lopa [compatibility mode]

48
LAYER OF OF PROTECTION ANALYSIS

Upload: mharja

Post on 28-Nov-2015

153 views

Category:

Documents


8 download

DESCRIPTION

LOPA

TRANSCRIPT

Page 1: LOPA [Compatibility Mode]

LAYER OFOF

PROTECTION ANALYSIS

Page 2: LOPA [Compatibility Mode]

Sebuah Risiko…..

Protesha Sinergy – Copyright 2010

Page 3: LOPA [Compatibility Mode]

Analisis Risiko

Protesha Sinergy – Copyright 2010

Page 4: LOPA [Compatibility Mode]

System Description

Siklus Analisis RisikoSystem Description

Hazard Identification

Scenario Identification

Accident ConsequencesAccident Probability

Risk Determination

Risk and/or NO

Risk Determination

HazardAcceptance

YES

Modify Design

Protesha Sinergy – Copyright 2010

Build and/or Operate System

Page 5: LOPA [Compatibility Mode]

Aliran Analisis Risiko

Protesha Sinergy – Copyright 2010

Page 6: LOPA [Compatibility Mode]

Milestone Analisis Risiko

Based-ScenarioNon-Based Scenario

Protesha Sinergy – Copyright 2010

Page 7: LOPA [Compatibility Mode]

Refer to reactor system shown.The reaction is exothermic A

Hazard Scenario

Cooling Coils

Monomer

The reaction is exothermic. A cooling system is provided to remove the excess energy of reaction. In the event of

li f i i l h o o eFeed

Cooling Water to Sewer

cooling function is lost, the temperature of reactor would increase. This would lead to an increase in reaction rate

Cooling Water In

an increase in reaction rate leading to additional energy release.

The result could be a runaway The result could be a runaway reaction with pressures exceeding the bursting pressure of the reactor. The

i hi h TC Thermocouple temperature within the

reactor is measured and is used to control the cooling water flow rate by a valve.

Protesha Sinergy – Copyright 20107

water flow rate by a valve.

Page 8: LOPA [Compatibility Mode]

HAZOPS untuk HAZARD Scenario

Guide Word

Deviation Causes Consequences Action

NO No cooling Cooling water Temperature Install highNO No cooling Cooling water valve malfunction

Temperature increase in reactor

Install high temperature alarm (TAH)

REVERSE Reverse cooling flow

Failure of water source

Less cooling, possible runaway

Install check valvecooling flow water source

resulting in backward flow

possible runaway reaction

MORE More cooling fl

Control valve f il t

Too much cooling, t l

Instruct operators dflow failure, operator

fails to take action on alarm

reactor cool on procedures

AS WELL Reactor d i

More pressure in Off-spec product Check iAS product in

coilsreactor maintenance

procedures and schedules

OTHER Another Water source May be cooling If less cooling, TAH

Protesha Sinergy – Copyright 20108

THAN material besides cooling water

contaminated inefffective and effect on the reaction

will detect. If detected, isolate water source. Back up water source?

Page 9: LOPA [Compatibility Mode]

Analisis dalam LOPAAnalisis dalam LOPA

Protesha Sinergy – Copyright 2010

Page 10: LOPA [Compatibility Mode]

Definisi

A Si lifi d f f i k hi h A Simplified form of risk assessment which uses order of magnitude categories for initiating event frequency, consequence severity, and the likelihood q y, q y,of failure of independent protection layers (IPLs) toapproximate the risk of a scenario.

an analysis tool that typically builds on the information developed during a qualitative hazard gevaluation, such as a process hazard analysis (PHA)

REDUCE FREQUENCY TO ACHIEVE TOLERABLE RISK

Protesha Sinergy – Copyright 2010

Sumber : CCPS

TOLERABLE RISK

Page 11: LOPA [Compatibility Mode]

Risk of Scenario

Protesha Sinergy – Copyright 2010

Page 12: LOPA [Compatibility Mode]

Tahapan dalam LOPA

1. Pengidentifikasi dan pendefinisian skenario2. Penentuan skenario insiden. e e tua ske a o s de3. Identifikasi “Initiating Event”4 P id tifik i b b (I iti ti E t) 4. Pengidentifikasian penyebab (Initiating Event)

dan penentuan “Initiating Event Frequency”5 P id tifik i “P t ti L ” d 5. Pengidentifikasian “Protection Layer” dan

penentuan “Probability Failure on Demand (PFD)”(PFD)

