lecture notes in earth sciences - home - springer978-3-540-46199-9/1.pdf · d'une plate-forme...

35
References Ager DV (1973) The nature of the stratigraphical record. Wiley, New York, pp 114 Ager DV (1984) The stratigraphic code and what it implies. In: Berggren WA, Van Couvering JA (eds) Catastrophes and earth history. Princeton Univ Press, pp 91-100 Alvarez-Ramis C, Biondi E, Desplato D, Hughes NF, Koenigner JC, Pons D, Rioult M (1981) Les v6g6taux (macrofossils) du Cr6tac6 moyen de l'Europe occidentale et du Sahara. V6g6tations et pal6oclimats. Cret Res, 2:339-359 Arnaud-Vanneau A (1980) Micropal6ontologie, pal6o6cologie et sedimentation d'une plate-forme carbonat6e de la marge passive de la T6thys: L'Urgonien du Vercors septentrional et de la Chartreuse. G6ol Alp M6m, 11/1-3, pp 874 Arthur MA, Dean WE, Pratt LM (1988) Global ocean-atmosphere geochemical and climatic effects of the Cenomanian/Turonian marine productivity event. EOS, (abstr) 69/16:300 Arthur MA, Dean WE, Schlanger SO (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in at- mospheric CO 2. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to present. Am Geophys Union, Geophys Monogr, 32:504-529 Arthur MA, Jenkyns HC (1981) Phosphorites and paleoceanography. Oceanol Acta Spec Nr, pp 83-96 Arthur MA, Schlanger SO (1979) Cretaceous "oceanic anoxic events" as causal factors in development of reef-reservoired giant oil fields. Am Assoc Pet Geol Bull, 63/6:870-885 Arthur MA, Schlanger SO, Jenkyns HC (1987) The Cenomanian-Turonian oceanic anoxic event, II. Paleoceanographic controls on organic-matter pro- duction and preservation. In: Brooks J, Fleet AJ (eds) Marine petroleum source rocks. Geol Soc Lond Spec Publ, 26:401-420 Baird AW, Dewey JF (1986) Structural evolution in thrust belts and relative plate motion: the upper Pennine Piemont zone of the internal Alps, southwest Switzerland and northwest Italy. Tectonics, 5/3:375-387 Ballance PF, Reading HG (1980) Sedimentation in oblique-slip mobile zones. Int Assoc Sediment Spec Publ, 5, pp 265 Barron EJ, Washington WM (1982) Cretaceous climate: a comparison of at- mospheric simulations with the geologic record. Palaeogeogr Palaeoclimatol Palaeoecol, 40:103-133 Barton EJ, Arthur MA, Kauffman EG (1985) Cretaceous rhythmic be/dding sequences: a plausible link between orbital variations and climate. Earth Planet Lett, 72:327-240 Baturln GN (1971) Stages of phosphorite formation on the ocean floor. Nat Phys Sci, 232:61-62 Baturin GN (1982) Phosphorites on the sea floor. Dev sediment, Elsevier, Amsterdam, 33, pp 343

Upload: dangnga

Post on 10-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

References

Ager DV (1973) The nature of the stratigraphical record. Wiley, New York, pp 114 Ager DV (1984) The stratigraphic code and what it implies. In: Berggren WA, Van Couvering JA (eds) Catastrophes and earth history. Princeton Univ Press, pp 91-100 Alvarez-Ramis C, Biondi E, Desplato D, Hughes NF, Koenigner JC, Pons D, Rioult M (1981) Les v6g6taux (macrofossils) du Cr6tac6 moyen de l'Europe occidentale et du Sahara. V6g6tations et pal6oclimats. Cret Res, 2:339-359 Arnaud-Vanneau A (1980) Micropal6ontologie, pal6o6cologie et sedimentation d'une plate-forme carbonat6e de la marge passive de la T6thys: L'Urgonien du Vercors septentrional et de la Chartreuse. G6ol Alp M6m, 11/1-3, pp 874 Arthur MA, Dean WE, Pratt LM (1988) Global ocean-atmosphere geochemical and climatic effects of the Cenomanian/Turonian marine productivity event. EOS, (abstr) 69/16:300 Arthur MA, Dean WE, Schlanger SO (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in at- mospheric CO 2. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to present. Am Geophys Union, Geophys Monogr, 32:504-529 Arthur MA, Jenkyns HC (1981) Phosphorites and paleoceanography. Oceanol Acta Spec Nr, pp 83-96 Arthur MA, Schlanger SO (1979) Cretaceous "oceanic anoxic events" as causal factors in development of reef-reservoired giant oil fields. Am Assoc Pet Geol Bull, 63/6:870-885 Arthur MA, Schlanger SO, Jenkyns HC (1987) The Cenomanian-Turonian oceanic anoxic event, II. Paleoceanographic controls on organic-matter pro- duction and preservation. In: Brooks J, Fleet AJ (eds) Marine petroleum source rocks. Geol Soc Lond Spec Publ, 26:401-420

Baird AW, Dewey JF (1986) Structural evolution in thrust belts and relative plate motion: the upper Pennine Piemont zone of the internal Alps, southwest Switzerland and northwest Italy. Tectonics, 5/3:375-387 Ballance PF, Reading HG (1980) Sedimentation in oblique-slip mobile zones. Int Assoc Sediment Spec Publ, 5, pp 265 Barron E J, Washington WM (1982) Cretaceous climate: a comparison of at- mospheric simulations with the geologic record. Palaeogeogr Palaeoclimatol Palaeoecol, 40:103-133 Barton E J, Arthur MA, Kauffman EG (1985) Cretaceous rhythmic be/dding sequences: a plausible link between orbital variations and climate. Earth Planet Lett, 72:327-240 Baturln GN (1971) Stages of phosphorite formation on the ocean floor. Nat Phys Sci, 232:61-62 Baturin GN (1982) Phosphorites on the sea floor. Dev sediment, Elsevier, Amsterdam, 33, pp 343

