lecture19 clh class - raman spectroscopy

35
Raman Spectroscopy 1923 – Inelastic light scattering is predicted by A. Smekel 1928 – Landsberg and Mandelstam see unexpected frequency shifts in scattering from quartz 1928 – C.V. Raman and K.S. Krishnan see “feeble fluorescence” from neat solvents First Raman Spectra: http://www.springerlink.com/content/u4d7aexmjm8pa1fv/fulltext.pdf Filtered Hg arc lamp spectrum: C 6 H 6 Scattering

Upload: fernandaroyo

Post on 09-Dec-2015

261 views

Category:

Documents


1 download

DESCRIPTION

Raman Spectroscopy.

TRANSCRIPT

Page 1: Lecture19 Clh Class - Raman Spectroscopy

Raman Spectroscopy 1923 – Inelastic light scattering is predicted by A. Smekel 1928 – Landsberg and Mandelstam see unexpected frequency shifts in scattering from quartz 1928 – C.V. Raman and K.S. Krishnan see “feeble fluorescence” from neat solvents

First Raman Spectra:

http://www.springerlink.com/content/u4d7aexmjm8pa1fv/fulltext.pdf

Filtered Hg arc lamp spectrum:

C6H6 Scattering

Page 2: Lecture19 Clh Class - Raman Spectroscopy

Raman Spectroscopy 1923 – Inelastic light scattering is predicted by A. Smekel 1928 – Landsberg and Mandelstam see unexpected frequency shifts in scattering from quartz 1928 – C.V. Raman and K.S. Krishnan see “feeble fluorescence” from neat solvents 1930 – C.V. Raman wins Nobel Prize in Physics 1961 – Invention of laser makes Raman experiments reasonable 1977 – Surface-enhanced Raman scattering (SERS) is discovered 1997 – Single molecule SERS is possible

Page 3: Lecture19 Clh Class - Raman Spectroscopy

Eugene Hecht, Optics, Addison-Wesley, Reading, MA, 1998.

Rayleigh Scattering

•Elastic (λ does not change)

•Random direction of emission

•Little energy loss 4 2 2

04 2

8 ( ') (1 cos )( )scEE

dθπ α θ

λ+

=

Page 4: Lecture19 Clh Class - Raman Spectroscopy

Raman Spectroscopy 1 in 107 photons is scattered inelastically

Infrared (absorption)

Raman (scattering)

v” = 0

v” = 1

virtual state

Exci

tatio

n

Scat

tere

d

Rotational Raman Vibrational Raman Electronic Raman

Page 5: Lecture19 Clh Class - Raman Spectroscopy

Classical Theory of Raman Effect

Colthup et al., Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, Boston: 1990

µind = αE

polarizability

Page 6: Lecture19 Clh Class - Raman Spectroscopy

Kellner et al., Analytical Chemistry

max 0

max max 0

max max 0

( ) cos 21 cos 2 ( )21 cos 2 ( )2

equilz zz

zzvib

zzvib

t E td r E tdr

d r E tdr

µ α πνα π ν ν

α π ν ν

= +

∆ + +

∆ −

When light interacts with a vibrating diatomic molecule, the induced dipole moment has 3 components:

Photon-Molecule Interactions

Rayleigh scatter

Anti-Stokes Raman scatter

Stokes Raman scatter

Page 7: Lecture19 Clh Class - Raman Spectroscopy
Page 8: Lecture19 Clh Class - Raman Spectroscopy

www.andor.com

max 0

max max 0

max max 0

( ) cos 21 cos 2 ( )21 cos 2 ( )2

equilz zz

zzvib

zzvib

t E td r E tdr

d r E tdr

µ α πνα π ν ν

α π ν ν

= +

∆ + +

∆ −

Selection rule: ∆v = 1 Overtones: ∆v = ±2, ±3, …

Raman Scattering

Must also have a change in polarizability

Classical Description does not suggest any difference between Stokes and Anti-Stokes intensities

1

0

vibhkTN e

N

ν−

=

Page 9: Lecture19 Clh Class - Raman Spectroscopy

Calculate the ratio of Anti-Stokes to Stokes scattering intensity when T = 300 K and the vibrational frequency is 1440 cm-1.

Are you getting the concept?

h = 6.63 x 10-34 Js k = 1.38 x 10-23 J/K

Page 10: Lecture19 Clh Class - Raman Spectroscopy

Presentation of Raman Spectra

λex = 1064 nm = 9399 cm-1

Breathing mode: 9399 – 992 = 8407 cm-1

Stretching mode: 9399 – 3063 = 6336 cm-1

Page 11: Lecture19 Clh Class - Raman Spectroscopy

Mutual Exclusion Principle

For molecules with a center of symmetry, no IR active transitions are Raman active and vice versa ⇒Symmetric molecules

IR-active vibrations are not Raman-active.

Raman-active vibrations are not IR-active.

