luc patthey :: swissfel photonics :: paul scherrer ... · x-ray source milestones bending magnet...

29
WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN New opportunities with X-ray Laser Sources Luc Patthey :: SwissFEL Photonics :: Paul Scherrer Institut Symposium on OLAC 2018: NTB Campus, Buchs: 12.04.18

Upload: others

Post on 10-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

New opportunities with X-ray Laser Sources Luc Patthey :: SwissFEL Photonics :: Paul Scherrer Institut

Symposium on OLAC 2018: NTB Campus, Buchs: 12.04.18

Page 2: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

X-Ray Source Milestones

Bending magnet

1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation (GE) 1961 1st generation synchrotron (NBS) - parasitic 1981 2nd gen. (Daresbury) - dedicated to SR 1984 3rd gen. (Grenoble) - undulators 2001 3rd+ gen. (SLS, Villigen) - high-brightness 2009 4th gen. (Stanford) - X-ray Free Electron Laser

X-ray and light sources

Page 3: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

PSI’s newest large-scale research facility: An x-ray free-electron laser (FEL)

Optical laser , resolution: - spatial: coarse - temporal: fast

Synchrotron light, resolution: - spatial: fine - temporal: slow

X-ray free-electron laser excellent spatial (Å) and temporal (fs) resolution

Direct insights into physical, chemical and biological processes governing our everyday lives

Page 4: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

X-ray Free Electron Laser (X-FEL)

electron gun

LINAC

laser pulse Undulator 50 m

X-ray Pulse length 1- 50 fsec

0.6 km

Beamline 150 m

Experimental station

Page 5: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

History of the peak brilliance of x-ray sources

Peak brilliance: photons / (s mrad2 mm2 0.1% bw)

Unique properties of x-ray FEL pulses:

1). Shortness

2). Brilliance

3). Coherence

Page 6: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

log

(Pow

er)

Length Saturationslength ~ 10 Lgain

gain

~ 1

05

low gain exponential gain

(high-gain linear regime)

P(z) = Po exp(z/Lgain)

non-linear

Process: „self-amplified spontaneous emission“ (SASE).

Page 7: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

LCLS 2009

LCLS-II 2020

SACLA 2011

PAL-XFEL 2016

Eu-XFEL 2017

SwissFEL 2016

FLASH 2005

FERMI 2011

World map of x-ray free-electron lasers

Hard x-rays Soft x-rays

Operational Under construction

Page 8: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

SwissFEL in a nutshell

Main parameters

Wavelength: 1 Å – 5 nm

Photon energy: 0.24 – 12.4 keV

Pulse duration: 1 – 20 fs

e- Energy 5.8 GeV

e- Bunch charge 10 – 200 pC

Repetition rate 100 Hz

ARAMIS • Hard x-ray FEL, λ = 1 Å (1.8 – 12.4 keV) • Linear polarization, variable gap undulators • Operation modes: SASE & self-seeded • First users 2018 ATHOS• Soft x-ray FEL, λ = 0.65 – 5 nm (240 – 1’930 eV) • Variable polarization Apple X undulators • Operation modes: SASE (CHIC) & self-seeded • First users 2021

1st construction phase2013 – 2016

2nd construction phase 2018 – 2020

Linac 3 Linac 1 Injector Linac 2

ATHOS 0.65 – 5 nm

ARAMIS 0.1 – 0.7 nm 0.35 GeV 2.0 GeV 3.0 GeV 2.1 – 5.8 GeV

user stations 2.6 – 3.4 GeV BC1 BC2

Page 9: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

SwissFEL Status

Jan. 13, 2013

Page 10: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

SwissFEL Status

Injector & Linac

Building

Undulators

ARAMIS Beamline

Page 11: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

SwissFEL Status

Injector & Linac

Building

Undulators

ARAMIS Beamline

Feb’16 first users of game crossing observed (by night shift)

May’16 day&night operation established

Page 12: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

SwissFEL Progress 2017

May

Aug

Oct Nov

Dec

Dec’16 Inauguration and 1st lasing Ee = 0.35 GeV

= 240 Å

measured with Neon Gas intensity monitor

FEL beam on YAG screen

15 May 17 Lasing at 41 Å

Lasing Ee = 0.91 GeV

= 41 Å

Lasing Ee = 1.62 GeV

= 13 Å 1st Photons in X-ray beamline

First user experiment in Bernina

First user experiment in Alvra Lasing

Ee = 2.45 GeV = 5 Å

Kα1 Kα2

Kα from Fe3P

@2.340 keV

1eV

Achieved CDR nominal

e- energy 2.7 GeV 5.8 GeV

e- pulse charge 200 pC 200 pC

FEL wavelength 4 Å 1 Å

FEL pulse energy 250 J 150 J

Repetition rate 10 Hz 100 Hz

Page 13: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Scientific Challenges

Page 14: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation
Page 15: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Pump-probe experiments at FELs

Page 16: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Non Linear Optics: Time resolved chemistry

Canton, Kjær et al., Nat. Commun. 6, 6359 (2015)

Canton, Kjær et al., Nat. Commun. 6, 6359 (2015)

Page 17: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Measure before destroy