120

Baumberger E, Helm A, Buxtorf A (1907) Pal~ontologisch-stratigraphische Untersuchung zweier Fossilhorizonte an der Valanginien-Hauterivian Grenze im Churfirsten-Mattstock Gebiet. Abh Schweiz Pal~ont Ges, 34/2 :1-30 Bayer U, McGhee GR (1987) Cyclic patterns in the Paleozoic and Mesozoic: implications for time scale calibrations. Paleoceanography, 1/4:383-402 Bentz F (1948) Geologie des Sarnersee-Gebietes (Kt. Obwalden). Eclogae Geol Helv, 41/1 :1-77 Berggren WA (1982) Role of ocean gateways in climatic change. In: Berger WH, Crowell JC (eds) Climate in earth history. Nat Academic Press, Washing- ton, pp 118-125 Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am J Sci, 282:451-473 Berner RA, Lasaga AC (1989) Modeling the geochemical carbon cycle. Sci Am, 260/3:74-81 Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci, 283:641-683 Biju-Dival B, Dercourt J, Le Pichon X (1977) From the Tethys ocean to the mediterranean seas; a plate tectonic model of the evolution of the western Alpine system. In: Biju-Duval B, Montadert L (eds) Structural history of the Mediterranean basins. Edit Technips, Paris, pp 143-164 Birch GF (1979) Phosphatic rocks on the western margin of South Africa. J Sediment Pet, 49:93-110 Birch GF (1980) A model of penecontemporaneous phosphatization by diage- netic and authigenic mechanisms from the western margin of southern Africa. Soc Econ Paleontol Mineral Spec Publ, 29:79-100 Blumer E (1905) Der Ostliche Teil des Sfintisgebirges. Beitr Geol Karte Schweiz NF, 16/3:518-638 Bolli HM (1944) Zur Stratigraphie der oberen Kreide in den hSheren helveti- schen Decken. Eclogae Geol Helv, 37/2:217-328 Bollinger D (1986) Die Entwicklung des distalen osthelvetischen schelfes in Barremian und Unter-Aptian (Drusberg-, Schrattenkalk- und Mittagspitz-For- mation). PhD Thesis, ETH Z~rich, pp 136 Bouma AH (1987) Megaturbidite: an acceptable term? Geo-Marine Lett, 7: 63- 67 Bourrouilh R (1987) Evolutionary mass flow - megaturbidites in an interplate basin: example of the North Pyrenean basin. Geo-Marine Lett, 7:69-81 Bralower TJ (1988) Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian-Turonian boundary interval: implications for the origin and timing of oceanic anoxia. Paleoceanography, 3/3:275-316 Bralower T J, Thierstein HR (1984) Low productivity and slow deep-water circulation in Mid-Cretaceous oceans. Geology, 12:614-618 Bralower T J, Thierstein HR (1987) Organic-carbon and metal accumulation in Holocene and Mid-Cretaceous marine sediments: palaeoceanographic signifi- cance. In: Brooks J, Fleet AJ (eds) Marine petroleum source rocks. Geol Soc Lond Spec Publ, 26:345-371 Brandt K (1985) Sea level changes in the Upper Sinemurian and Pliensbachian

121

of southern Germany. In: Bayer U, Seilacher A (eds) Sedimentary and evolu- tionary cycles. Lect Notes Earth Sci, Springer, Berlin Heidelberg New York Tokyo, 1:113-126 Brass GW, Southam JR, Peterson WH (1982) Warm saline bottom water in the ancient ocean. Nature (London), 296:620-623 Br~h~ret JG, Caron M, Delamette M (1986) Niveaux rich en mati~re organi- que dans l'Albien vocontien; quelques caract6res du pal6oenvironment; essai d'interpr6tation gen6tique. Doc Bur Rech G6ol Miner, 110:141-191 Brett CE, Seilacher A (in press) Obrution deposits: a taphonomic consequence of event sedimentation. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York Tokyo Broecker WS, Peng TH (1982) Tracers in the sea. Lamont-Doherty Geol Observ, Palisades NY, pp 690 Briickner WD (1951) Lithologische Studien und zyklische Sedimentation in der helvetischen Zone der Schweizeralpen. Geol Rundschau, 39/1:196-216 Briickner WD (1953) Cyclic calcareous sedimentation as an index of climatic variations in the past. J Sediment Pet, 23:235-237 Burger H (1985) Palfries-Formation, 0hrl i -Formation und Vitznau-Mergel (basale Kreide des Helvetikums) zwischen Reuss und Rhein. PhD Thesis, Univ Ztirich, pp 237 Burger H, Strasser A (1981) Lithostratigraphische Einheiten der untersten helvetischen Kreide in der Zentral- und Ostschweiz. Eclogae Geol Helv, 74/2: 529-560 Burnett WC (1977) Geochemistry and origin of phosphorite deposits from off Peru and Chile. Geol Soc Am Bull, 88:813-823 Burnett WC (1980) Apatite-glauconite associations off Peru and Chile: palaeo- oceanographic implications. J Geol Soc Lond, 137:757-764 Burnett WC, Beers MJ, Roe KK (1982) Growth rates of phosphate nodules from the continental margin off Peru. Science, 215:1616-1618 Burnett WC, Roe KK (1983) Upwelling and phosphorite formation in the ocean. In: Suess E, Thiede J (eds) Coastal upwelling, its sediment record. Plenum Press, New York, Ser A, pp 377-397 Burnett WC, Veeh HH, Soutar A (1980) U-series, oceanographic and sedi- mentary evidence in support of recent formation of phosphate nodules off Peru. In: Bentor YK (ed) Marine phosphorites. Soc Econ Paleontol Mineral Spec Publ, 29:61-72 Burton R, Kendall C, Lerche I (1987) Out of our depth; on the impossibility of fathoming eustacy from the stratigraphic record. Earth Sci Rev, 24:237-277

Carbone S, Grasso M, Lentini F, Pedley HM (1987) The distribution and pa- laeoenvironment of early Miocene phosphorites of southern Sicily and their relationships with the Maltese phosphorites. Palaeogeogr Palaeoclimatol Pa- laeoecol, 58:35-53 Caron M (1985) Cretaceous planktic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge Univ Press, pp 17-86 Carozzi A (1951) Rythmes de s6dimentation dans le Cr6tac6 helvetique. Geol Rundschau, 39/1:177-195

