lecture power electronics interactions between electrical machine and power electronics technische...

65
Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Prof. Dr.-Ing. Ralph Kennel [email protected]

Upload: marjory-blake

Post on 23-Dec-2015

217 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

LecturePower Electronics

InteractionsBetween Electrical Machine and Power

Electronics

Technische Universität MünchenLehrstuhl für Elektrische Antriebssysteme

und LeistungselektronikProf. Dr.-Ing. Ralph Kennel

[email protected]

Page 2: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Additional Losses

Page 3: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Additional LossesCurrent Harmonics

Quelle : Prof. A. Binder, Technische Universität Darmstadt

with increasingswitching frequency

the current harmonicscaused by the inverter

decrease

Page 4: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Iron Losses under Inverter Supply

Quelle : PTB

f / Hz (fundamental oscillation)

Page 5: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Additional LossesInfluence of Switching Frequency

Quelle : Prof. A. Binder, Technische Universität Darmstadt

mains supply inverter supply

2 pole squirrel cage induction machine 3 kW, 380 V, Y connectionrated frequency 50 Hz, slip 4.5 %, torque 10 Nmvoltage source inverter 8.3 kVA, 400 V

at frequency 9.6 kHz motor efficiency is high ( less temperature rise)the overall efficiency, however, is the same as at Frequency 4.8 kHzAt frequency 19.2 kHz motor current harmonics are low, but switching losses increase

Page 6: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

EMC

Page 7: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Electro Magnetic Compatibility

E

M

C

even

more

confusion

Page 8: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Cabinet Designwith Modern Servo Drives

signalelectronics

powerelectronics

Page 9: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Shielding and Grounding

Page 10: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

following these requirements and advicethere is „conductive EMI“ only

when using power electronics inverters(… usually no „radiation EMI“)

Shielding and Grounding

Page 11: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Reactive Power

Page 12: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Reactive Power

+

-

+

-

+

-

Motor(e. g. induction machine)

U0

induction machines needreactive power

for magnetization

… in this cablereactive power

can be measured !

this is a DC link there is

no reactive powerby definition

… in this cable reactive power

cannot be measured !

Page 13: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Reactive Power

+

-

+

-

+

-

Motor(e. g. induction machine)

U0

induction machines needreactive power

for magnetizationthis is a DC link there is

no reactive powerby definition

… in this cable reactive power

cannot be measured !

… where doesreactive powercome from ???

… as the sumof reactive power

in all 3 phases is zero („0“) !

Page 14: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Reactive Power

+

-

+

-

+

-

Motor(e. g. induction machine)

U0

induction machines needreactive power

for magnetization… where does

reactive powercome from ???

… it is no problem for the inverter to provide it

… as the sumof reactive power

in all 3 phases is zero („0“) !

Page 15: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Reactive Power

+

-

+

-

+

-

Motor(e. g. induction machine)

U0

… it is no problem for the inverter to provide it

… as the sumof reactive power

in all 3 phases is zero („0“) !

… with regard to reactive power the inverter is like a marshalling yard (switching station) for trains !

Page 16: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Reactive Power

+

-

+

-

+

-

Motor(e. g. induction machine)

U0

… with regard to reactive power the inverter is like a marshalling yard (switching station) for trains !

… therefore inverters can be used easily for compensating reactive power in grids !

… especially in regenerative energy applicationslike wind power farms or solar power arrays !

Page 17: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Reactive Power

voltage

current

reactivepower

t

t

t

Page 18: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Reactive Power

voltage

current

reactivepower

t

t

t

Active Power

activepower

Page 19: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

voltage

current

t

t

t

Active Power

activepower

…, of course, this can be split mathematicallyinto a constant term (which is active power)and a fluctuating term(which can be considered reactive power)

Page 20: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

t

Active Power

activepower

…, of course, this can be split mathematicallyinto a constant term (which is active power)and a fluctuating term(which can be considered reactive power)

… this is, however,a mathematical operation only

… because there is no momentwith power flowing in backward direction

… in fact this is pulsating active power only !!!

… from physical perspectivethere is not really reactive power

Page 21: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

t

Active Power

activepower

… in fact this is pulsating active power only !!!

Pulsating Active Power ≠ Reactive Power

Page 22: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

PFC

=PowerFactorControl

Power Factor=

PW (active power)

PS (apparent power)

Page 23: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

PFC

… when using line commutated (Thyristor-)convertersthis was an issue indeed

voltaget

currentt

cos = 10,60,2- 0,3

Page 24: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

PFC

… when using line commutated (Thyristor-)convertersthis was an issue indeed

voltaget

currentt

cos =

firing angle control takes carefor a phase shift between current wave and voltage wave !

