lund-potsdam-jena managed land (lpjml) process-based agriculture, vegetation … · 2020. 8....

13
Lund-Potsdam-Jena managed land (LPJmL) Process-based agriculture, vegetation and hydrology model A short, simple and informal introduction Marianela Fader June 2015 1

Upload: others

Post on 10-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Lund-Potsdam-Jena managed land (LPJmL)

    Process-based agriculture, vegetation and

    hydrology model

    A short, simple and informal introduction

    Marianela Fader

    June 2015

    1

  • Marianela Fader

    One grid-cell in LPJmL

    2

    Irrigated and rainfed

    agriculture, grasslands,

    natural vegetation

    Phenology

    C, H2O exchange

    Management

    AET

    Ci

    Climate, CO2 concentration, soil structure, land use

    Production

    • River discharge (Gerten et al., 2004;

    Biemans et al. , 2009)

    • Irrigation water requirements (Rost et

    al., 2008)

    • Water consumption of crops (Fader et

    al., 2010)

    • Etc.

    Photosynthesis

    Water

    availability

    Interception

    Evaporation

    Infiltration

    Surface

    runoff

    0.5°

  • Marianela Fader

    Model inputs & availability

    • Monthly climate (temperature, precipitation, rainy days, cloud cover). Global, 0.5 arc degrees. CRU 1901-2009. Climate models until 2100.

    • Soil structure (not type!). Static.

    • Global atm. CO2-concentrations. 1901-2010.

    • Land use dataset: irrigated and rainfed (separated!) sowing areas for each class. Global, 0.5 arc degrees. M.Fader‘s dataset from 1700-2010.

    • Weather generator: daily climate.

    • Secondary inputs: potential evapotranspiration and soil temperature

    3

  • Marianela Fader

    Plant classes & parametrisation Natural vegetation (pft) Sitch et al., 2003

    1. tropical broad-leaved evergreen;

    2. tropical broad-leaved raingreen;

    3. temperate needle-leaved evergreen;

    4. temperate broad-leaved evergreen;

    5. temperate broad-leaved summer green;

    6. boreal summer green;

    7. boreal needle-leaved evergreen;

    8. C3 herbaceous;

    9. C4 herbaceous.

    4

    Annual crops (cft) Bondeau et al., 2007

    1.Temperate cereals (wheat)

    2.Maize

    3.Rice

    4.Tropical cereals (millet)

    5.Temperate roots (sugar beets)

    6.Tropical roots (cassava)

    7.Pulses (beans)

    8.Sunflower

    9.Groundnuts

    10.Soybeans

    11.Sucar Cane

    12.Managed grasslands

    Bioenergy Behringer et al., 2011

    1.Tropical bioenergy tree

    2.Temperate bioenergy tree

    3.Bioenergy grasses

    Agricultural trees & others Med Fader et al., 2015

    1.Citrus (orange)

    2.Nuts (almonds)

    3.Orchards (apple)

    4.Olives

    5.Cotton

    6.Date palms

    7.Grapes

    8.Fodder grass

    9.Vegetables (grass!!)

    10.Potatoes

    Inclusion of others or re-parametrisation possible but

    literature work needed

  • Marianela Fader

    Main model outputs

    • Carbon cycle: GPP, NPP, Net ecosystem exchange, autotrohic and heterotrophic respiration, Vegetation

    carbon, soil carbon.

    • Agriculture: yields (t/ha), production (t), growing period.

    • Water: soil evaporation, plant transpiration, plant interception, surface runoff, percolation/infiltration,

    irrigation requirements, soil water content, surface water

    availability.