122

Casey R (1961) The stratigraphical palaeontology of the Lower Greensand. Palaeontology, 3/4:487-621 Casey R, Rawson P (1973) The Boreal Lower Cretaceous. Geol J Spec Issues, 5, pp 448 Cayeux L (1936) Existence de nombreuses bact6ries dans les phosphates sedi- ments de tout age: cons6quences. CR Acad Sci, 203:1198-1200 Choukroune M, Ball~vre M, Cobbold P, Gautier Y, Merle O, Vuichard JP (1986) Deformation and motion in the western Alpine arc. Tectonics, 5/2: 215- 226 Chow N, James NP (1987) Cambrian grand cycles: a northern Appalachian perspective. Geol Soc Am Bull, 98:418-429 Cloetingh S (1986) Intraplate stresses, sea level changes and the sedimentary record. Int Assoc Sediment, Canberra, (abstr) pp 63-64 Cloetingh S (1988) Intraplate stresses: a new element in basin analysis. In: Kleinspehn KL, Paola C (eds) New perspectives in basin analysis. Springer, Berlin Heidelberg New York Tokyo, pp 205-230 Coleman JM (1988) Dynamic changes and processes in the Mississippi river delta. Geol Soc Am Bull, 100/7:999-1015 Coleman JM, Prior DB (1980) Deltaic sand bodies. Am Assoc Pet Geol Cont Educ Course Note Ser, 15, pp 171 Cross TA, Lessenger MA (1988) Seismic stratigraphy. Annu Rev Earth Planet Sci, 16:319-354 Crowley TJ, North GR (1988) Abrupt climate change and extinction events in earth history. Science, 240: 996-1002 Culvin SJ, Brunner CA, Nittrouer CA (1988) Observations of a fast burst of the deep western boundary undercurrent and sediment transport in south Wil- mington Canyon from DSRV Alvin. Geo-Marine Lett, 8:159-165

Dahanayake K, Krumbein WE (1985) Ultrastructure of a microbial mat-gene- rated phosphorite. Mineral Deposita, 20:260-265 De Graciansky PC, Bourbon M, Lemoine M, Sigal J (1981) The sedimentary record of Mid-Cretaceous events in the western Tethys and central Atlantic Oceans and their continental margins. Eclogae Geol Helv, 74/2:353-367 De Graciansky PC, Deroo G, Herbin JP, Jaquin T, Magniez F, Montadert I, Miiller C, Ponsot C, Schaaf A, Sigal J (1986) Ocean-wide stagnation episodes in the late Cretaceous. Geol Rundschau, 75/1:17-41 De Graciansky PC, Brosse E, Deroo G, Herbin JP, Montadert I, Miiller C, Sigal J, Schaaf A (1987): Organic-rich sediments and palaeoenvironmental reconstructions of the Cretaceous North Atlantic. In: Brooks J, Fleet AJ (eds) Marine petroleum source rocks. Geol Soc Lond Spec Publ, 26:317-344 Delamette M (1981) Sur la d6couverte de stromatolithes circalittoraux dans la partie moy~nne du Cr6tac6 nordsubalpin (Alpes occidentales fran~aises). CR Acad Sci, 292:761-764 Delamette M (1985) Phosphorites et pal6oc6anographie: l 'Exemple des phos- phorites du Cr6tac6 moyen delphino-helv6tique. CR Acad Sci, 300:1025-1028 Delamette M (1988a) L'Evolution du domaine helv6tique (entre Bauges et Morcles) de l 'Aptien sup6rieur au Turonien: s6ries condens6es, phosphorites et

123

circulations oc6aniques. Publ Dep G6ol Paleont Univ Geneva, 5, pp 316 Delamette M (1988b) Relation between the condensed Albian deposits of the helvetic domain and the oceanic current-influenced continental margin of the northern Tethys. Bull Soc G6ol France, 8/IV/5:739-745 Delamette M, F611mi KB, Ouwehand PJ (1984) Occurrence of deep-water stromatolites at the boundary from Lower to Upper Cretaceous in Delphino- Helvetic units (F, CH, A). Schweiz Natf Ges, (abstr) 164:42 Delaney ML, Boyle EA (1988) Tertiary paleoceanic chemical variability: unintended consequences of simple geochemical models Paleoceanography, 3/2: 137-156 Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sborshchicov IM, Boulin J, Sorokhtin O, Geyssant J, Lepvrier C, Biju-Duval B, Sibuet JC, Savostin LA, Westphai M, Lauer JP (1985) Presentation de 9 cartes pal6og6ographique au 1/20.000.000 s'6tendant de l'AtIantique au Pamir pour la p6riode du Lias a l'actuel. Soc G6ol France, Bull, 8/I/5:637-652 Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet JC, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics, 123:241-315 Dott RH Jr (1988) Something old, something new, something borrowed, some- thing blue - a hindsight and foresight of sedimentary geology. J Sediment Pet, 58/2:358-364 Druschtchitz VV, Gorbatschik TN (1979) Zonengliederung der Unteren Krei- de der st~dlichen UdSSR nach Ammoniten und Foraminiferen. In: Wiedmann J (ed) Aspekte der Kreide Europas. Int Union Geol Sci, Ser A, 6:107-116 Dzulynski S, Ksiazkiewicz M, Kuenen PH (1959) Turbidites in flysch of the Polish Carpathian Mountains. Geol Soc Am Bull, 70:1089-1118

Einsele G, Ricken W, Seilacher A (in press) Cycles and events in stratigraphy, general concepts and nomenclature. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York To- kyo

Felber P, Wyssling G (1979) Zur Stratigraphie und Tektonik des Stidhelveti- kurus im Bregenzerwald (Vorarlberg). Eclogae Geol Helv, 72/3:673-714 Fichter H (1934) Geologie der Bauen-Brisen-Kette am Vierwaldst~ittersee und die zyklische Gliederung der Kreide und des Maim der helvetischen Decken. Beitr Geol Karte Schweiz NF, 69, pp 128 Filipek LH, Owen RM (1981) Diagenetic controls of phosphorus in outer con- tinental-shelf sediments from the Gulf of Mexico. Chem Geol, 33:181-204 Fischer A (1981) Climatic oscillations in the biosphere. In: Nitecki MH (ed) Biotic crises in ecological and evolutionary time. Academic Press, London New York, pp 103-131 Fischer A (1984) The two phanerozoic cycles. In: Berggren WA, Van Couvering JA (eds) Catastrophies and earth history. Princeton Univ Press, pp

