ls category of quaternionic grassmannians · morse theory 1 ls category ls category and critical...

29
LS category of quaternionic Grassmannians Mar´ ıaJos´ e Pereira-S´ aez Joint work with E. Mac´ ıas-Virg´os (Santiago de Compostela) and D. Tanr´ e (Lille 1) Lisboa, February 2015 M.J. Pereira-S´ aez (UDC) LS category of G k,n Lisboa, 2015 1 / 28

Upload: others

Post on 10-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

LS category of quaternionic Grassmannians

MarıaJose Pereira-SaezJoint work with E. Macıas-Virgos (Santiago de Compostela) and D. Tanre (Lille 1)

Lisboa, February 2015

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 1 / 28

Page 2: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

LS category

1 LS categoryLS category and critical points

2 Morse theoryHeight functions on Sp(n)Height functions on the Grassmannian Gn,k

Cartan Model

3 Explicit coverings

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 2 / 28

Page 3: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

LS category

Definition

The LS category cat(X ) is the least integer m ≥ 0 such that X admits acovering by m + 1 open sets which are contractible in X .

Given X a topological space, we say that the open set U ⊂ X iscategorical if U is contractible in X .

– For example, cat(Rn) = 0.

– All the spheres Sn, n ≥ 1 have LS category 1 (two contractible opensets)

– In general, all suspensions can be covered by two categorical opensets (cat=1).

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 3 / 28

Page 4: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

LS category

Bounds

If X is a CW-complex, catX ≤ dim X .

If X is (r − 1)-connected for r ≥ 1, then

catX ≤ dim X/r .

The cup-length of a topological space X is a lower bound for thecategory of the space X :

cupX ≤ catX .

Where the cup-length of a space X , cup(X ), is the largest integer ` such that

there exists a product x1 · · · x` 6= 0, with xi ∈ H∗(X ;A), for any coefficient ring A.

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 4 / 28

Page 5: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

LS category

Bounds

If X is a CW-complex, catX ≤ dim X .

If X is (r − 1)-connected for r ≥ 1, then

catX ≤ dim X/r .

The cup-length of a topological space X is a lower bound for thecategory of the space X :

cupX ≤ catX .

Where the cup-length of a space X , cup(X ), is the largest integer ` such that

there exists a product x1 · · · x` 6= 0, with xi ∈ H∗(X ;A), for any coefficient ring A.

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 4 / 28

Page 6: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

LS category

Example: Quaternionic Grassmannians

With these bounds we can get the value of the LS category for themanifold Gk,n = Sp(n)/(Sp(k)× Sp(n − k)):

– Gn,k is 3-connected and its dimension is 4k(n − k) hence

catGk,n ≤4k(n − k)

3 + 1= k(n − k)

– The cohomology ring with integer coefficients of Gn,k is

H∗(Gn,k ;Z) ∼= (Z[q1, . . . , qk ]⊗Z[q1, . . . , qn−k ])/( ∑i+j=l

qi ⊗qj ; l ≥ 1),

where qi is the Pontrjagin class of degree 4i . Then, due to thenon-nullity of the class (q1 · · · qk)n−k we have

catGk,n ≥ k(n − k)

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 5 / 28

Page 7: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

LS category LS category and critical points

1 LS categoryLS category and critical points

2 Morse theoryHeight functions on Sp(n)Height functions on the Grassmannian Gn,k

Cartan Model

3 Explicit coverings

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 6 / 28

Page 8: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

LS category LS category and critical points

If CritX denotes the minimum number of critical points for anysmooth function on a compact manifold X then we may write

catX + 1 ≤ CritX .

In the case of a finite number of critical points, Y. Rudyak andF. Schlenk have given a better upper bound.

Theorem (Rudyak-Schlenk, 2003)

Let X be a compact connected manifold and f : X → R any smoothfunction with a finite number of critical points. Then catX + 1 is a lowerbound for the number of critical values of f .

