sem-tem lecture19 clh class

Upload: madhur-mayank

Post on 04-Apr-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    1/35

    Raman Spectroscopy

    1923Inelastic light scattering is predicted by A. Smekel

    1928Landsberg and Mandelstam see unexpected

    frequency shifts in scattering from quartz

    1928C.V. Raman and K.S. Krishnan see feeble

    fluorescence from neat solvents

    First Raman Spectra:

    http://www.springerlink.com/content/u4d7aexmjm8pa1fv/fulltext.pdf

    Filtered Hg arc

    lamp spectrum:

    C6H6Scattering

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    2/35

    Raman Spectroscopy

    1923Inelastic light scattering is predicted by A. Smekel

    1928Landsberg and Mandelstam see unexpected

    frequency shifts in scattering from quartz

    1928C.V. Raman and K.S. Krishnan see feeble

    fluorescence from neat solvents

    1930 C.V. Raman wins Nobel Prize in Physics1961 Invention of laser makes Raman experiments

    reasonable

    1977 Surface-enhanced Raman scattering (SERS) is

    discovered1997 Single molecule SERS is possible

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    3/35

    Eugene Hecht, Optics, Addison-Wesley, Reading, MA, 1998.

    Rayleigh Scattering

    Elastic ( does not change)

    Random direction of emission

    Little energy loss

    4 2 2

    04 2

    8 ( ') (1 cos )( )sc

    EE d

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    4/35

    Raman Spectroscopy1 in 107 photons is scattered inelastically

    Infrared(absorption)

    Raman(scattering)

    v = 0

    v = 1

    virtual

    state

    Excitatio

    n

    Sc

    attered

    Rotational Raman

    Vibrational Raman

    Electronic Raman

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    5/35

    Classical Theory of Raman Effect

    Colthup et al., Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, Boston: 1990

    mind = E

    polarizability

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    6/35

    Kellner et al.,Analytical Chemistry

    max 0

    max max 0

    max max 0

    ( ) cos 2

    1cos 2 ( )

    2

    1cos 2 ( )

    2

    equil

    z zz

    zzvib

    zzvib

    t E t

    dr E t

    dr

    dr E t

    dr

    m

    When light interacts with a vibrating diatomic molecule, the induceddipole moment has 3 components:

    Photon-Molecule Interactions

    Rayleigh scatter

    Anti-Stokes Raman scatter

    Stokes Raman scatter

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    7/35

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    8/35www.andor.com

    max 0

    max max 0

    max max 0

    ( ) cos 2

    1 cos 2 ( )2

    1cos 2 ( )

    2

    equil

    z zz

    zzvib

    zzvib

    t E t

    d r E tdr

    dr E t

    dr

    m

    Selection rule: v = 1

    Overtones: v = 2, 3,

    Raman Scattering

    Must also have a change in polarizability

    Classical Description does not suggest any difference

    between Stokes and Anti-Stokes intensities

    1

    0

    vibh

    kTN eN

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    9/35

    Calculate the ratio of Anti-Stokes to Stokes scattering

    intensity when T = 300 K and the vibrational frequency

    is 1440 cm-1.

    Are you getting the concept?

    h = 6.63 x 10-34 Js

    k = 1.38 x 10-23 J/K

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    10/35

    Presentation of Raman Spectra

    ex = 1064 nm = 9399 cm-1

    Breathing mode:

    9399

    992 = 8407 cm

    -1

    Stretching mode:

    9399 3063 = 6336 cm-1

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    11/35

    Mutual Exclusion Principle

    For molecules with a center of symmetry, no IR activetransitions are Raman active and vice versa

    Symmetric molecules

    IR-active vibrations are not Raman-active.

    Raman-active vibrations are not IR-active.

    O = C = O O = C = O

    Raman active Raman inactive

    IR inactive IR active

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    12/35

    Raman vs IR Spectra

    Ingle and Crouch, Spectrochemical Analysis

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    13/35

    Raman vs Infrared Spectra

    McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    14/35

    Raman vs Infrared Spectra

    McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    15/35

    Raman Intensities

    s(ex) Raman scattering cross-section (cm2

    )ex excitation frequency

    E0 incident beam irradiance

    ni number density in state i

    exponential Boltzmann factor for state i

    4

    0 ( )iE

    kTR ex ex iE n es

    Radiant power of Raman scattering:

    s(ex) - target area presented by a molecule for

    scattering

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    16/35

    Raman Scattering Cross-Section

    s(ex) - target area

    presented by a

    molecule for scattering

    scattered flux/unit solid angle

    indident flux/unit solid angle

    d

    dd

    dd

    s

    ss

    Process Cross-Section of s (cm2

    )absorption UV 10-18

    absorption IR 10-21

    emission Fluorescence 10-19

    scattering Rayleigh 10-26

    scattering Raman 10-29

    scattering RR 10-24

    scattering SERRS 10-15

    scattering SERS 10-16 Table adapted from Aroca, Surface EnhancedVibrational Spectroscopy, 2006