6. Penentuan “Risk Frequency”

Protesha Sinergy – Copyright 2010

Page 13: LOPA [Compatibility Mode]

Konsep dasar LOPA

Intiating Event(Cause) Diagram alir skenario

Enabling Events & Condition

Independent Protection Layer

(IPL)Consequence

Conditional Modifier

1. Initiating Event : Penyebab tunggal pada suatu skenario yang berujung pada terjadinya konsekuensi yang tidak dii i kConditional Modifier

(Condiitional Influence) diinguinkan

2. Enabling Event & Condition : Penyebab lanjutan yang dipicu oleh I iti ti E tInitiating Event

3. Conditional Modifier : Kemungkinan dampak tambahan yang memperparah konsek ensi

Protesha Sinergy – Copyright 2010

konsekuensi (Probability of ignition, Probability of fatal injury, etc)

Page 14: LOPA [Compatibility Mode]

Konsep dasar LOPA

IPL1 IPL2 IPL3

S i

Initiating Event

Mitigated Risk = reduced frequency * same consequence

Scenario Consequence

PreventiveF

PreventiveF

PreventiveF

Success

Initiating Event SuccessSafe Outcome

FeatureFeature Feature

Initiating Event

Failure

Success

Success

Safe Outcome

Safe OutcomeDiagram alir cara

kerja IPLFailure

FailureConsequences exceeding criteria Key:

Thickness of arrow

Protesha Sinergy – Copyright 2010

ImpactEvent

frequencyrepresents frequency of the consequence if later IPLs are not successful

Page 15: LOPA [Compatibility Mode]

Analisis Konsekuensi

Guide Word

Deviation Causes Consequences Action

NO No cooling Cooling water Temperature Install highNO No cooling Cooling water valve malfunction

Temperature increase in reactor

Install high temperature alarm (TAH)

REVERSE Reverse cooling flow

Failure of water source

Less cooling, possible runaway

Install check valvecooling flow water source

resulting in backward flow

possible runaway reaction

MORE More cooling fl

Control valve f il t

Too much cooling, t l

Instruct operators dflow failure, operator

fails to take action on alarm

reactor cool on procedures

AS WELL Reactor d i

More pressure in Off-spec product Check iAS product in

coilsreactor maintenance

procedures and schedules

OTHER Another Water source May be cooling If less cooling, TAH

Protesha Sinergy – Copyright 201015

THAN material besides cooling water

contaminated inefffective and effect on the reaction

will detect. If detected, isolate water source. Back up water source?

Page 16: LOPA [Compatibility Mode]

Analisis Konsekuensi

1 C A h i h di f h h

Metode analisis konsekuensi yang sering di pakai dalam LOPA

1. Category Approach without direct reference to human harm

2. Qualitative estimates with human harm

3. Qualitative estimates with human harm with adjustments for post-release probabilities

4 Quantitative estimates with human harm4. Quantitative estimates with human harm

5. Overall cost resulting from potential incident (e.g., capital losses, production losses etc.)

Protesha Sinergy – Copyright 2010

Page 17: LOPA [Compatibility Mode]

Analisis Konsekuensi

1. Category Approach without direct reference to human harm Fokus pada upaya pencegahan daripada mitigasi Tidak menggunakan ukuran “human injury/fatality” Menggunakan matrix untuk masing-masing kategori

Protesha Sinergy – Copyright 2010

Page 18: LOPA [Compatibility Mode]

Analisis Konsekuensi2 Qualitative estimates with human harm2. Qualitative estimates with human harm

Fokus pada dampak yang diderita noleh manusia Hasil perhitungan risiko dapat dibandingkan secara langsung

dengan Risk Tolerance Criteriadengan Risk Tolerance Criteria

Protesha Sinergy – Copyright 2010

Page 19: LOPA [Compatibility Mode]

Analisis Konsekuensi

3. Qualitative estimates with human harm with adjustments for post-release probabilities

Serupa dengan metode no 2, namun penekanannya lebih pada setelah Serupa dengan metode no. 2, namun penekanannya lebih pada setelah penyebab terjadi (misal : release-nya bahan kimia)

Memperthitungkan : Probabilitas kejadian yang menjadi penyebab, probabilitas manusia yang ada disekitarnya, probabilitas terjadinya i j /f t litinjury/fatality

Protesha Sinergy – Copyright 2010

Page 20: LOPA [Compatibility Mode]

Analisis Initiating Event

Untuk menentukan suatu penyebab (Initiating Event) dalam skenario selalu didahului pertanyaan :

What is the likelihood of the undesired event in the scenario ?

