concrete stronger in compression, tension, or the same in either? 9. How strong can concrete or cement be (in pounds per square inch

(psi))? 50,000 20,000 5000 2000

10. How long can concrete last (in years)? 50,000 5000 500 50

scores: 8-10 materials science major; 5-7 concrete contractor; 2-4 concrete laborer; 0-1 home owner

Concrete Survey (Key)1. When was concrete first made?

9000 BC 500 BC 100 AD 1756 1824 2. Circle the possible components of concrete.

water cement gravel sand air3. What is the purpose of cement in concrete?

It acts as a primary binder to join the aggregate into a solid mass.

4. What role does water play in producing concrete? Water is required for the cement to hydrate and solidify.

5. Why does concrete harden? The chemical process called cement hydration produces crystals that interlock and bind together.

6. Why does concrete set (harden) slowly? It takes time for the hydrated cement crystals to form

7. How can you make concrete set: faster? add calcium chloride or “accelerator"slower? add sugar or "set retarder"

8. Is concrete stronger in compression, tension, or the same in either? It is stronger in compression.

9. How strong can concrete or cement be (in pounds per square inch (psi))? 50,000 20,000 5000 2000

10.How long can concrete last (in years)? 50,000 5000 500 50