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    17/35

    Raman Scattering Cross-Section

    ex (nm) s ( x 10-28

    cm2

    )532.0 0.66

    435.7 1.66

    368.9 3.76

    355.0 4.36

    319.9 7.56

    282.4 13.06

    Table adapted from Aroca, Surface Enhanced

    Vibrational Spectroscopy, 2006

    CHCl3:

    C-Cl stretch at 666 cm-1

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    18/35

    Advantages of Raman over IR

    Water can be used as solvent.

    Very suitable for biological samples in native state(because water can be used as solvent).

    Although Raman spectra result from molecular

    vibrations at IR frequencies, spectrum is obtained usingvisible light or NIR radiation.

    =>Glass and quartz lenses, cells, and optical fibers

    can be used. Standard detectors can be used. Few intense overtones and combination bands => few

    spectral overlaps.

    Totally symmetric vibrations are observable.

    Raman intensities to concentration and laser power.

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    19/35

    Advantages of IR over Raman

    Simpler and cheaper instrumentation.

    Less instrument dependent than Raman spectra

    because IR spectra are based on measurement of

    intensity ratio.

    Lower detection limit than (normal) Raman.

    Background fluorescence can overwhelm Raman.

    More suitable for vibrations of bonds with very low

    polarizability (e.g. CF).

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    20/35

    Raman and Fraud

    Lewis, I. R.; Edwards, H. G. M., Handbook of Raman Spectroscopy: From the Research Laboratory to

    the Process Line, Marcel Dekker, New York: 2001.0

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    21/35

    Ivory or Plastic?

    Lewis, I. R.; Edwards, H. G. M., Handbook of Raman Spectroscopy: From the Research

    Laboratory to the Process Line, Marcel Dekker, New York: 2001.

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    22/35

    The Vinland Map: Genuine or Forged?

    Brown, K. L.; Clark, J. H. R.,Anal. Chem. 2002, 74,3658.

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    23/35

    The Vinland Map: Forged!

    Brown, K. L.; Clark, J. H. R.,Anal. Chem. 2002, 74,3658.

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    24/35

    Resonance Raman

    Raman signal intensities can be enhanced by resonanceby factor of up to 105 => Detection limits 10-6 to 10-8 M.

    Typically requires tunable laser as light source.

    Kellner et al.,Analytical Chemistry

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    25/35

    Resonance Raman Spectra

    Ingle and Crouch, Spectrochemical Analysis

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    26/35

    Resonance Raman Spectra

    http://www.photobiology.com/v1/udaltsov/udaltsov.htm

    ex = 441.6 nm

    ex = 514.5 nm

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    27/35

    Raman Instrumentation

    Tunable Laser System Versatile Detection System

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    28/35

    Dispersive and

    FT-Raman

    Spectrometry

    McCreery, R. L., Raman

    Spectroscopy for Chemical

    Analysis, 3rd ed., Wiley, New

    York: 2000

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    29/35

    Spectra from Background Subtraction

    McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York:

    2000

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    30/35

    Rotating Raman Cells

    Rubinson, K. A., Rubinson, J. F., Contemporary Instrumental Analysis, Prentice Hall, New

    Jersey: 2000

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    31/35

    Raman Spectroscopy: PMT vs CCD

    McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York:

    2000

    Fl B k d i R

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    32/35

    Fluorescence Background in Raman

    Scattering

    McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York:

    2000

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    33/35

    Confocal Microscopy Optics

    McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    34/35

    Confocal Aperture and Field Depth

    McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York:

    2000 and http://www.olympusfluoview.com/theory/confocalintro.html

  • 7/29/2019 SEM-TEM Lecture19 Clh Class

    35/35

    Confocal Aperture and Field Depth

    McCreery, R. L., Raman Spectroscopy for Chemical Analysis, 3rd ed., Wiley, New York: 2000