124

129-150 Flemming BW (1981) Factors controlling shelf sediment dispersal along the southeast African continental margin. Mar Geol, 42:259-277 Flemming BW (1988) Pseudo-tidal sedimentation in a non-tidal shelf environ- ment (southeast African continental margin). In: De Boer PL, Van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. Reidel, Dordrecht, pp 167-180 Fliigel HW, Faupl P, Mauritsch HJ (1987) Implications on the Alpidic evolu- tion of the eastern parts of the eastern Alps. In: Fli~gel HW, Faupl P (eds) Geodynamics of the eastern Alps. Deuticke, Vienna, pp 407-418 F611mi KB (1981) Sediment~ire Hinweise auf oberkretazische Tektonik im Vor- arlberger Helvetikum. Eclogae Geol Helv, 74/1:175-187 F611mi KB (1986) Die Garschella- und Seewer Kalk-Formation (Aptian-Santo- nian) im Vorarlberger Helvetikum und Ultrahelvetikum. PhD Thesis, ETH Zi~rich, Mitt Geol Inst ETH Univ Zt~rich NF, 262, pp 392 F611mi KB (1988) Phosphate maximum zone. Am Assoc Pet Geol Bull, (abstr) 72/2:186 F611mi KB (1989 in press) Beschreibung neugefundener Ammonoidea aus der Vorarlberger Garschella-Formation (Aptian-Albian). Jahrb Geol Bundesanst Vienna, 132/1. F611mi KB, Garrison RE, Grimm KA (in press) Stratification in phosphatic se- diments: illustrations from the Neogene of Central California. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York Tokyo FSllmi KB, Garrison RE, Ramirez PC, Zambrano-Ortiz F (1988) Late Creta- ceous phosphorite sequences in the central Colombian Andes. Int Geol Corr Progr, 156 Phosphorites, Oxford, (Abstr) p 9 F611mi KB, Ouwehand PJ (1987) Garschella-Formation und G6tzis-Schichten (Aptian-Coniacian): Neue stratigraphische Daten aus 6em Helvetikum der Ost- schweiz und des Vorarlbergs. Eclogae Geol Helv, 80/1:141-191 Frakes LA, Francis JE (1988) A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature (London), 333:547-549 Frank W (1987) Evolution of the Austroalpine elements in the Cretaceous. In: Fli~gel HW, Faupl P (eds) Geodynamics of the eastern Alps. Deuticke, Vienna, pp 379-406 Froelich PN (1984) Interactions of the marine phosphorus and carbon cycles. In: Moore B, Dastoor MN (eds) The interaction of global biochemical cycles. Jet Propulsion Lab, NASA Publ, 84-21:141-176 Froelich PA, Arthur MA, Burnett WC, Deakin M, Hensley V, Jahnke R, Kaul L, Kim KH, Roe K, Soutar A, Vathakanon C (1988) Early diagenesis of orga- nic matter in Peru continental margin sediments; phosphorite precipitation. Mar Geol, 80:309-343 Froelich PN, Kim KH, Jahnke RA, Burnett WC, Soutar A, Deakin M (1983) Pore water fluoride in Peru continental margin sediments. Geochim Cosmo- chim Acta, 47:1605-1612 Funk H (1971) Zur Stratigraphie und Lithologie des Helvetischen Kieselkalkes und der Altmannschichten in der S~ntis-Churfirsten-Gruppe (Nordostschweiz).

125

Eclogae Geol Helv, 64/2:345-433 Funk H (1985) Mesozoische Subsidenzgeschichte im helvetischen Schelf der Ostschweiz. Eclogae Geol Helv, 78/2:249-272 Funk H, Briegel U (1979) Le facies Urgonien des nappes Helv6tiques en Suisse orientale. G6obios M6m Spec, 3:159-168 Funk H, Wyssling G (1987) Le Cr6tac6 du shelf Helv6tique - Interpretation des phases de "deepening" et de "shallowing". In: Salomon J (ed) Transgressions et r6gressions au Cr6tac6. M6m G6ol Univ Dijon, 11:145-147

Ganz E (1912) Stratigraphie der mittleren Kreide (Gargasien, Albien) der oberen helvetischen Decken in den n0rdlichen Schweizeralpen. Neue Denkschr Schweiz Natf Ges, 42/1, pp 148 Gebhard G (1983) Stratigraphische Kondensation am Beispiel mittelkretazi- scher Vorkommen im perialpinen Raum. PhD Thesis Univ Ti~bingen, pp 145 Gebhard G (1985) Kondensiertes Apt und Alb im Helvetikum (Allg~iu und Vorarlberg), Biostratigraphie und Fauneninhalt. In: Kollmann HA (ed) Beitr~ige zur Stratigraphie und Pat~iogeographie der mittleren Kreide Zentral-Europas. Osterr Akad Wiss Schriftenr Erdwiss Komm, 7:271-284 Glangeaud L, D'Albissln M (1958) Les phases tectoniques du NE du D6voluy et leur influence structurologique. Soc G6ol France Bull, 8:675-688 Goldhammer RK, Dunn PA, Hardie LA (1987) High frequency glacio-eustatic sea level oscillations with Milankovitch characteristics recorded in middle Triassic platform carbonates in northern Italy. Am J Sci, 287:853-892 Grant J, Bathmann UV (1987) Swept away: resuspension of bacterial mats re- gulates benthic-pelagic exchange of sulfur. Science, 236:1472-1474 Greber EA (1987) Die Geologie der mittleren Churfirsten: unter besonderer Berticksichtigung von mittelkretazischen Spalten an der Grenze Schrattenkalk- /Garschella-Formation. Diploma Thesis, ETH Ztirich, pp 142 Greber EA, Ouwehand PJ (1988) Spaltenfi311ungen im Dach der Schrattenkalk- Formation. Eclogae Geol Helv, 81/2:373-385 Gross TF, Williams AJ, Nowell ARM (1988) A deep-sea sediment transport storm. Nature (London), 331:518-521