10,6

… for that reason the „inductive“ reactive power had to be compensated by „kapacitive“reactive power

Page 25: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

PFC

… in case of diode rectifiers

the power factor is usually cos = 1

voltaget

currentt

cos = 1

and in case of fully controlled rectifier bridges

… PFC is meant to include harmonics as well !

– in spite of harmonics having nothing to do with „PFC“ „PFC“ is often meant

to compensate harmonics

Page 26: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Rectifiers

Page 27: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

not allowed in the public grid(with respect to impact

to the grid)

RectifiersB4 bridge with capacitive load

current shape

… today‘s discussion is dealing with harmoncs !

– in spite of harmonics having nothing to do with „PFC“ „PFC“ is often meant

to compensate harmonics

Page 28: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

… filtering effort would be significant!

0

20

40

60

80

100

120

H1 H3 H5 H7 H9 H11 H13 H15 H17 H19 H21

without filtering

harmonics spectrum

RectifiersB4 bridge with capacitive load

not allowed in the public grid(with respect to impact

to the grid)

Page 29: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

… different (better) solution :fully controlled front end rectifier

current shape harmonics spectrum

RectifiersB4 bridge with capacitive load

… filtering effort would be significant!

Page 30: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Quelle : Prof. A. Binder, Technische Universität Darmstadt

Additional LossesCurrent Harmonics

with increasingswitching frequency

the current harmonicscaused by the inverter

decrease

line voltage

line current

motoring

regeneration

Page 31: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

… different (better) solution :fully controlled front end rectifier

+

-

+

-

+

-

Netz

U0 ≈

line voltage

line current

motoring

regeneration

current shape

Rectifiers

Page 32: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

+

-

+

-

Netz

U0 ≈

harmonics spectrum

0

20

40

60

80

100

120

H1 H3 H5 H7 H9 H11 H13 H15 H17 H19 H21

with optimized filtering

Rectifiers

Page 33: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

current shape harmonics spectrum

fully controlled front end rectifier

• … nevertheless !!! … even with a good 1phase „PFC“ …• either the load has to be charged by pulses (law of energy conservation !)• or an energy storage device must be implemented

… no tricky control schemecan change that !!!

… or – after all – can it?

Rectifiers

Page 34: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

PFC

… how must the current shape look liketo provide a constant power flow ?

voltaget

currentt

power

t… of course, at u = 0 and/or i = 0 no power can be transmitted (law of energy conservation !)The time to be bypassed by the energy storage device (e. g. capacitance),

(= energy), however, is significantly smaller !

Page 35: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

PFC

… is this current shape allowed ???

voltaget

currentt

power

t… please calculate the harmonics spectrum …it is surprising,

how close one can get to this current shapewithout exceeding the standard limits of grid harmonics

Page 36: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

PFC

… is this current shape allowed ???

voltaget

currentt

power

t… please calculate the harmonics spectrum …some companies make use of this effect,

to reduce the size of the DC link capacitance, … but, of course, they do not tell that in public.

Page 37: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Travelling Waves

Page 38: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

-800

-600

-400

-200

0

200

400

600

800

0 0.002 0.004 0.006 0.008 0.01

vo

lta

ge

in

V

time in s

typical „voltage pattern“at the output of a PWM voltage source inverter

Travelling Waves

Page 39: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

-100

0

100

200

300

400

500

600

700

0 4e-06 8e-06 1.2e-05 1.6e-05 2e-05

volta

ge

in

V

time in s

Travelling Waves

typical „voltage step“at the output of a PWM voltage source inverter

Page 40: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

M

time

term

inal

vol

tage

Travelling Waves

Page 41: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

M

… what now ?

… which case is it ?

„fix“ end

„loose“ end

adaptation… „it depends“ … on what ?

… whether we consider currents or voltages !!!

… in our case : voltages

… for voltages the motor is a „loose“ end

Travelling Waves

time

term

inal

vol

tage

Page 42: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

M

… what now ?

… which case is it ?

„fix“ end

„loose“ end

adaptation

… for voltages the inverter is a „fix“ end

… if the inverter output voltagedid not change meanwhile,

the wave is inverted and travels back again

Travelling Waves

time

term

inal

vol

tage

Page 43: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

M

„loose“ end

… on the inverter side the voltage remains constant(fix end !)

… on the motor side voltage oscillations occurrup to the double value of DC link voltage

(loose end !)

Travelling Waves

time

term

inal

vol

tage

Page 44: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

0

200

400

600

800

1000

1200

0 4e-06 8e-06 1.2e-05 1.6e-05 2e-05vo

ltage

in

V

time in s

-100

0

100

200

300

400

500

600

700

0 4e-06 8e-06 1.2e-05 1.6e-05 2e-05

volta

ge

in

V

time in s

… so far … so good… the matter, however, is getting much worse,

as soon as the inverterswitches simultaneously „into“ the back travelling voltage wave

Travelling Waves

… on the inverter side the voltage remains constant(fix end !)