Wh t i th i k i t d ith thi i ? What is the risk associatedwith this scenario ?

Are there sufficient risk mitigation measures ?

Protesha Sinergy – Copyright 2010

Page 21: LOPA [Compatibility Mode]

Analisis Initiating EventJenis jenis penyebab (Type of Initiating Event)Jenis-jenis penyebab (Type of Initiating Event)Jenis kejadian Contoh

Kegagalan bersifat mekanis Korosi, Vibrasi, Erosi, Fracture, PSV (Mechanical failures) stuck open, fabrication defect, brittle,

gas/seal/flange bocorKegagalan karena sistem pengendali (Control System Failures)

Sensor/Logic/Control Element Failures, Wiring failures, Software crashes,(Control System Failures) Wiring failures, Software crashes, Interface blocked

Kegagalan karena sistem penunjang (Utility Failures)

Power failures, Cooling System failure, Instrument air system failure

Kegagalan karena bencana alam (Natural external events)

Gempa bumi, Tornado, Banjir, Petir

Kegagalan karena kondisi eksternal Pabrik tetangga failure, ditabrak egaga a a e a o d s e ste a ab teta gga a u e, d tab akendaraan

Kegagalan karena ketidakmampuan kondisi manusia (Human Failures)

Operational Error, Maintenance Error, Response Error

Protesha Sinergy – Copyright 2010

Page 22: LOPA [Compatibility Mode]

Analisis Initiating EventSumber data untuk menentukan Initiating Event FrequencySumber data untuk menentukan Initiating Event Frequency diperoleh dari :

1. Data Industri (biasanya dari lembaga eksternal - contoh : )OREDA)

2. Pengalaman Perusahaan3 D t d (d t d i b t l t)3. Data vendor (data dari pembuat alat)

Protesha Sinergy – Copyright 2010

Page 23: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL)

IPL Si /Al /Ak ifi b j hIPL : Sistem/Alat/Aktifitas yang bertujuan mencegah (preventing) atau memindahkan (mitigate) penyebab (initiating event) agar tidak menjadi dampak yang tak ( g ) g j p y gdiharapkan (the undesired consequences)

Tipe-tipe yang tergolong IPL :p p y g g g• Process Design (Inherently Safer Design)• Basic Process Control System

C i i l Al d H I i• Critical Alarm and Human Intervention• Safety Instrumented System• Physical Protectiony• Post-release Protection• Plant Emergency Response

Protesha Sinergy – Copyright 2010

• Community Emergency Response

Page 24: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL)

COMMUNITY EMERGENCY RESPONSE

PLANT EMERGENCY RESPONSE

PREVENTION

MITIGATION

Mechanical Mitigation Systems Fire and Gas Systems

PREVENTION

Safety Critical Process Alarms

Safety Instrumented Systems

Basic Process Control Systems Non-safety Process alarms

Operator Supervision

Process Design

Protesha Sinergy – Copyright 2010

Page 25: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL)

Agar suatu sistem/alat/tindakan (safeguard) dapat dipertimbangkan sebagai IPL maka harus memenuhi :

• Efektif dalam mencegah agar tidak terjadi dampak ketika • Efektif dalam mencegah agar tidak terjadi dampak ketika berfungsi Dapat men-detect penyebab D d id i d k k dil k k Dapat men-decide tindakan yang akan dilakukan Dapat men-deflect dampak supaya tidak muncul

• Independent dari penyebab (Initiating Event) dan komponen p p y ( g ) pIPL lainnya untuk skenario yang sama

• Auditable dalam hal tingkat efektifannya dalam mencegah dampak, terutama dalam hal PFDp ,

Apabila seluruh IPL dipengaruhi oleh Common-Cause

Protesha Sinergy – Copyright 2010

p p gScenario, maka seluruh IPL tersebut dianggap IPL tunggal

Page 26: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL)

P D iProcess Design

Umumnya ada 2 hal yang terkait dalam Inherently Safer Design dalam IPL Process Designdalam IPL-Process Design