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 7 / 28

Page 9: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory

1 LS categoryLS category and critical points

2 Morse theoryHeight functions on Sp(n)Height functions on the Grassmannian Gn,k

Cartan Model

3 Explicit coverings

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 8 / 28

Page 10: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Height functions on Sp(n)

1 LS categoryLS category and critical points

2 Morse theoryHeight functions on Sp(n)Height functions on the Grassmannian Gn,k

Cartan Model

3 Explicit coverings

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 9 / 28

Page 11: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Height functions on Sp(n)

The symplectic group Sp(n) = A ∈ Hn×n | AA∗ = I is embedded inthe space Hn×n of quaternionic matrices of order n.

Let us consider the Morse height function hD : Sp(n)→ R withrespect to the hyperplane orthogonal to a real diagonal matrixD = diag(1, 2, . . . , n), defined by

hD(A) = <Tr(DA)

Its gradient is given by

(grad hD)A =1

2(D − ADA),

and its critical set is

Σ(hD) = diag(ε1, . . . , εn) with εi = ±1.

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 10 / 28

Page 12: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Height functions on the Grassmannian Gn,k

1 LS categoryLS category and critical points

2 Morse theoryHeight functions on Sp(n)Height functions on the Grassmannian Gn,k

Cartan Model

3 Explicit coverings

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 11 / 28

Page 13: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Height functions on the Grassmannian Gn,k

Let us fix some integer k ≤ n and consider the orbit

F = Fk = BJkB∗ | B ∈ Sp(n) ⊂ Sp(n)

of J = Jk = diag(−Ik , In−k).

F is diffeomorphic to the Grassmannian Gn,k of k-planes in Hn.

That is, we are considering the embedding Gn,k ⊂ Sp(n) which sendsthe k-dimensional subspace V onto the linear map which is equal to−id on V and to +id on V⊥.

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 12 / 28

Page 14: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Height functions on the Grassmannian Gn,k

Let hFD : F → R be the restriction of the height function hD to F .The relationship between the critical sets of hD and hFD is as follows.

Proposition

Σ(hFD ) = Σ(hD) ∩ F .

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 13 / 28

Page 15: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Height functions on the Grassmannian Gn,k

Recall that the critical points of hD are the matricesA = diag(ε1, . . . , εn) with εi = ±1.

If A has also to be in F , then A has exactly k negative elements andn − k positive elements.

So there are(nk

)critical points of hD in F .

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 14 / 28

Page 16: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Height functions on the Grassmannian Gn,k

Proposition

The Morse function, hFD : Fk∼= Gn,k → R, has exactly k(n− k) + 1 critical

levels.

So,

cupGn,k = k(n − k) ≤ catGn,k ≤ k(n − k).

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 15 / 28

Page 17: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Height functions on the Grassmannian Gn,k

For a given A ∈ Σ(hFD ),

hFD (A) = <Tr(DA) = 1ε1 + 2ε2 + · · ·+ nεn.

So, the maximum value of hFD at a critical point is

M = (−1− · · · − k) + (k + 1 + · · ·+ n).

And the minimum is

m = 1 + · · ·+ (n − k)− (n − k + 1)− · · · − n.

Hence, the number of critical levels is k(n − k) + 1 (as desired).

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 16 / 28

Page 18: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Cartan Model

1 LS categoryLS category and critical points

2 Morse theoryHeight functions on Sp(n)Height functions on the Grassmannian Gn,k

Cartan Model

3 Explicit coverings

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 17 / 28

Page 19: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Cartan Model

Let us modify the embedding of the Grassmann manifold Gn,k intoSp(n) by using its structure of symmetric space.

The subgroup Sp(k)× Sp(n − k) is the fixed point set of theautomorphism σ : Sp(n)→ Sp(n) defined by σ(B) = JBJ.

Definition

The Cartan embedding γ : Gn,k∼= Sp(n)/Sp(k)× Sp(n − k)→ Sp(n) is

given by γ([B]) = Bσ(B)∗ = BJB∗J and the Cartan model M is theimage of γ. This image is the connected component of the identity of

N = B ∈ Sp(n) | σ(B) = B∗.

MJ equals the orbit F ⊂ Sp(n) of J by the conjugation action.

