lowifrequency)sst)and)upperiocean)heatcontentvariability ... ·...

1
Mo#va#on Observa#ons indicate Atlan#c SSTs exhibit significant lowfrequency variability (Bjerknes 1964; Kushnir 1994; Ting et al. 2009). e.g. Atlan=c Mul=decadal Oscilla=on (Kerr, 2000; Knight et al., 2005) The origin of Atlan#c SST anomalies remains to be quan#fied. Likely depends on #mescale Intraannual to interannual: response to local atmospheric forcing (Frankignoul and Hasselmann, 1977), e.g. the NAO tripole (Cayan, 1992). Longer =mescales (how long?) ocean circula=on may play a role. Ocean dynamics that are important have not been isolated Wind and/or buoyancy forced baroclinic Rossby waves (Sturges et al 1998). Large scale changes in Atlan=c ocean heat transport due to changes in the AMOC (Kushnir 1994, etc.) and gyre circula=ons. Lozier (2010): most significant ques=on concerning the AMOC is role of AMOC in crea=ng decadal SST anomalies. ECCO version 4 state es#mate (19922010) MITgcm least squares fit to observa=ons using adjoint (Wunsch et al., 2009) fit achieved by adjus=ng ini=al condi=ons, forcing, and model parameters wellsuited to understand UOHC variability because it sa=sfies equa=ons of mo=on and preserves property budgets exactly (Wunsch and Heimbach, 2013) . Atmospheric forcing: ERAInterim Ocean data: Insitu: Argo, CTDs, XBTs, mooring arrays Satellite: AVHRR & AMSRE SST, al=metry Model Details (G. Forget) New global grid (LLC90): includes Arc=c, 50 ver=cal levels with par=al cells Nominal 1 o resolu=on with telescopic resolu=on to 1/3 o near Equator State of the art dynamic/thermodynamics sea ice model Nonlinear free surface + real freshwater fluxes Ques#on What are the rela#ve roles of atmospheric forcing and ocean dynamics in seMng upperocean heat content variability in the North Atlan#c? Upperocean heat content variability Heat Content integrated over maximum climatological mixed layer depth (D) Measure of heat contained in “ac=ve” ocean layers. Relevant for understanding SST Avoids strong contribu=ons from diffusion and eliminates entrainment effects (Deser et al, 2003; Coetlogon and Frankignoul, 2003; Buckley et al. 2014). Define: H = o C p Z -D T dz To right: (a) The first two PC =me series of monthly H anomalies (seasonal cycle removed) over the North Atlan=c and (b) their respec=ve power spectra. EOF1 and EOF2 explain 50% and 11% of the variance, respec=vely. (cd) The first two EOFs of North Atlan=c H. (ef) The spa=al panerns of SST variability associated with the first two PC =me series of North Atlan=c H, obtained by projec=ng the PC =me series onto monthly SST anomalies (seasonal cycle removed). A o C p Z -D @ T @ t dz | {z } H t = -o C p Z -D r · ( uT + u T ) dz | {z } C adv - o C p Z -D r · K dz | {z } C dif f + Q net Heat content budgets Dynamics of Advec#ve heat transport convergences Maximum Climatological mixed layer depth (D) Variance of monthly anomalies (seasonal cycle removed) of terms in the H budget. (a) tendency H t , (b) advec=ve convergence C adv , (c) airsea heat flux Q net and (d) diffusive convergence C diff . Advec=ve convergences play a large role in H t budget in areas of strong currents/fronts, such as along the Gulf Stream path. Variance of monthly anomalies of components of advec=ve convergence C adv : a) linear C lin , b) es=mated C ek+ C g , c) Ekman C ek , and d) geostrophic C g . Variance of C lin and C ek +C g similar to that of C adv in most regions. Both C ek and C g are largest in regions of strong currents/ fronts. C ek also plays a role in gyre interiors. Comparison of observed and ECCO v4 SST variability The first two empirical orthogonal func=ons (EOFs) of monthly (seasonal cycle removed) North Atlan=c SST anomalies from (ab) mapped Reynolds et al. (2002) data and (cd) ECCO v4, which respec=vely explain ~25% and ~15% of the spa=ally integrated variance. (e) The first two principal component (PC) =me series and (f) respec=ve power spectra. Temperature misfits for (leq) “firstguess” solu=on and (right) op=mized ECCO v4 solu=on at 100 m depth for all insitu data (Argo, CTDs, XBTs, SeaOs) averaged over 19922010. Misfits are calculated as the sample mean for each grid cell of T e −T o , where T o are observa=onal profiles and T e are the corresponding profiles from the model. Temperature Misfits Comparison to observa#ons Conclusions We u=lize a dynamically consistent ocean state es=mate (ECCO) to quan=fy the upperocean heat budget in the North Atlan=c on monthly to interannual =mescales. We introduce 3 novel techniques: Heat content is integrated over the maximum climatological mixed layer depth (integral donated as H). Advec=ve heat transports are separated into Ekman and geostrophic parts, a technique which is successful away from boundary regions. Airsea heat fluxes and Ekman heat transport convergences due to velocity variability are combined into one “local forcing” term. Over most regions, variability of Ekman heat transport convergences is dominated by variability in the velocity field. Over broad swaths of the North Atlan=c, including the interiors of the subtropical and subpolar gyres, >70% of the variance of H t can be explained by local airsea heat flux + Ekman transport variability. Geostrophic convergences play a role along Gulf Stream Path. North Atlan=c separated into regions based on underlying dynamics and budgets of H analyzed in detail. Subtropical gyre local forcing dominates on all =mescales. Gulf Stream local forcing dominates for periods less than 6 months; geostrophic convergences increasingly important on longer =mescales. Geostrophic convergences are an=correlated with airsea heat fluxes, sugges=ng H variability is forced by geostrophic convergences and damped by airsea fluxes. Subpolar gyre: local forcing dominates for periods less than 1 year geostrophic transports, bolus transports, and diffusion play a role