Haldimann PA (1977) Sedimentologische Entwicklung der Schichten an einer Zyklengrenze der Helvetischen Unterkreide. Mitt Geol Inst ETH Univ Zflrich NF, 219, pp 184 Hallam A (1984) Pre-Quaternary sea level changes. Annu Rev Earth Planet Sci, 12:205-243 Hallock P (1987) Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography, 2/5:457-471 Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios, 1:389-398 Hamilton D, Sommerville JH, Stanford PM (1980) Bottom currents and shelf sediments, southwest of Britain. J Sediment Pet, 26:115-138 Hancock JM, Kauffman EG (1979) The great transgressions of the late Cre- taceous. J Geol Soc Lond, 136:175-186 Haq UB, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels

126

since the Triassic. Science, 235:1156-1167 Harland WB, Cox AV, Llewellyn PG, Pickton CAG, Smith AG, Waiters R (1982) A geological time scale. Cambridge Univ Press, pp 131 Harris PM, Frost SH, Seiglie GA, Schneidermann N (1984) Regional uncon- formities and depositional cycles, Cretaceous of Arabian peninsula. In: Schlee JS (ed) Inter-regional unconformities and hydrocarbon accumulations. Am Assoc Pet Geol Mem, 36:67-80 Heggie DT, O'Brien GW, Reimers C, Burnett WC, MeArthur JM, Blanks A, Skyring GW, Herczeg A, Milnes AR, Riggs SR, Cook PJ, Moriarty D, Hill PJ (in press) Iron-phosphorus cycling, sediment mixing, and the formation of modern marine phosphorites on the east Australian continental margins. Nature (London) Heim A (1905) Der westliche Teil des S~intisgebirges. Beitr Geol Karte Schweiz NF, 16/2:313-517 Helm A (1908) l]ber rezente und fossile subaquatische Rutschungen und deren lithologische Bedeutung. Neues Jahrb Miner Geol Palliontol, 2:136-157 Helm A (1909) Sur les zones pal6ontologiques et lithologiques du Cr6tacique moyen darts les Alpes suisses. Bull Soc G6ol France, 4/9:101-127 Helm A (1910-17) Monographie der Churfirsten-Mattstock-Gruppe. Beitr Geol Karte Schweiz NF, 20/1:1-272 (1910); 20/2:273-368 (1913); 20/3: 369- 573 (1916); 20/4:573-662 (1917) Heim A (1919) Zur Geologic des Gri~nten im Allg~iu. Vjschr Natf Ges ZiJrich, 64:458-486 Heim A (1923) Beobachtungen in den Vorarlberger Kreideketten. Eclogae Geol Helv, 18/2:207-211 Helm A (1924) Ober submarine Denudation und chemische Sedimente. Geol Rundschau, 15/1:1-47 Helm A (1934) Stratigraphische Kondensation. Eclogae Geol Helv, 27:372-383 Helm A (1946) Problemas de erosi6n submarina y sedimentaci6n pel~igica del presente y del pasado. Rev Mus La Plata Secc Geol, 4:125-178 Helm A (1958) Oceanic sedimentation and submarine discontinuities. Eclogae Geol Helv, 51/3:642-648 Helm A, Baumberger, E (1933) Jura und Kreide in den helvetischen Alpen beiderseits des Rheins (Vorarlberg und Ostschweiz). Denkschr Schweiz Natf Ges, 68/2, pp 184 Helm A, Seitz O (1934) Die mittlere Kreide in den helvetischen Alpen von Rheintal und Vorarlberg und das Problem der Kondensation. Denkschr Schweiz Natf Ges, 69/2:185-310 Hickey L,J (1984). Changes in the angiosperm flora across the Cretaceous-Ter- tiary boundary. In: Berggren WA, Van Couvering JA (eds) Catastrophes and earth history. Princeton Univ. Press, pp 279-313 Hsii KJ (1982) Geosynclines in plate-tectonic settings: sediments in mountains. In: Hsi~ KJ (ed) Mountain building processes. Academic Press, London New York, pp 3-12

Iijima A, Hein JR, Siever R (1983) An introduction to siliceous deposits in the Pacific region. In: Iijima A, Hein JR, Siever R (eds) Siliceous deposits in the

127

Pacific region. Dev Sediment, Elsevier, Amsterdam, 36:1-16

Jacob C, Tobler A (1906) Etude stratigraphique et pal6ontologique du Gault de la vall6e de la Engelberger Aa (Alpes calcaires suisses, environs du Lac des Quatre Cantons). M6m Soc Pal6ont Suisse, 33:3-26 Jahnke RA, Emerson SR, Roe KK, Burnett WC (1983) The present day for- mation of apatite in Mexican continental margin sediments. Geochim Cosmo- chim Acta, 47:259-266 Jansson M (1986) Nitrate as a catalyst for phosphorus mobilization in sedi- ments. In: Sly PG (ed) Sediments and water interactions. Springer, Berlin Hei- delberg New York Tokyo, pp387-389 Jeletzky JA (1977) Causes of Cretaceous oscillations of sea level in western and Arctic Canada and some general geotectonic implications. Palaeontol Soc Japan Spec Pap, 21:233-246 Joseph P, Beaudoin B, Cabrol C, Fries G (1986) Tectonics or differential compaction? The example of Banon fault trough (Apto-Albian, France S.E.). Int Assoc Sediment Canberra, (abstr) p 158 Juignet P, Rioult M, Destombes P (1973) Boreal influences in the Upper Ap- tian-Lower Albian beds of Normandy, northwest France. In: Casey R, Rawson PF, The Boreal Lower Cretaceous. Geol J Spec Issues, 5:303-326