    5

  • Marianela Fader

    Processes considered & considered simply

    • Photosynthesis

    • Phenology & LAI development

    • Carbon allocation to different plant‘s parts & allometry

    • Root distribution & soil biochemistry

    • Fire disturbance in natural vegetation

    • Tree mortality

    • Light and water competition between different types of natural vegetation

    • Bioclimatic limits (parametrised)

    • Crop & fruit ripeness & harvest

    • Residues of agriculture

    • Dynamic sowing dates and growing periods

    • Coupling between CO2 and photosynthesis

    • Water stress & heat stress

    • Agricultural management

    6

  • Marianela Fader

    Processes not considered

    Among others:

    • Management of forests

    • Nitrogen cycle (it‘s being done at PIK)

    • Erosion

    • Pollution

    • Fire disturbance in agriculture

    • Age classes in natural vegetation

    • Fossil groundwater availability

    • Salinization

    7

  • Marianela Fader

    Applications

    • Impacts of climate change

    • Impacts of land use change

    • Potential agricultural production

    • Past & future evolution of carbon cycle

    • Past & future changes in hydrological cycle

    • Potential growing areas

    • Impacts of agric. management

    8

  • Marianela Fader 9

    Agricultural management I

    • Represents level of inputs and control of production

    (fertilizers, technology, work, weed and pest control,

    etc.)

    Three parameters are coupled:

    • LAImax = plant productivity

    • HImax = proportion of aboveground biomass that goes

    into storage organ

    • -a = scales leave productivity to field productivity

    (represent homogeneity/heterogeneity of fields)

  • Marianela Fader 10

    Agricultural management II

    • Coupling:

    – LAImax: 1 HIMAX:: 80% -a: 0,4

    – LAImax: 2 HIMAX: 83,3 -a: 0,5

    – LAImax: 3 HIMAX: 86,7 -a: 0,6

    – LAImax: 4 HIMAX: 90,0 -a: 0.7

    – LAImax: 5 HIMAX : 93,3 -a: 0,8

    – LAImax: 6 HIMAX : 96,7 -a: 0,9

    – LAImax: 7 HIMAX : 100 -a: 1

    • LAImax callibrated to best fit FAO yields

  • Marianela Fader 11

    Example of management (LAImax)

    Mean 1999-2003.

    wheat

    Maize

  • Marianela Fader

    Literature

    • The LPJmL paper: Bondeau, A., Smith, P., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-

    Campen, H., Müller, C., Reichstein, M., Smith, B. 2007. Modelling the role of agriculture for the 20th century global

    terrestrial carbon balance. Global Change Biology 13, 679–706.

    • The LPJ paper: Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan J, Levis S, Lucht, W, Sykes M,

    Thonicke K, Venevsky S 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the

    LPJ Dynamic Vegetation Model. Global Change Biology 9: 161–185

    • Description of the water routing scheme: Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., Schaphoff, S. 2008:

    Agricultural green and blue water consumption and its influence on the global water system. Water Resources

    Research 44, W09405, doi:10.1029/2007WR006331.

    • And the technical implementation of river routing: von Bloh, W., Rost, S., Gerten, D., Lucht, W. 2010. Efficient

    parallelization of a dynamical global vegetation model with river routing. Environ. Model. Softw. 25, 685–690.

    • This is the permafrost and soil hydrology paper: Schaphoff, S., Heyder, U., Ostberg, S., Gerten, D., Heinke, J., Lucht,

    W. 2013. Contribution of permafrost soils to the global carbon budget. Environ. Res. Lett. 8, 014026.

    • This is the bioenergy paper: Beringer T, Lucht W, Schaphoff S 2011. Bioenergy production potential of global biomass

    plantations under environmental and agricultural constraints. Glob. Change Biol. Bioen. 3, 299-312.

    • This is the SPITFIRE paper: Thonicke K, Spessa A, Prentice IC, Harrison SP, Dong L & Carmona-Moreno C 2010. The

    influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a

    process-based model. Biogeoscience 7(6):1991-2011

    • This is the sowing date paper: Waha K, van Bussel LGJ, Müller C, Bondeau A (2012): Climate-driven simulation of

    global crop sowing dates. Global Ecology and Biogeography, 21,2, pp. 247-259, doi: 10.1111/j.1466-8238.2011.00678.x

    • The implementation of agricultural trees is submitted to GMD: Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer,

    W. : Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model.

    12

  • C‘est tout!

    Marianela Fader

    June 2015

    13