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 18 / 28

Page 20: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Cartan Model

As Morse function on M, we choose the restriction to M of the heightfunction hD : Sp(n)→ R. We denote it by hM

D : M → R.

Proposition

The critical set of the Morse function, hMD : M ∼= Gn,k → R, is formed by

the matrices

A = diag(ε1, . . . , εk , εk+1, . . . , εn), εi = ±1,

such that the numbers of −1’s, in the blocks diag(ε1, . . . , εk) anddiag(εk+1, . . . , εn), are the same.

In general, these functions have too many critical points and levels(e.g.: 8 critical values in G5,3, while catG5,3 = 6).

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 19 / 28

Page 21: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Cartan Model

The quaternionic projective space

When k = 1, the projective space Gn,1 = HPn−1 is diffeomorphic tothe orbit F = F1 of the diagonal matrix J = diag(−1, In−1) ∈ Sp(n).

We apply the two methods in this situation.

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 20 / 28

Page 22: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Cartan Model

First, we consider the height function hFD . Its critical points are

Σ(hFD ) = A1, . . . ,An,

withAi = diag(1, . . . , 1,−1(i), 1, . . . , 1), for 1 ≤ i ≤ n.

The corresponding set of critical values is

n(n + 1)/2− 2i | 1 ≤ i ≤ n.

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 21 / 28

Page 23: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Morse theory Cartan Model

Second, let hMD be the Morse function induced on the Cartan model.

Its critical set is given by

Σ(hMD ) = E1,E2, . . . ,En

with E1 = I and

Ei = diag(−1, 1, . . . , 1,−1(i), 1, . . . , 1), for 2 ≤ i ≤ n.

Then, each critical point has a different image so, we have(n

1

)= n

critical values.

That is, for projective spaces, the sets of critical values obtained bythe two methods have the same cardinal, n, and cat HPn−1 = n − 1.

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 22 / 28

Page 24: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Explicit coverings

1 LS categoryLS category and critical points

2 Morse theoryHeight functions on Sp(n)Height functions on the Grassmannian Gn,k

Cartan Model

3 Explicit coverings

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 23 / 28

Page 25: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Explicit coverings

We can build an explicit covering of the Cartan model M, bycontractible open sets obtained from a generalized Cayley transform.

Since MJ = F , this covering can be transformed in order to obtain acovering of the orbit F .

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 24 / 28

Page 26: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Explicit coverings

– Set Ω(J) = A ∈ Hn×n | A + J is invertible.

Theorem (Macıas-Virgos, P-S, Tanre)

The map cJ : Ω(J)→ Ω(J) given by

cJ(A) = (I − JA)(A + J)−1

verifies cJ cJ = id and induces a diffeomorphism,

cJ : TJF∼=−→ Ω(J) ∩ F .

– By translating ΩF (J) := Ω(J) ∩ F we obtain a finite covering of theorbit F = Fk

∼= Gn,k , associated to the critical set of hFD :

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 25 / 28

Page 27: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Explicit coverings

Let P = Pσ ∈ Rn×n be any real matrix obtained from the identitymatrix by a permutation σ ∈ Sn of rows. Any critical point of hFD isof the form AP = PJP∗.

We define

ΩF (AP) := PΩF (J)P∗ = A ∈ F | A + AP is invertible.

Proposition

The family (ΩF (APσ))σ∈Sn is a finite covering of the orbit F ∼= Gn,k bycontractible open sets.

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 26 / 28

Page 28: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Explicit coverings

Notice that the number of open sets in the covering of Gn,k equalsthat of critical points (the permutations of the matrix J), that is,

(nk

).

This number is in general strictly greater than the category of Gn,k ,except if k = 1 (quaternionic projective space).

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 27 / 28

Page 29: LS category of quaternionic Grassmannians · Morse theory 1 LS category LS category and critical points 2 Morse theory Height functions on Sp(n) Height functions on the Grassmannian

Explicit coverings

[email protected]

Lisboa, February 2015

M.J. Pereira-Saez (UDC) LS category of Gk,n Lisboa, 2015 28 / 28