Kauffman EG (1984) The fabric of Cretaceous marine extinctions. In: Berggren WA, Van Couvering (eds) Catastrophes and earth history. Princeton Univ Press, pp 151-246 Keller B (1983) Geologic des Niderbauen, unter besonderer Beri~cksichtigung des Schrattenkalks, des Gault und des Seewerkalks. Diploma Thesis, Univ Ztirich, pp 118 Kemper E (1982) Die Aucellinen des Apt und Unter-Alb Nordwestdeutsch- lands. Geol Jahrb Ser A, 65:655-680 Kemper E (1983) Ober Kalt- und Warmzeiten der Unterkreide. Zitteliana, 10: 359-369 Kemper E (1987) Das Klima der Kreide-Zeit (Teil 1). Geol Jahrb Ser A, 96: 5-185 Kendall GSC, Schlager W (1981) Carbonates and relative changes in sea level. Mar Geol, 44:181-212 Kennedy W J, Garrison RE (1975) Morphology and genesis of nodular phos- phates in the Cenomanian glauconite marl of south east England. Lethaia, 8: 339-360 Kennett J (1982) Marine Geology. Prentice-Hall, New Jersey, pp 813 Korner M (1978) Sedimentologisch-stratigraphische Untersuchungen im helve- tischen Gault zwischen Aare und Linth. PhD Thesis, Univ Bern, pp 136 Krajewskl KP (1984) Early diagenetic phosphate cements in the Albian con- densed glauconitic limestone of the Tatra Mountains, western Carpathians. Se- dimentology, 31:443-470 Krumbein EW (1983) Biogene Lamination, Stromatolith und Biostrom. Rutle- Festschr, Wellenburger Akad, pp 133-142 Kuenen PH (1958) Problems concerning source and transportation of flysch

128

sediments. Geol Mijnbouw, 20:329-339

Lamboy ML, Monty CLV (1987) Bacterial origin of phosphatized grains. Terra Cogn, (abstr) 7/2-3, p 207 Laubscher H, Bernoulli D (1982) History and deformation of the Alps. In: Hsi~ KJ (ed) Mountain building processes. Academic Press, London New York, pp 169-180 Le Pichon X, Bergerat F, Roulet MJ (1988) Plate kinematics and tectonics leading to the Alpine belt formation; a new analysis. In: Clark SP, Burchfiel, BC, Suppe J (eds) Processes in continental lithospheric deformation. Geol Soc Am Spec Pap, 218:111-131 Lienert O (1965) Stratigraphie der Drusbergschichten und des Schrattenkalks unter besonderer Beri~cksichtigung der Orbitoliniden. Mitt Geol Inst Univ ETH Zi~rich NF, 65, pp 141 Lucas J, Pr6v6t L (1984) Synth~se de l'apatite par voie bact6rienne a partir de mati~re organique et de divers carbonates de calcium dans des eaux douce et marine naturelles. Chem Geol, 42:101-118 Lucas J, Pr6v6t L (1985) The synthesis of apatite by bacterial activity: mecha- nisms. Sci G6ol M6m, 77:83-92 Luyendyk BP, Forsyth D, Phillips JD (1972) Experimental approach to the paleocirculation of the oceanic surface waters. Geol Soc Am Bull, 83: 2649- 2664

Manheim F, Rave G, Jipa D (1975) Marine phosphorite formation off Peru. J Sediment Pet, 45/1:243-251 Matsumoto T (1980) Inter-regional correlation of transgressions and regressions in the Cretaceous period. Cret Res, 1/4:359-373 Mikhailova IA (1979) The evolution of Aptian ammonoids. Paleontol J, 13/3: 267 -274 Mosiow TF, Nummedal D, Coleman JM (1988) Clastics. Geotimes, 33/2:11-12 Miiiler P J, Suess E (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans - I. Organic carbon preservation. Deep-Sea Res, 26A: 1347-1362 Mullins HT, Rasch RF (1985) Sea-floor phosphorites along the central Cali- fornia continental margin. Econ Geol, 80:696-715 Mullins HT, Thompson JB, McDougali K, Vercoutere TL (1985) Oxygen-mi- nimum zone edge effects: evidence from the central California coastal upwel- ling system. Geology, 13:491-494 Mutterlose J (1987) Calcareous nannofossils and belemnites as warm water in- dicators from the NW-German Middle Aptian. In: Kemper E (ed) Das Klima der Kreide-Zeit . Geol Jahrb Set A, 96:293-313

Naidin DP, Sasonova IG, Pojarkova ZN, Djalilov MR, Papulov GN, Senkovsky YN, Benjamovsky VN, Kopaevich LF (1980) Cretaceous transgressions and re- gressions on the Russian platform, in Crimea and central Asia. Cret Res, 1/4: 375-384

129

Oberhinsli H (1978) Mikropalaontologische und sediment~ire Untersuchungen in der Amdener Formation. Beitr Geol Karte Schweiz NF, 150, pp 83 Oberhauser R (1953) Geologische Untersuchungen im Flysch und Ultrahelve- tikum der Hohen Kugel (Vorarlberg). Verb Geol Bundesanst Vienna, pp 176- 183 Oberhauser R (1958) Neue Beitr~ige zur Geologie und Mikropal~iontologie von Helvetikum und Flysch im Gebiet der Hohen Kugel (Vorarlberg). Verb Geol Bundesanst Vienna, pp 12 l- 140 Oberhauser R (1973) Stratigraphisch-pal~iontologische Hinweise zum Ablauf tektonischer Ereignisse in den Ostalpen w~ihrend der Kreidezeit. Geol Rund- schau, 62:96-106 Oberhauser R (1982) Geologische Karte der Republik Osterreich, Bl. 100, St. Gallen und I l 1, Dornbirn, 1:25'000. Geol Bundesanst Vienna O'Brien GW (1986) Reworking: a major control on the uranium-series and major element chemistry of phosphorites from the east Australian continental margin. Int Assoc Sediment, Canberra, (abstr) p 231 O'Brien GW, Harris JR, Milnes AR, Veeh HH (1981) Bacterial origin of east Australian continental margin phosphorites. Nature (London), 288:442-444 O'Brien GW, Heggie D (1988) East Australian continental margin phosphori- tes. EOS, 69/1:2 Ouwehand PJ (1986) Werden Phosphorite wirklich frtihdiagenetisch gebildet? Beispiele aus der helvetischen Mittelkreide der Ostschweiz. In: Bechst~idt T, Knitter M (eds) Symposiumband 1. Treffen deutschspr Sediment, Freiburg, pp 86-89 Ouwehand PJ (1987) Die Garschella-Formation ("Helvetischer Gault", Aptian- Cenomanian) der Churfirsten-Alvier Region (Ostschweiz). Sedimentologie, Phosphoritgenese, Stratigraphie. PhD Thesis, ETH Ziirich, pp 296 Ouwehand PJ, F/illmi KB (1987) Mid-Cretaceous sedimentary sequences in the Alpine Helvetic realm of eastern Switzerland and Vorarlberg (Austria). 3rd Int Cret Symp, Ttibingen, (abstr) p 44 Owen HG (1971) Middle Albian stratigraphy in the Anglo-Paris Basin. Bull Brit Mus Nat Hist Geol Suppl, 8, pp 1-164 Owen HG (1975) The stratigraphy of the Gault and Upper Greensand of the Weald. Proc Geol Assoc, 86:475-498