on longer =mescales. (leq panels) coherence magnitude between H t and Q net ,C loc * ,C loc , and C loc +C g. (right panels) Time series for temporally integrated budgets for (top) the subtropical gyre, (middle) the Gulf Stream region and (bonom) the subpolar gyre. Martha W. Buckley and Rui M. Ponte (Atmospheric and Environmental Research) and Gaël Forget and Patrick Heimbach (Massachusens Ins=tute of Technology) C adv = -o C p Z -D r · ( u T ) dz | {z } linear: C lin -o C p Z -D r · ( u 0 T 0 + u T ) dz | {z } bolus: C bol C ek = o C p R -D ek r · ( u ek T ) dz + o C p w ek (-D) T (-D) C g = o C p R -D r · ( u g T ) dz + o C p w g (-D) T (-D) Lowfrequency SST and upperocean heat content variability in the North Atlan=c ū, etc. are monthly means. u’ etc. are devia=ons from monthly means. u* is the eddy induced transport velocity parameterized by the Gent and McWilliams (1990) scheme. u ek and u g are the Ekman and geostrophic veloci=es. w ek and w g are calculated from u ek and u g according to the con=nuity equa=on. u u C ek (u ek ,w ek ,T ) = C ek ( u ek , w ek , T )+ C ek (u ek 0 ,w 0 ek , T ) | {z } C v ek + C ek ( u ek , w ek ,T 0 ) | {z } C T ek + C ek (u 0 ek ,w 0 ek ,T 0 ) | {z } C vT ek Variance of Ekman heat transport convergences due to velocity variability (C ek v ) , temperature variability (C ek T ), and their covariability (C ek vT ) normalized by the variance of C ek . Buckley et al. (submined to J. Climate). C ek v dominates the variability of C ek except in the tropics, where C ek T is important and in the Labrador Sea where C ek VT plays a role. Role of local atmospheric forcing Hypothesis: C ek v +Q net =C loc * is a measure of impact of local atmospheric forcing on H Maps showing the frac=on of the variance of H t explained by a) C lin +Q net b) C ek +C g +Q net , c) Q net , and d) C loc * =C ek v +Q net . Variance of H t is well explained by Q net +C lin or Q net +C ek +C g in most regions. In gyre interiors, 70% of variance of H t explained by C ek v +Q net , whereas Q net alone only explains 50%. Geostrophic convergences important along Gulf Stream path Temporally integrate: Role of velocity variability, temperature variability, and their covariability Overbars are averages over ENTIRE 19year ECCO es=mate Primes are devia=ons from these averages Regional Budgets T - T o R t 0 H t oCpV dt T Q R t 0 Qnet o C p V dt T adv R t 0 C adv o C p V dt T dif f R t 0 C dif f o C p V dt References 1. Buckley, M., R. Ponte, G. Forget, and P. Heimbach (2014). Lowfrequency SST and upperocean heat content variability in the North Atlan=c. J. Climate, 27, 4996—5018. 2. Buckley, M., R. Ponte, G. Forget, and P. Heimbach . Determining the origins of advec=ve heat transport variability in the North Atlan=c, submined to J. Climate. 3. Bjerknes, J., 1964. Atlan=c airsea interac=on. Advances in Geophysics, 10, 182. 4. Cayan, D. R., 1992. Latent & sensible heat flux anomalies over the northern oceans: Driving sea surface temperature. J. Phys. Oceanogr., 22, 859881. 5. Deser, C., M. A. Alexander, and M. S. Timlin, 2003. Understanding the persistence of sea surface temperature anomalies in midla=tudes. J. Climate, 16, 57–72. 6. de Coetlogon, G. and C. Frankignoul, 2003: The persistence of winter sea surface temperature in the North Atlan=c. J. Climate, 16, 1364–1377 7. Frankignoul, C., P. Muller, and E. Zorita, 1997. A simple model of the decadal response of the ocean to stochas=c wind forcing. J. Phys. Oceanogr., 27, 1533–1546 8. Kerr, R., 2000: A North Atlan=c climate pacemaker for the centuries. Science, 288, 1984–1986. 9. Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005. A signature of persistent natural thermohaline circula=on cycles in observed climate. Geophys. Res. Le=., 32 (20). 10.Kushnir, Y., 1994. Interdecadal varia=ons in North Atlan=c sea surface temperatures and associated atmospheric condi=ons. J. Climate, 7, 141157. 11.Lozier, M.S., 2010. Deconstruc=ng the conveyor belt. Science, 328, 15071511. 12.Sturges, W., B.G. Hong, and A.J. Clarke, 1998, Decadal forcing of the North Atlan=c subtropical gyre. J. Phys. Oceanogr., 28, 659668. 13.Ting, Mingfang and Kushnir, Yochanan and Seager, Richard and Li, Cuihua. Forced and Internal Twen=ethCentury SST Trends in the North Atlan=c. J. Climate, 22, 14691481. 14.Trenberth, K.E. and J.M. Caron, 2001: Es=mates of meridional atmospheric and oceanic heat transports. J. Climate, 14, 34333443. 15.Wunsch, C. and P. Heimbach, 2013: Dynamically and kinema=cally consistent global ocean circula=on and ice state es=mates. Ocean circula=on and climate: observing and modeling the global ocean, G. Siedler, J. Church, J. Gould, and S. Gries, Eds., Elsevier, 2d ed. 16.Wunsch, C., P. Heimbach, R. M. Ponte, and I. Fukumori, 2009: The global general circula=on of the ocean es=mated by the ECCO consor=um. Oceanography, 22, 88–103. Coherences of H t and fluxes Time series of budget for H T ek R t 0 C ek o C p V dt T g R t 0 C g o C p V dt T bol R t 0 C bol o C p V dt T loc T air-sea + T ek T loc T air-sea + T v ek R T - T o R t 0 H t o C p V dt T Q R t 0 Q net o C p V dt T adv R t 0 C adv o C p V dt T dif f R t 0 C dif f o C p V dt 10 5 2 1 0.4 0.6 0.8 1 Subtropical yrs 0.5 0 0.5 Subtropical ° C 0.4 0.6 0.8 1 Gulf Stream 1995 2000 2005 2010 2 1 0 1 2 ° C Gulf Stream 0.1 1 10 0.4 0.6 0.8 1 cpy Subpolar Q net C loc * C loc C loc +C g 1995 2000 2005 2010 1 0.5 0 0.5 1 year Subpolar ° C TT o T Q T ek v T loc T ek v +T ek T T g T diff +T bol 1) Subtropical gyre interior C g ,C diff ,C bol negligible => C loc =C ek +Q net C loc dominates on all =mescales T loc explains 92% of the variance of H 2) Gulf Stream region C loc dominates for τ < 6 mo C g role for τ > 6 mo. T g and T Q highly an=correlated H anomalies formed by C g , damped by Q net 3) Subpolar gyre C loc dominates for τ < 1 yr. C g ,C diff ,C bol play a role for τ >1 yr.