R. Neutze, Nature 2000

Page 18: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Visualizing dynamics in Biology at PSI

Mokso et al., Scie. Rep., 2015 Standfuss et al., Nature, 2011 Nango et al., Science 2016 (SACLA) Nogly et al., Nature Comm 2016 (LCLS)

Visualizing the motion of an object helps to understand its function

Dynamic in vivo X-ray imaging in the mm range with high μsec resolution (Synchtrotron)

Cytoplasmic

Extracellular

dynamic processes in biochemistry in atomistic detail with up to picosecond resolution(Free Electron lasers)

Page 19: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

First time resolved Pilot Experiment by SwissFEL: Semiconductor to metal transition in Ti3O5 nanocrystals

Collaboration: SwissFEL Bernina team and M. Cammarata et al., Univ. Rennes in collaboration with prof. S. Ohkoshi & H. Tokoro (Tokyo University) •3rd Harm: ~109 ph/pulse @ 6.6 KeV (220 μJ @ 1st harm) •Laser: 800nm, 42 mJ/cm2

Jungfrau 1.5 M (average 100 images)

Nature Chemistry : 10.1038/nchem.67

•Precisely Mapping Multiscale dynamics from ~1 ps to tens of μs

•Acoustic expansion precedes phase transition(s)

•High resolution allowed understanding transformation pathway: β→α→λ

Light induced Debye Scherrer ring differences

Page 20: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Collaboration SwissFEL Alvra team and J. Szlachetko, J. Czapla-Masztafiak, W. M. Kwiatek (Inst. of Nucl. Phys. PAN (Krakow) and M. Vogt (University of Bremen)

Kα1 2013.7 eV Kα2 2012.7 eV

Jungfrau 4.5M

First Pilot Experiment by SwissFEL-Alvra: UV photo-induced charge transfer in OLED system

X-ray

UV Laser Phosphorescence

Jet

Jungfrau

4.5 M

XES P Kα

Photon in 2.340 keV

[Cu4(PCP)3]+ Jet

Page 21: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Aramis beamline courtesy: U. Flechsig and R. Follath

Flat Offset Mirrors from JTEC (2) and Zeiss (4) Size : 770 x 80 x 50 (80) mm3

Optical surface : 630 x 30 mm2 Height error : < 6 nm rms** **) within noise level of PSI metrology Microroughness : < 0.2 nm Coatings : SiC/B4C, Si , Mo/B4C

S. Spielmann-Jäggi by Offset mirror measurements

Page 22: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

First Mirror for ARAMIS (JTEC) @ PSI 30.11.15 courtesty Rolf Follath & Uwe Flechsig

-PV (300mm): 2.6 nm (3) -Figure error: 0.5 nm rms (0.6) (full-length)

M-201 and Uwe Flechsig

Page 23: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Fluence

Beam size

r (r) r2 (0) r 'z 2

Peak fluence

)()(ˆ 2 z

Ezr

P

( Ep: pulse energy )

Max. dose absorbed by atoms

)(ˆ z

Fluence is alway lower than

damage threshold of B4C

Iron or steel critical below 50 m

Page 24: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

36 nm SiC

Si bulk

10 nm B4C

SiC shifts the cut off to higher energies B4C covers absorption edge

B4C / SiC on Si

Mo is well known multilayer material1 No harmonic rejection in working energy range Extend range to 19000 eV (3rd harmonic),

1 M. Störmer, SPIE 7077, 707705 (2008)

Low-Z materials 20 nm Mo

Si bulk

15 nm B4C B4C / Mo on Si

Mo is Mid-Z material

Mirror coatings for Aramis

Page 25: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Characterisation of Bilayer

Sample

15 nm B4C 20 nm Mo

Si bulk

Mo / B4C bilayer

Page 26: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Coating of offset mirrors

First stripe: SiC + top B4C End of June 2016 Run ID T664 coating area above width: 44-75 mm (or 44-72 mm) (uncoated silicon below) Second stripe: Mo + top B4C Beginning of July 2016 Run ID T668 coating area above width: 44-75 mm (or 44-72 mm) (first stripe below)

Courtesy, M. Stoermer, HzG Geesthacht

Label

Label

Page 27: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

XRR-measurement of Mo/B4C T668

Courtesy, M. Stoermer, HzG Geesthacht

Page 28: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Total reflecting mirrors

Multilayer

θ

θ

small angle ->long mirrors

large angle ->short mirrors

• Multilayers only in narrow energy band • Incidence angle only a few mrad

Reflective optics

ρ: electron density, re = 2.818 10-15 m

cre

Critical angle

λ=1 Å

Θ = 4 mrad

Θ = 9 mrad

Page 29: Luc Patthey :: SwissFEL Photonics :: Paul Scherrer ... · X-Ray Source Milestones Bending magnet 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation

Mirror

z

Multilayer gradient:

...)1()( 2210 zBzBdzd

)(2)(sin

zdz

Bragg equation

Mirror1 (HFM): B1=-0.005 / mm

Mirror2 (VFM): B1=-0.013 / mm

0

φ

θ2 θ1

Mirror

φ

θ1 θ1

φ

Graded multilayer fills the numerical aperture!

Graded Multilayer

(deg)