• Eliminasi dengan menggunakan metode Inherently Safer Designg

• Memberikan angka non-zero PFD pada langkah Inherently safer Design yang lain

Nilai PFD Inherently (CCPS,2001)

Protesha Sinergy – Copyright 2010

Page 27: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL)

BPCS adalah sistem yang memonitor, mengendalikan dan mempertahankan proses dalam rentang operasional yang amany g

Komponen-komponen sederhana dari Loop BPCSKomponen komponen sederhana dari Loop BPCS

BPCS memiliki 3 fungsi safety terkait dengan IPL

1. Continuous Control Actions - mempertahankan process dalam1. Continuous Control Actions mempertahankan process dalam rentang operasional yang aman (level controller)

2. Actions Alarm - Adanya Logic Solver/Alarm trips : mempertahankan process dalam rentang operasional normal dan alarm untuk operatorprocess dalam rentang operasional normal dan alarm untuk operator

3. Return process to stable state - Adanya Logic Solver/ Control relay : secara otomatis mengembalikan proses kepada keadaan yang aman

Protesha Sinergy – Copyright 2010

Page 28: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL)BPCSBPCSFailure Rate Data (CCPS, 2001)

PFD dalam BPCS dipengaruhi oleh :p g

• Adequacy of security and access procedures - terkait dengan manusia

• Level of redundancy - terkait dengan back-up system

• Historic failure rate terkait dengan latar belakang terjadin a • Historic failure rate - terkait dengan latar belakang terjadinya kerusakan/kegagalan

• Effective test rate - terkait dengan test

• Other factors Other factors to be considered include design manufacture

Protesha Sinergy – Copyright 2010

• Other factors - Other factors to be considered include design, manufacture, installation and maintenance.

Page 29: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL)

C i i l Al d H I i (CAHI)Critical Alarm and Human Intervention (CAHI)

PFD dalam CAHI dipengaruhi oleh : da a C d pe ga u o e :

• Detection - Saat alarm berbunyi

• Decision - Saat response

A ti S t ti d k dil k k

Protesha Sinergy – Copyright 2010

• Action - Saat tindakan dilakukan

Page 30: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL)

SIS adalah Safeguard/IPL yang terdiri atas sensor, logic solver, dan final element

Fungsinya adalah “hanya” membawa kondisi operasi ke “Safe State”Fungsinya adalah hanya membawa kondisi operasi ke Safe State

Dikenal dengan berbagai nama : Safety Interlock System, Emergency Shut-down System, dll

PFD dalam SIS dikenal pula sebagai RRF (Risk Reduction Factor) dan secara International Standard (IEC 61511) dikategorikan dalam Safety Integrity Level (SIL)

Protesha Sinergy – Copyright 2010

Page 31: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL)

PFD dalam SIL

Protesha Sinergy – Copyright 2010

Page 32: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL) 

Physical Protection Relief Valve R Di Rupture Disc

PFD untuk Physical Protection

Protesha Sinergy – Copyright 2010

Page 33: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL) 

Physical Protection

Faktor yang mempengaruhi nilai PFD Sizing alat Design I l i Instalasi Kualitas Inspeksi Kualitas Perawatan Kualitas Perawatan Kebersihan cairan proses

Protesha Sinergy – Copyright 2010

Page 34: LOPA [Compatibility Mode]

Analisis Independent Protection Layer (IPL)

Post-Release Protection Blast Wall Dik Dike

PFD untuk Post-Release Protection

Protesha Sinergy – Copyright 2010

Page 35: LOPA [Compatibility Mode]

Studi Kasus - 1

Protesha Sinergy – Copyright 2010

Page 36: LOPA [Compatibility Mode]

Format tabel LOPA

4 5 6 7 8 1 2 3

Protection Layers 9 10

# Initial Event

Initiating cause

Cause likelihood

Process design

BPCS Alarm SIS Additional mitigation

Mitigated event

Notes Event Description

cause likelihood design mitigation(safety valves, dykes, restricted access, etc.)

event likelihood

Likelihood = X Probability of failure on demand = Yi

Mitigated likelihood (X)(Y1)(Y 2) (Yn)Mitigated likelihood = (X)(Y1)(Y 2) (Yn)

Protesha Sinergy – Copyright 2010

Page 37: LOPA [Compatibility Mode]

Kasus 1: Flash drum for “rough” component separation for this proposed design.