Upload: others

Post on 21-Oct-2019

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LowIfrequency)SST)and)upperIocean)heatcontentvariability ... · MarthaW.)Buckley)and)Rui)M.)Ponte)(Atmospheric)and)Environmental)Research))and)Gaël)Forgetand)Patrick)Heimbach)(Massachusens)Ins=tute)of)Technology))

Mo#va#on  • Observa#ons  indicate  Atlan#c  SSTs  exhibit  significant  low-­‐frequency  variability  (Bjerknes  1964;  Kushnir  1994;  Ting  et  al.  2009).  – e.g.  Atlan=c  Mul=decadal  Oscilla=on  (Kerr,  2000;  Knight  et  al.,  2005)      

•  The  origin  of  Atlan#c  SST  anomalies  remains  to  be  quan#fied.  •  Likely  depends  on  #mescale  – Intra-­‐annual  to  inter-­‐annual:  response  to  local  atmospheric  forcing  (Frankignoul  and  Hasselmann,  1977),  e.g.  the  NAO  tripole  (Cayan,  1992).    – Longer  =mescales  (how  long?)  ocean  circula=on  may  play  a  role.  

• Ocean  dynamics  that  are  important  have  not  been  isolated  – Wind  and/or  buoyancy  forced  baroclinic  Rossby  waves  (Sturges  et  al  1998).  – Large  scale  changes  in  Atlan=c  ocean  heat  transport  due  to  changes  in  the  AMOC  (Kushnir  1994,  etc.)  and  gyre  circula=ons.  – Lozier  (2010):  most  significant  ques=on  concerning  the  AMOC  is  role  of  AMOC  in  crea=ng  decadal  SST  anomalies.  