O = C = O O = C = O Raman active Raman inactive IR inactive IR active

Page 12: Lecture19 Clh Class - Raman Spectroscopy

Raman vs IR Spectra

Ingle and Crouch, Spectrochemical Analysis

Page 13: Lecture19 Clh Class - Raman Spectroscopy

Raman vs Infrared Spectra

McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000

Page 14: Lecture19 Clh Class - Raman Spectroscopy

Raman vs Infrared Spectra

McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000

Page 15: Lecture19 Clh Class - Raman Spectroscopy

Raman Intensities

σ(νex) – Raman scattering cross-section (cm2) νex – excitation frequency E0 – incident beam irradiance ni – number density in state i exponential – Boltzmann factor for state i

40 α ( )

iEkT

R ex ex iE n eσ ν ν−

Φ

Radiant power of Raman scattering:

σ(νex) - target area presented by a molecule for scattering

Page 16: Lecture19 Clh Class - Raman Spectroscopy

Raman Scattering Cross-Section

σ(νex) - target area presented by a molecule for scattering

scattered flux/unit solid angleindident flux/unit solid angle

dd

ddd

σ

σσ

= ΩΩ∫

Process Cross-Section of σ (cm2) absorption UV 10-18

absorption IR 10-21 emission Fluorescence 10-19 scattering Rayleigh 10-26 scattering Raman 10-29 scattering RR 10-24 scattering SERRS 10-15 scattering SERS 10-16 Table adapted from Aroca, Surface Enhanced

Vibrational Spectroscopy, 2006

Page 17: Lecture19 Clh Class - Raman Spectroscopy

Raman Scattering Cross-Section

λex (nm) σ ( x 10-28 cm2) 532.0 0.66

435.7 1.66 368.9 3.76 355.0 4.36 319.9 7.56 282.4 13.06 Table adapted from Aroca, Surface Enhanced Vibrational Spectroscopy, 2006

CHCl3: C-Cl stretch at 666 cm-1

Page 18: Lecture19 Clh Class - Raman Spectroscopy

Advantages of Raman over IR • Water can be used as solvent.

•Very suitable for biological samples in native state (because water can be used as solvent).

• Although Raman spectra result from molecular vibrations at IR frequencies, spectrum is obtained using visible light or NIR radiation.

=>Glass and quartz lenses, cells, and optical fibers can be used. Standard detectors can be used.

• Few intense overtones and combination bands => few spectral overlaps.

• Totally symmetric vibrations are observable.

•Raman intensities α to concentration and laser power.

Page 19: Lecture19 Clh Class - Raman Spectroscopy

Advantages of IR over Raman

• Simpler and cheaper instrumentation.

• Less instrument dependent than Raman spectra because IR spectra are based on measurement of intensity ratio.

• Lower detection limit than (normal) Raman.

• Background fluorescence can overwhelm Raman.

• More suitable for vibrations of bonds with very low polarizability (e.g. C–F).

Page 20: Lecture19 Clh Class - Raman Spectroscopy

Raman and Fraud

Lewis, I. R.; Edwards, H. G. M., Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line, Marcel Dekker, New York: 2001.0

Page 21: Lecture19 Clh Class - Raman Spectroscopy

Ivory or Plastic?

Lewis, I. R.; Edwards, H. G. M., Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line, Marcel Dekker, New York: 2001.

Page 22: Lecture19 Clh Class - Raman Spectroscopy

The Vinland Map: Genuine or Forged?

Brown, K. L.; Clark, J. H. R., Anal. Chem. 2002, 74,3658.

Page 23: Lecture19 Clh Class - Raman Spectroscopy

The Vinland Map: Forged!

Brown, K. L.; Clark, J. H. R., Anal. Chem. 2002, 74,3658.

Page 24: Lecture19 Clh Class - Raman Spectroscopy

Resonance Raman

Raman signal intensities can be enhanced by resonance by factor of up to 105 => Detection limits 10-6 to 10-8 M.

Typically requires tunable laser as light source.

Kellner et al., Analytical Chemistry

Page 25: Lecture19 Clh Class - Raman Spectroscopy

Resonance Raman Spectra

Ingle and Crouch, Spectrochemical Analysis

Page 26: Lecture19 Clh Class - Raman Spectroscopy

Resonance Raman Spectra

http://www.photobiology.com/v1/udaltsov/udaltsov.htm

λex = 441.6 nm

λex = 514.5 nm

Page 27: Lecture19 Clh Class - Raman Spectroscopy

Raman Instrumentation

Tunable Laser System Versatile Detection System

Page 28: Lecture19 Clh Class - Raman Spectroscopy

Dispersive and FT-Raman

Spectrometry

McCreery, R. L., Raman Spectroscopy for Chemical

Analysis, 3rd ed., Wiley, New York: 2000

Page 29: Lecture19 Clh Class - Raman Spectroscopy

Spectra from Background Subtraction

McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000

Page 30: Lecture19 Clh Class - Raman Spectroscopy

Rotating Raman Cells

Rubinson, K. A., Rubinson, J. F., Contemporary Instrumental Analysis, Prentice Hall, New Jersey: 2000

Page 31: Lecture19 Clh Class - Raman Spectroscopy

Raman Spectroscopy: PMT vs CCD

McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000

Page 32: Lecture19 Clh Class - Raman Spectroscopy

Fluorescence Background in Raman Scattering

McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000

Page 33: Lecture19 Clh Class - Raman Spectroscopy

Confocal Microscopy Optics

McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000

Page 34: Lecture19 Clh Class - Raman Spectroscopy

Confocal Aperture and Field Depth

McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000 and http://www.olympusfluoview.com/theory/confocalintro.html

Page 35: Lecture19 Clh Class - Raman Spectroscopy

Confocal Aperture and Field Depth

McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000