… on the motor side voltage oscillations occurrup to the double value of DC link voltage

(loose end !)

Page 45: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

M

Travelling Waves

time

term

inal

vol

tage

Page 46: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

M

„loose“ end

… until here everything is like before …

Travelling Waves

time

term

inal

vol

tage

Page 47: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

M

… what now ?

„fix“ end

… in case the inverter has switchedthe voltage at its output meanwhile,

the wave travels back with amplification

Travelling Waves

time

term

inal

vol

tage

Page 48: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

M

„loose“ end

Travelling Waves

time

term

inal

vol

tage

Page 49: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

… on the inverter sidethe voltage is „impressed“

(fix end !)

… on the motor sidevoltage oscillations occurr

up to 2,7 timesthe DC link voltage

(loose end !)

… what is so critical ?

Travelling Waves

Page 50: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Voltage Flashover within Winding

… what is so critical ?

Page 51: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

„Horror“ Picture

… the danger is real …- behind such pictures, however,

there is acommercial interest !!

… what is so critical ?

Page 52: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Extract from IEC paper IEC 2 (CD) 5661991 (in Germany) : appendix to IEC 34

as long as you supply standard induction motorsby inverters with• voltage peaks below 1000 V• voltage rise times below 500 V/µsyou should not expect any danger for the motor

Compatibility between Inverter and Motor

… these are realistic valuesfor modern inverters !!!

Page 53: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Insulation of WireReasoning

• the critical voltage resulting in a flashoverdoes not depend at all on the diameter of the wire

• doubling the thickness of wire insulationincreases the critical voltage by 15 %

(the must significant effect results fromcovering faults of the first layer by the second layer)

that is „state of the art“ today !!!

• increasing the operation temperature to 155 °Clowers the critical voltage by 15 %

Page 54: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Voltage Stress on Partial Coils

Page 55: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

Voltage Stress on (Partial) Coils

0

200

400

600

800

1000

1200

0 4e-06 8e-06 1.2e-05 1.6e-05 2e-05

volta

ge

in

V

time in s

Page 56: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

0

200

400

600

800

1000

1200

0 4e-06 8e-06 1.2e-05 1.6e-05 2e-05

volta

ge

in

V

time in s

-100

0

100

200

300

400

500

600

700

800

0 4e-06 8e-06 1.2e-05 1.6e-05 2e-05

volta

ge

in

V

time in s

Voltage Stress on (Partial) Coils

Page 57: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

0

200

400

600

800

1000

0 2e-06 4e-06 6e-06 8e-06 1e-05

volta

ge

in

V

time in s

Voltage Stress on (Partial) Coils

Page 58: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

… to explain this effect,the representationas a simple equivalent circuit

containing a serial connectionof concentrated inductances

is not sufficient!!!

… in this casethe motor winding has to be represented

– like an electric cable – by a serial network

of two-ports

Voltage Stress on (Partial) Coils

Page 59: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

… voltage “waves“ spread out within ther motor windings– as in an electrical cable –

according to the laws of cable equation

Voltage Stress on (Partial) Coils

Page 60: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

… the motor windings only has inductive behaviour,if the rising time of the voltage edge

is significantly larger than the group delay of the complete motor winding

if the rising time of the voltage edge is smallerthan the group delay of the complete motor winding,

the capacitive behaviour is predominant !!!

Voltage Stress on (Partial) Coils

Page 61: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

0

200

400

600

800

1000

0 2e-06 4e-06 6e-06 8e-06 1e-05

volta

ge

in

V

time in s

Voltage Stress on (Partial) Coils

Page 62: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

0

100

200

300

400

500

600

700

0 2e-06 4e-06 6e-06 8e-06 1e-05

volta

ge

in

V

time in s

Voltage Stress on (Partial) Coils

Page 63: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

-200

0

200

400

600

800

1000

0 4e-06 8e-06 1.2e-05 1.6e-05 2e-05

volta

ge

in

V

time in s

… that is alarming !!!the first voltage pulse

appears nearly completely at the entrance coil

Voltage Stress on (Partial) Coils

Page 64: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

… using cost effective winding processesthe single wires are distributed randomly in the slot !!

… therefore the insulation of the single wiremust be designed with respect to

the full voltage stress !!!

Voltage Stress on (Partial) Coils

Page 65: Lecture Power Electronics Interactions Between Electrical Machine and Power Electronics Technische Universität München Lehrstuhl für Elektrische Antriebssysteme

… remember:

… on the motor side entstehenvoltage oscillations occurr

up to 2,7 timesthe DC link voltage

Voltage Stress on (Partial) Coils… using cost effective winding processes

the single wires are distributed randomly in the slot !!

… therefore the insulation of the single wiremust be designed with respect to

the full voltage stress !!!