ECCO  version  4  state  es#mate  (1992-­‐2010)  • MITgcm  least  squares  fit  to  observa=ons  using  adjoint  (Wunsch  et  al.,  2009)  

•  fit  achieved  by  adjus=ng  ini=al  condi=ons,  forcing,  and  model  parameters  • well-­‐suited  to  understand  UOHC  variability  because  it  sa=sfies  equa=ons  of  mo=on  and  preserves  property  budgets  exactly  (Wunsch  and  Heimbach,  2013)  .  •  Atmospheric  forcing:  ERA-­‐Interim  •  Ocean  data:    •  In-­‐situ:  Argo,  CTDs,    XBTs,  mooring  arrays  •  Satellite:  AVHRR  &  AMSR-­‐E  SST,  al=metry    

• Model  Details  (G.  Forget)  •  New  global  grid  (LLC90):  includes  Arc=c,  50  ver=cal  levels  with  par=al  cells  •       Nominal  1o  resolu=on  with  telescopic  resolu=on  to  1/3o  near  Equator  •  State  of  the  art  dynamic/thermodynamics  sea  ice  model  •  Nonlinear  free  surface  +  real  freshwater  fluxes  

Ques#on  What  are  the  rela#ve  roles  of  atmospheric  forcing  and  ocean  dynamics  in  seMng  upper-­‐ocean  heat  content  variability  in  the  North  Atlan#c?        

Upper-­‐ocean  heat  content  variability  Heat  Content  integrated  over  maximum    climatological  mixed  layer  depth  (D)  • Measure  of  heat  contained  in  “ac=ve”  ocean  layers.  • Relevant  for  understanding  SST  • Avoids  strong  contribu=ons  from  diffusion  and  eliminates  entrainment  effects  (Deser  et  al,  2003;  Coetlogon  and  Frankignoul,  2003;  Buckley  et  al.  2014).  

• Define:    

Brief Article

The Author

June 19, 2013

H = ⇢oCp

Z ⌘

�D

T dz

⇢oCp

Z ⌘

�D

@T

@tdz = �⇢oCp

Z ⌘

�D

r · (uT + u⇤T ) dz

| {z }Cadv

� ⇢oCp

Z ⌘

�D

r ·K dz

| {z }Cdiff

+Qnet

ug =

1

f⇢oz⇥rp,

uek =

⌧ ⇥ z

⇢ofDek

Dek = min(D, 100 m)

w(�D) ⇡Z ⌘

�D

rH · u dz ⇡Z ⌘

�Dek

rH · uek dz

| {z }⌘wek(�D)

+

Z ⌘

�D

rH · ug dz

| {z }⌘wg(�D)

1

To  right:    (a)  The  first  two  PC  =me  series  of  monthly  H  anomalies  (seasonal  cycle  removed)  over  the  North  Atlan=c  and  (b)  their  respec=ve  power  spectra.  EOF1  and  EOF2  explain  50%  and  11%  of  the  variance,  respec=vely.    (c-­‐d)  The  first  two  EOFs  of  North  Atlan=c  H.    (e-­‐f)  The  spa=al  panerns  of  SST  variability  associated  with  the  first  two  PC  =me  series  of  North  Atlan=c  H,  obtained  by  projec=ng  the  PC  =me  series  onto  monthly  SST  anomalies  (seasonal  cycle  removed).    

A  

Brief Article

The Author

June 19, 2013

H = ⇢oCp

Z ⌘

�D

T dz

⇢oCp

Z ⌘

�D

@T

@tdz

| {z }Ht

= �⇢oCp

Z ⌘

�D

r · (uT + u⇤T ) dz

| {z }Cadv

� ⇢oCp

Z ⌘

�D

r ·K dz

| {z }Cdiff

+Qnet

ug =

1

f⇢oz⇥rp,

uek =

⌧ ⇥ z

⇢ofDek

Dek = min(D, 100 m)

w(�D) ⇡Z ⌘

�D

rH · u dz ⇡Z ⌘

�Dek

rH · uek dz

| {z }⌘wek(�D)

+

Z ⌘

�D

rH · ug dz

| {z }⌘wg(�D)

1

Heat  content  budgets  

Dynamics  of  Advec#ve  heat  transport  convergences  

Maximum  Climatological  mixed  layer  depth  (D)  

Variance  of  monthly  anomalies  (seasonal  cycle  removed)  of  terms  in  the  H  budget.    (a)  tendency  Ht,  (b)  advec=ve  convergence  Cadv,  (c)  air-­‐sea  heat  flux  Qnet  and  (d)  diffusive  convergence  Cdiff.  

Advec=ve  convergences  play  a  large  role  in  Ht  budget  in  areas  of  strong  currents/fronts,  such  as  along  the  Gulf  Stream  path.    

Variance  of  monthly  anomalies  of  components  of  advec=ve  convergence  Cadv:  a)  linear  Clin,  b)  es=mated  Cek+Cg,  c)  Ekman  Cek,  and  d)  geostrophic  Cg.  

•  Variance  of  Clin  and  Cek+Cg  similar  to  that  of  Cadv  in  most  regions.    

•  Both  Cek  and  Cg  are  largest  in  regions  of  strong  currents/fronts.    