Pantic N, Gansser A (1977) Palynologische Untersuchungen in Btindnerschie- fern. Eclogae Geol Helv, 70/1:59-81 Pantie N, Isler A (1978) Palynologische Untersuchungen in Btindnerschiefern (II). Eclogae Geol Helv, 71/3:447-465 Parrish JT (1982) Upwelling and petroleum source beds, with reference to the Paleozoic. Am Assoc Pet Geol Bull, 66:750-774 Parrish JT, Curtis RL (1982) Atmospheric circulation, upwelling, and organic- rich rocks in the Mesozoic and Cenozoic eras. Palaeogeogr Palaeoclimatol Pa- laeoecol, 40:31-66 Pedley HM, Bennett SM (1985) Phosphorites, hardgrounds and syndepositional solution subsidence: a palaeoenvironmental model from the Miocene of the Maltese islands. Sediment Geol, 45:1-34

130

Pindell J, Dewey JF (1982) Permo-Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics, 1/2: 179-211 Pinet PR, Popenoe P (1985) A scenario of Mesozoic-Cenozoic ocean circula- tion over the Blake-Plateau and its environs. Geol Soc Am Bull, 96:618-626 Pisciotto KA, Garrison RE (1981) Lithofacies and depositional environments of the Monterey Formation, California. In: Garrison RE, Douglas RG (eds) The Monterey Formation and related siliceous rocks of California. Soc Econ Paleontol Mineral Pacif Sect, 15: 97-122 Probst P (1980) Die Btindnerschiefer des n~rdlichen Penninikums zwischen Valser Tal und Passo di San Giacomo. Beitr Geol Karte Schweiz NF, 153, pp 63

Rampino MR, Stothers RB (1987) Episodic nature of the Cenozoic marine re- cord. Paleoceanography, 2/3:255-258 Raup DM, Sepkoski JJ Jr (1986) Periodic extinction of families and genera. Science, 231:833-836 Read JF (1985) Carbonate platform facies models. Am Assoc Pet Geol Bull, 69/1:1-21 Reimers CE, Kastner M, Garrison RE (in press) The role of bacterial mats in phosphate mineralization with particular reference to the Monterey Formation. In: Burnett WC, Riggs SR (eds) Genesis of Neogene to modern phosphorites. Cambridge Univ Press Reimers CE, Suess E (1983) Spatial and temporal patterns of organic matter accumulation on the Peru continental margin. In: Thiede J, Suess E (eds) Coastal upwelling, its sediment record. Plenum Press, New York, B, pp 311- 346 Reyment RA, Bengston P (1981) Aspects of Mid-Cretaceous regional geology. Academic Press, London New York, pp 327 Reyment RA, Bengston P (1985) Mid-Cretaceous events. Report on results 1974-1983. Publ Palaeontol Inst Univ Uppsala Spec Vol, 5; 1-132 Reyment RA, Bengston P (1986) Events of the Mid-Cretaceous. Phys Chem Earth, Pergamon Press, Oxford, t6:1-209 Rich PV, Rich TH, Wagstaff BE, McEwen-Mason J, Douthitt CB, Gregory RT, Felton EA (1988) Evidence for low temperatures and biologic diversity in Cretaceous high latitudes of Australia. Science, 242:1403-1406 Rick B (1985) Geologie der Flubrig unter besonderer Ber0cksichtigung der Altmann-Schichten und des "Gault". Diploma Thesis, ETH Zf~rich, pp 83 Ricou LE, Siddans AWB (1986) Collision tectonics in the western Alps. In: Coward MP, Ries AC (eds) Collision tectonics. Geol Soc Lond Spec Publ, 19: 229-244 Riggs SR (1984) Paleoceanographic model of Neogene phosphorite deposition, U.S. Atlantic continental margin. Science, 223:123-131 Robaszynski F, Caron M (1979) Atlas de foraminif~res planctoniques du Cr~- tac6 moyen (Mer Boreale et T6thys). Cah Micropal6ont, I: 1-185; 2:1-181 Ross CA, Ross JRP (1985) Late Paleozoic depositional sequences are synchro- nous and worldwide. Geology, 13:194-197