VaporproductTC-6 PC-1Split range

PAH

cascade

Feed

product

T1 T5

TC-6 PC-1p g

Feed

MethaneEthane (LK)PropaneButane

FC-1

T1 T2

T3 LC-1

LALLAH

ButanePentane

Li idF2 F3

Liquidproduct

Processfluid

SteamAC-1

L. Key

Protesha Sinergy – Copyright 2010

Page 38: LOPA [Compatibility Mode]

Kasus 1: Flash drum for “rough” component separation. Complete the table with your best estimates of values.

4 5 6 7 8 1 2 3

Protection Layers 9 10

# Initial E t

Initiating Cause lik lih d

Process d i

BPCS Alarm SIS Additional iti ti

Mitigated t

Notes Event Description

cause likelihood design mitigation(safety valves, dykes, restricted access, etc.)

event likelihood

1 High Connection Pressure sensor

gpressure (tap) for

pressure sensor P1 becomes plugged

does not measure the drum pressure

Protesha Sinergy – Copyright 2010

Assume that the target mitigated likelihood = 10-5 event/year

Page 39: LOPA [Compatibility Mode]

Kasus 1: Some observations about the design.

• The drum pressure controller uses only one sensor; when it fails, the pressure is not controlled.

• The same sensor is used for control and alarming. Therefore, the alarm provides no additional protection f thi i iti tifor this initiating cause.

• No safety valve is provided (which is a serious design flaw)flaw).

• No SIS is provided for the system. (No SIS would be provided for a typical design.)provided for a typical design.)

Protesha Sinergy – Copyright 2010

Page 40: LOPA [Compatibility Mode]

Kasus 1: Solution using initial design and typical published values.

4 5 6 7 81 2 3 9 104 5 6 7 8 1 2 3Protection Layers

9 10

# Initial Event Description

Initiating cause

Cause likelihood

Process design

BPCS Alarm SIS Additional mitigation (safety valves, dykes

Mitigated event likelihood

Notes

dykes, restricted access, etc.)

1

High pressure

Connection (tap) for pressure

0.10 0.10 1. 1.0 1.0 1.0 .01 Pressure sensor does not measure the

sensor P1 becomes plugged

drum pressure

Much too high! We must make improvements to the design.

Protesha Sinergy – Copyright 2010

Page 41: LOPA [Compatibility Mode]

Kasus 1: Solution using enhanced design and typical published values.

4 5 6 7 8 1 2 3 Protection Layers

9 10

# Initial Event Description

Initiating cause

Cause likelihood

Process design

BPCS Alarm SIS Additional mitigation (safety valves,

Mitigated event likelihood

Notes

dykes, restricted access, etc.)

1

High pressure

Connection (tap) for pressure

0.10 0.10 1.0 0.10 1.0 PRV 0.01

.00001 Pressure sensor does not measure the

pressure sensor P1 becomes plugged

measure the drum pressure The PRV must exhaust to a separation (k k t)

(knock-out) drum and fuel or flare system.

Enhanced design includes separate P sensor for alarm and a pressure relief valve.

The enhanced design achieves the target mitigated likelihood.

Sketch on process drawing. Verify table entries.

Protesha Sinergy – Copyright 2010

Page 42: LOPA [Compatibility Mode]

Studi Kasus - 2

Protesha Sinergy – Copyright 2010

Page 43: LOPA [Compatibility Mode]

ScenarioThe two-phase separator V 180 is under level control (Level control LC 213). In case of high high liquid level, the level switch LSHH 214 would close emergency shutdown valve ESDV 172 and shutdown compressor C 130

Scenario

Protesha Sinergy – Copyright 2010

emergency shutdown valve ESDV 172 and shutdown compressor C 130 downstream of V 180. This is to prevent carrying liquid over to the compressor leading to compressor damage.

Page 44: LOPA [Compatibility Mode]

Hasil PHA (HAZOPs)

Protesha Sinergy – Copyright 2010

Page 45: LOPA [Compatibility Mode]

Analisis LOPA

Protesha Sinergy – Copyright 2010

Page 46: LOPA [Compatibility Mode]

Analisis LOPA

Protesha Sinergy – Copyright 2010

Page 47: LOPA [Compatibility Mode]

Evaluasi Risiko

Protesha Sinergy – Copyright 2010

Page 48: LOPA [Compatibility Mode]

Terima Kasih

Protesha Sinergy – Copyright 2010