•  Cek  also  plays  a  role  in  gyre  interiors.  

Comparison  of  observed  and  ECCO  v4    SST  variability    

The  first  two  empirical  orthogonal  func=ons  (EOFs)  of  monthly  (seasonal  cycle  removed)  North  Atlan=c  SST  anomalies  from  (a-­‐b)  mapped  Reynolds  et  al.  (2002)  data  and  (c-­‐d)  ECCO  v4,  which  respec=vely  explain  ~25%  and  ~15%  of  the  spa=ally  integrated  variance.  (e)  The  first  two  principal  component  (PC)  =me  series  and  (f)  respec=ve  power  spectra.    

Temperature  misfits  for  (leq)  “first-­‐guess”  solu=on  and  (right)  op=mized  ECCO  v4  solu=on  at  100  m  depth    for  all  in-­‐situ  data  (Argo,  CTDs,  XBTs,  SeaOs)  averaged  over  1992-­‐2010.  Misfits  are  calculated  as  the  sample  mean  for  each  grid  cell  of  Te  −  To,  where  To  are  observa=onal  profiles  and  Te    are  the  corresponding  profiles  from  the  model.    

Temperature  Misfits    Comparison  to  observa#ons  

Conclusions  •  We  u=lize  a  dynamically  consistent  ocean  state  es=mate  (ECCO)  to  quan=fy  the  upper-­‐ocean  

heat  budget  in  the  North  Atlan=c  on  monthly  to  interannual  =mescales.    

•  We  introduce  3  novel  techniques:    

•  Heat  content  is  integrated  over  the  maximum  climatological  mixed  layer  depth  (integral  donated  as  H).        

•  Advec=ve  heat  transports  are  separated  into  Ekman  and  geostrophic  parts,  a  technique  which  is  successful  away  from  boundary  regions.  

•  Air-­‐sea  heat  fluxes  and  Ekman  heat  transport  convergences  due  to  velocity  variability  are  combined  into  one  “local  forcing”  term.  

•  Over  most  regions,  variability  of  Ekman  heat  transport  convergences  is  dominated  by  variability  in  the  velocity  field.    

•  Over  broad  swaths  of  the  North  Atlan=c,  including  the  interiors  of  the  subtropical  and  subpolar  gyres,    >70%  of  the  variance  of  Ht  can  be  explained  by  local  air-­‐sea  heat  flux  +  Ekman  transport  variability.  

•  Geostrophic  convergences  play  a  role  along  Gulf  Stream  Path.  

•  North  Atlan=c  separated  into  regions  based  on  underlying  dynamics  and  budgets  of  H  analyzed  in  detail.    • Subtropical  gyre  

•  local  forcing  dominates  on  all  =mescales.  • Gulf  Stream  

•  local  forcing  dominates  for  periods  less  than  6  months;  geostrophic  convergences  increasingly  important  on  longer  =mescales.    • Geostrophic  convergences  are  an=correlated  with  air-­‐sea  heat  fluxes,  sugges=ng  H  variability  is  forced  by  geostrophic  convergences  and  damped  by  air-­‐sea  fluxes.  

• Subpolar  gyre:    •  local  forcing  dominates  for  periods  less  than    1  year  •   geostrophic  transports,  bolus  transports,  and  diffusion  play  a  role  on  longer  =mescales.  

Regionally  integrated  budgets  

(leq  panels)  coherence  magnitude  between  Ht  and  Qnet,  Cloc*,  Cloc,  and  Cloc+Cg.  (right  panels)  Time  series  for  temporally  integrated  budgets  for  (top)  the  subtropical  gyre,  (middle)  the  Gulf  Stream  region  and  (bonom)  the  subpolar  gyre.    

Martha  W.  Buckley  and  Rui  M.  Ponte  (Atmospheric  and  Environmental  Research)  and  Gaël  Forget  and  Patrick  Heimbach  (Massachusens  Ins=tute  of  Technology)  

Dek = min(D, 100 m)

ug =

1

f⇢oz⇥rp, uek =

⌧ ⇥ z

⇢ofDek

, Dek = min(D, 100 m)

w(�D) ⇡Z ⌘

�D

rH · u dz ⇡Z ⌘

�Dek

rH · uek dz

| {z }⌘w

ek

(�D)

+

Z ⌘

�D

rH · ug dz

| {z }⌘w

g

(�D)

Cadv = �⇢oCp

Z ⌘

�D

r · (uT ) dz| {z }

linear: Clin

�⇢oCp

Z ⌘

�D

r · (u0T 0+ u⇤T ) dz

| {z }bolus: C

bol

ug =

1

f⇢o

z⇥rp, uek =

⌧⇥z⇢o

fDek

, Dek = min(D, 100 m)

w(�D) ⇡R ⌘

�DrH · u dz ⇡

Z ⌘

�Dek

rH · uek dz

| {z }⌘w

ek

(�D)

+

Z ⌘

�D

rH · ug dz

| {z }⌘w

g

(�D)

Cek = ⇢oCp

R ⌘

�Dek

r · (uekT ) dz + ⇢oCp wek(�D) T (�D)

Cg = ⇢oCp

R ⌘

�Dr · (ugT ) dz + ⇢oCp wg(�D) T (�D)

ug =

1

f⇢o

z⇥rp, uek =

⌧⇥z⇢o

fDek

, Dek = min(D, 100 m)

w(�D) ⇡R ⌘

�DrH · u dz ⇡

Z ⌘

�Dek

rH · uek dz

| {z }⌘w

ek

(�D)

+

Z ⌘

�D

rH · ug dz

| {z }⌘w

g

(�D)

Cadv = �⇢oCp

Z ⌘

�D

r · (uT ) dz| {z }

linear: Clin

�⇢oCp

Z ⌘

�D

r · (u0T 0+ u⇤T ) dz

| {z }bolus: C

bol

Cek = ⇢oCp

R ⌘

�Dek

r · (uekT ) dz + ⇢oCp wek(�D) T (�D)

Cg = ⇢oCp

R ⌘

�Dr · (ugT ) dz + ⇢oCp wg(�D) T (�D)

F = 1� var(Cadv � Clin)

var(Cadv)

2

Low-­‐frequency  SST  and  upper-­‐ocean  heat  content  variability  in  the  North  Atlan=c  

•  ū,  etc.  are  monthly  means.  •  u’  etc.  are  devia=ons  from  monthly  means.  •  u*  is  the  eddy  induced  transport  velocity  parameterized  

by  the  Gent  and  McWilliams  (1990)  scheme.    •  uek  and  ug  are  the  Ekman  and  geostrophic  veloci=es.  •  wek  and  wg  are  calculated  from  uek  and  ug  according  to  

the  con=nuity  equa=on.    

uu

perature field and the velocity field:151

Cek

(uek, wek

, T ) = Cek

(uek, wek

, T ) + Cek

(uek0, w0

ek

, T )| {z }C

vek

+Cek

(uek, wek

, T 0)| {z }C

Tek

+Cek

(u0ek, w

0ek

, T 0)| {z }C

vTek

Cg

(ug, wg

, T ) = Cg

(ug, wg

, T ) + v Cg

(u0g, w

0g

, T )| {z }

C

vg

+Cg

(ug, wg

, T 0)| {z }C

Tg

+Cg

(u0g, w

0g

, T 0)| {z }

C

vTg

(4)

Figures 3d–f show variances of monthly anomalies of Cv

ek

, CT

ek

, and CvT

ek

normalized by152

the variance of Cek

. In most regions the variance of Cek

is almost solely due to Cv

ek

, which153

confirms that variability in Cek

is indeed primarily driven by local wind variability rather154

than changes in the temperature field, as hypothesized in BPFH. Exceptions include the155

tropics where CT

ek

plays a significant role and the Eighteen Degree Water formation region,156

the Mann Eddy region, and shallow boundary regions in the subpolar gyre where CvT

ek

plays157

a minor role. Cv

ek

and CT

ek

are essentially uncorrelated except a small region in the tropics158

(see Figure 4d).159

Figures 3g–i show variances of monthly anomalies of Cv

g

, CT

g

, and CvT

g

normalized by160

the variance of Cg

. Both Cv

g

and CT

g

play a dominant role in setting the variance of Cg

161

and are strongly anticorrelated (see Figure 4c). The fact that variability in Cv

g

and CT

g

are162

related is not surprising since geostrophic velocity anomalies are in thermal wind balance163

with temperature anomalies. The anticorrelation between Cv

g

and CT

g

can be explained by164

considering the the propagation of Rossby waves living in the presence of a eastward mean165

zonal flow u (see schematic in Figure 6). A wave ridge is associated with high sea surface166

height, a depressed thermocline, and a warmH anomaly. The anticyclonic circulation around167

the high brings cold water from the north to the east of the ridge (Cv

g

< 0) and warm water168

from the south to the west of the ridge (Cv

g

> 0), leading to the westward propagation of169

8

Variance  of  Ekman  heat  transport  convergences  due  to  velocity  variability  (Cekv)  ,  temperature  variability  (CekT),  and  their  covariability  (CekvT)  normalized  by  the  variance  of  Cek.    Buckley  et  al.  (submined  to  J.  Climate).  

Cekv  dominates  the  variability  of  Cek  except  in  the  tropics,  where  CekT  is  important  and  in  the  Labrador  Sea  where  CekVT  plays  a  role.  

Role  of  local  atmospheric  forcing  

Hypothesis:  Cekv+Qnet=  Cloc*  is  a  measure  of  impact  of  local  atmospheric  forcing  on  H  

Maps  showing  the  frac=on  of  the  variance  of  Ht  explained  by  a)  Clin+Qnet  b)  Cek  +Cg+Qnet  ,  c)  Qnet  ,  and  d)  Cloc*=Cekv+Qnet  .    

•  Variance  of  Ht  is  well  explained  by  Qnet+Clin  or  Qnet+Cek+Cg  in  most  regions.    

•  In  gyre  interiors,  70%  of  variance  of  Ht  explained  by  Cekv+Qnet,  whereas  Qnet  alone  only  explains  50%.      

•  Geostrophic  convergences  important  along  Gulf  Stream  path  

Temporally  integrate:  

Role  of  velocity  variability,  temperature  variability,  and  their  covariability  •  Overbars  are  averages  over  ENTIRE  19-­‐year  ECCO  es=mate  

•  Primes  are  devia=ons  from  these  averages  

Regional  Budgets  

F = 1� var(Clin � Cek � Cg)

var(Clin)

F (A,B) = 1� var(A� B)

var(A)

Cek = ⇢oCp

Z ⌘

�Dek

r · (uekT ) dz + ⇢oCp wek(�D) T (�D)

Cg = ⇢oCp

Z ⌘

�D

r · (ugT ) dz + ⇢oCp wg(�D) T (�D)

C local = Cadv +Qnet

Tek ⌘R t

0

Cek

⇢o

Cp

Vdt

Tg ⌘R t

0

Cg

⇢o

Cp

Vdt

Tloc ⌘ Tair�sea + Tek

Tbol ⌘R t

0

Cbol

⇢o

Cp

Vdt

T � To ⌘R t

0

Ht

⇢o

Cp

Vdt

TQ ⌘R t

0

Qnet

⇢o

Cp

Vdt

Tadv ⌘R t

0

Cadv

⇢o

Cp

Vdt

Tdiff ⌘R t

0

Cdiff

⇢o

Cp

Vdt

Hg = ⇢oCp

Z ⌘

�D

r · (ugT ) dz + ⇢oCp wg(�D) T (�D)

H = ⇢oCp

Z xe

xw

Z z

�H

vT dz dx

Hg = ⇢oCp

Z xe

xw

Z z

�H

vgT dz dx

3

References  1.   Buckley,  M.,  R.  Ponte,  G.  Forget,  and  P.  Heimbach  (2014).  Low-­‐frequency  SST  and  upper-­‐ocean  heat  content  variability  in  the  North  Atlan=c.  J.  Climate,  

27,  4996—5018.    2.   Buckley,  M.,  R.  Ponte,  G.  Forget,  and  P.  Heimbach  .    Determining  the  origins  of  advec=ve  heat  transport  variability  in  the  North  Atlan=c,  submined  to  J.  

Climate.  3.  Bjerknes,  J.,  1964.  Atlan=c  air-­‐sea  interac=on.  Advances  in  Geophysics,  10,  1-­‐82.  4.  Cayan,  D.  R.,  1992.  Latent  &  sensible  heat  flux  anomalies  over  the  northern  oceans:  Driving  sea  surface  temperature.  J.  Phys.  Oceanogr.,  22,  859-­‐-­‐881.    5.  Deser,  C.,  M.  A.  Alexander,  and  M.  S.  Timlin,  2003.  Understanding  the  persistence  of  sea  surface  temperature  anomalies  in  midla=tudes.  J.  Climate,  16,  

57–72.  6.  de  Coetlogon,  G.  and  C.  Frankignoul,  2003:  The  persistence  of  winter  sea  surface  temperature  in  the  North  Atlan=c.  J.  Climate,  16,  1364–1377    7.  Frankignoul,  C.,  P.  Muller,  and  E.  Zorita,  1997.  A  simple  model  of  the  decadal  response  of  the  ocean  to  stochas=c  wind  forcing.  J.  Phys.  Oceanogr.,  27,  

1533–1546    8.  Kerr,  R.,  2000:  A  North  Atlan=c  climate  pacemaker  for  the  centuries.  Science,  288,  1984–1986.    9.  Knight,  J.  R.,  R.  J.  Allan,  C.  K.  Folland,  M.  Vellinga,  and  M.  E.  Mann,  2005.  A  signature  of  persistent  natural  thermohaline  circula=on  cycles  in  observed  

climate.  Geophys.  Res.  Le=.,  32  (20).  10. Kushnir,  Y.,  1994.    Interdecadal  varia=ons  in  North  Atlan=c  sea  surface  temperatures  and  associated  atmospheric  condi=ons.    J.  Climate,  7,  141-­‐157.  11. Lozier,  M.S.,  2010.  Deconstruc=ng  the  conveyor  belt.    Science,  328,  1507-­‐1511.  12. Sturges,  W.,  B.G.  Hong,  and  A.J.  Clarke,  1998,  Decadal  forcing  of  the  North  Atlan=c  subtropical  gyre.  J.  Phys.  Oceanogr.,  28,  659-­‐668.  13. Ting,  Mingfang  and  Kushnir,  Yochanan  and  Seager,  Richard  and  Li,  Cuihua.  Forced  and  Internal  Twen=eth-­‐Century  SST  Trends  in  the  North  Atlan=c.  J.  

Climate,  22,  1469-­‐1481.  14. Trenberth,  K.E.  and  J.M.  Caron,  2001:  Es=mates  of  meridional  atmospheric  and  oceanic  heat  transports.    J.  Climate,  14,  3433-­‐3443.  15. Wunsch,  C.  and  P.  Heimbach,  2013:  Dynamically  and  kinema=cally  consistent  global  ocean  circula=on  and  ice  state  es=mates.  Ocean  circula=on  and  

climate:  observing  and  modeling  the  global  ocean,  G.  Siedler,  J.  Church,  J.  Gould,  and  S.  Gries,  Eds.,  Elsevier,  2d  ed.    16. Wunsch,  C.,  P.  Heimbach,  R.  M.  Ponte,  and  I.  Fukumori,  2009:  The  global  general  circula=on  of  the  ocean  es=mated  by  the  ECCO  consor=um.  

Oceanography,  22,  88–103.    

Coherences  of  Ht  and  fluxes   Time  series  of  budget  for  H  

F = 1� var(Clin � Cek � Cg)

var(Clin)

F (A,B) = 1� var(A� B)

var(A)

Cek = ⇢oCp

Z ⌘

�Dek

r · (uekT ) dz + ⇢oCp wek(�D) T (�D)

Cg = ⇢oCp

Z ⌘

�D

r · (ugT ) dz + ⇢oCp wg(�D) T (�D)

C local = Cadv +Qnet

Tek ⌘R t

0

Cek

⇢o

Cp

Vdt

Tg ⌘R t

0

Cg

⇢o

Cp

Vdt

Tbol ⌘R t

0

Cbol

⇢o

Cp

Vdt

Tloc ⌘ Tair�sea + Tek

Tloc ⌘ Tair�sea + T vek

T � To ⌘R t

0

Ht

⇢o

Cp

Vdt

TQ ⌘R t

0

Qnet

⇢o

Cp

Vdt

Tadv ⌘R t

0

Cadv

⇢o

Cp

Vdt

Tdiff ⌘R t

0

Cdiff

⇢o

Cp

Vdt

Hg = ⇢oCp

Z ⌘

�D

r · (ugT ) dz + ⇢oCp wg(�D) T (�D)

H = ⇢oCp

Z xe

xw

Z z

�H

vT dz dx

Hg = ⇢oCp

Z xe

xw

Z z

�H

vgT dz dx

3

F = 1� var(Clin � Cek � Cg)

var(Clin)

F (A,B) = 1� var(A� B)

var(A)

Cek = ⇢oCp

Z ⌘

�Dek

r · (uekT ) dz + ⇢oCp wek(�D) T (�D)

Cg = ⇢oCp

Z ⌘

�D

r · (ugT ) dz + ⇢oCp wg(�D) T (�D)

C local = Cadv +Qnet

Tek ⌘R t

0

Cek

⇢o

Cp

Vdt

Tg ⌘R t

0

Cg

⇢o

Cp

Vdt

Tbol ⌘R t

0

Cbol

⇢o

Cp

Vdt

Tloc ⌘ Tair�sea + Tek

Tloc ⌘ Tair�sea + T vek

T � To ⌘R t

0

Ht

⇢o

Cp

Vdt

TQ ⌘R t

0

Qnet

⇢o

Cp

Vdt

Tadv ⌘R t

0

Cadv

⇢o

Cp

Vdt

Tdiff ⌘R t

0

Cdiff

⇢o

Cp

Vdt

Hg = ⇢oCp

Z ⌘

�D

r · (ugT ) dz + ⇢oCp wg(�D) T (�D)

H = ⇢oCp

Z xe

xw

Z z

�H

vT dz dx

Hg = ⇢oCp

Z xe

xw

Z z

�H

vgT dz dx

3

10 5 2 1

0.4

0.6

0.8

1

Subtropical

yrs

−0.5

0

0.5

Subtropical

° C

0.4

0.6

0.8

1

Gulf Stream

1995 2000 2005 2010−2

−1

0

1

2

° C

Gulf Stream

0.1 1 100.4

0.6

0.8

1

cpy

Subpolar

QnetCloc

* Cloc Cloc+Cg

1995 2000 2005 2010

−1

−0.5

0

0.5

1

year

Subpolar

° C

T−To TQTek

v TlocTek

v +TekT Tg Tdiff+Tbol

1)   Subtropical  gyre  interior  • Cg,  Cdiff,  Cbol  negligible  =>  Cloc=Cek+Qnet  

• Cloc  dominates  on  all  =mescales  • Tloc  explains  92%  of  the  variance  of  H    

2)   Gulf  Stream  region  • Cloc  dominates  for  τ  <  6  mo  • Cg  role  for  τ >  6  mo.  • Tg  and  TQ  highly  an=correlated  •   H  anomalies  formed  by  Cg,  damped  by  Qnet  

3)  Subpolar  gyre  • Cloc  dominates  for  τ  <  1  yr.  • Cg,  Cdiff,  Cbol  play  a  role  for  τ >1  yr.