131

Savostin LA, Sibuet JC, Zonenshain LP, Le Pichon X, Roulet MJ (1986) Ki- nematic evolution of the Tethys belt from the Atlantic Ocean to the Pamirs since the Triassic. Tectonophysics, 123:1-35 Schaub HP (1936) Geologie des Rawilgebietes. Eclogae Geol Helv, 29/2: 337- 407 Schaub HP (1948) l)ber Aufarbeitung und Kondensation. Eclogae Geol Heir, 41/1:89-94 Schlager W (1981) The paradox of drowned reefs and carbonate platforms. Geol Soc Am Bull, 92:197-211 Schlanger SO (1986) High frequency sea level fluctuations in Cretaceous ti- mes: an emerging geophysical problem. In: Hsii KJ (ed) Mesozoic and Cenozoic oceans. Am Geophys Union, Geodyn Ser, 15:61-74 Schlanger SO, Arthur MA, Jenkyns HC, Scholle PA (1987). The Cenomanian- Turonian oceanic anoxic event. I. ~Iratigraphy and distribution of organic car- bon-rich beds and the marine $1JC excursion. In: Brooks J, Fleet AJ (eds) Marine petroleum source rocks. Geol Soc Lond Spec Publ, 26:371-401 Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geol Mijnbouw, 55:179-184 Schlanger SO, Jenkyns HC, Premoli-Silva I (1981) Volcanism and vertical tectonics in the-Pacific basin related to global Cretaceous transgressions. Earth Planet Sci Lett, 52:435-449 Schneider SH, Thompson SL, Barron EJ (1985) Mid-Cretaceous continental surface temperatures: are high CO 2 concentrations needed to simulate above- freezing winter conditions. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to present. Am Geo- phys Union, Geophys Monogr, 32:554-559 Scholle PA, Arthur MA (1980) Carbon isotope fluctuations in Cretaceous pela- gic limestones: potential stratigraphic and petroleum exploration tool. Am Assoc Pet Geol Bull, 64/1:67-87 Scholz HH (1979) Pal~iontologie, Aufbau und Verbreitung der Bioherme und Biostrome im Allg~uer Schrattenkalk (Helvetikum, Unterkreide). PhD Thesis, Univ Mtinchen, pp 133 Scholz HH (1984) Sklerospongia aus dem Allg~iuer Schrattenkalk (Helvetikum, Bayerische Alpen). Neues Jahrb Geol Pal~iontol Mh, pp 645-653 Schumann EH, Li Van Heerden I (1988) Observations of Agulhas current frontal features south of Africa, October 1983. Deep-Sea Res, 35/8:1355-1362 Schwan W (1980) Geodynamic peaks in alpinotyp orogenies and changes in ocean-floor spreading during late Jurassic-late Tertiary time. Am Assoc Pet Geol Bull, 64/3:359-373 Seidov DG (1986) Numerical modelling of the ocean circulation and paleo- circulation. In: Hsti KJ (ed) Mesozoic and Cenozoic oceans. Am Geophys Union, Geodyn Ser, 15:11-26 Seilacher A, Reif WE, Westphal F (1985) Sedimentological, ecological, and temporal patterns of fossil Lagerst/itten. Philos Trans R Soc Lond Ser B, 311: 5-23 Seiglie GA, Baker MB (1984) Relative sea level changes during the middle and

132

late Cretaceous from Zaire to Cameroon (central west Africa). In: Schlee JS (ed) Interregional unconformities and hydrocarbon accumulation. Am Assoc Pet Geol Mem, 36:7-36 Sepkoski J3 Jr (1989) Periodicity in extinction and the problem of cata- strophism in the history of life. J Geol Soc Lond, 146:7-19 Shaffer G (1986) Phosphate pumps and shuttles in the Black Sea. Nature (London), 321:515-517 Shanmugam G (1988) Origin, recognition, and importance of erosional uncon- formities in sedimentary basins. In: Kleinspehn KL, Paola C (eds) New per- spectives in basin analysis. Springer, Berlin Heidelberg New York Tokyo, pp 83-108 Slansky M (1986) Geology of sedimentary phosphates. North Oxford Acade- mic, London, pp 210 Smith AG, Woodcock NH (1982) Tectonic syntheses of the Alpine-Mediterra- nean region: a review. In: Hsi~ KJ (ed) Alpine-Mediterranean geodynamics. Am Geophys Union, Geodyn Ser 7:15-38 Smith DB (1988) Bypassing of sand over sand waves and through a sand wave field in the central region of the southern North Sea. In: De Boer PL, Van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. Reidel, Dordrecht, pp 39-50 Soudry I~ (1987) Ultra-fine structures and genesis of the Campanian Negev high-grade phosphorites (southern Israel). Sedimentology, 34:641-660 Soudry D, Champetier Y (1983) Microbial processes in the Negev phosphorites (southern Israel). Sedimentology, 30; 411-423 Soudry D, Lewy Z (1988) Microbially influenced formation of phosphate no- dules and megafossil moulds (Negev, southern Israel). Palaeogeogr Palaeocli- matol Palaeoecol, 64:15-34 Soutar A, 3ohnson SR, Baumgartner TR (1981) In search of modern deposi- tional analogs to the Monterey Formation. In: Garrison RE, Douglas RG, Pisciotto KE, Isaacs CM, Ingle JC (eds) The Monterey Formation and related siliceous rocks of California. Soc Econ Paleontol Mineral Pacif Sect, 15: 123- 147 Speyer SE, Brett CE (1988) Taphonomic models for epeiric sea environments: middle Paleozoic examples. Palaeogeogr Palaeoclimatol Palaeoecol, 63:225-262 Spicer RA (1987) The significance of the Cretaceous flora of northern Alaska for the reconstruction of the climate of the Cretaceous. In: Kemper E (ed) Das Klima der Kreide-Zeit . Geol Jahrb Ser A, 96:265-291 Spicher A (1980) Geologische Karte der Schweiz. Schweiz Geol Komm, Bern Strasser A (1979) Betlis-Kalk und Diphyoideskalk (ca. Valanginian) in der Zentral- und Ostschweiz. Mitt Geot Inst ETH Univ Zi~rich NF, 225, pp 208 Strasser A (1982) Fazielle und sedimentologische Entwicklung des Betlis- Kalkes (Valanginian) im Helvetikum der Zentral- und Ostschweiz. Eclogae Geol Helv, 75/1 :1-22 Strasser A (1984) Black-pebble occurrence and genesis in Holocene carbonate sediments (Florida Keys, Bahamas, and Tunis). J Sediment Pet, 54/4: 1097- 1109 Stride AH (1988) Preservation of marine sand wave structures. In: De Boer

133

PL, Van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. Reidel, Dordrecht, pp 13-22 Stumm W, Leckie JO (1970) Phosphate exchange with sediments; its role in the productivity of surface waters. Adv Water Pollution Res, 2, 111-26:1-16 Sness E (1883) Das Anlitz der Erde, Teil 1. Tempsky, Prague, pp 778 Sness E (1981) Phosphate regeneration from sediments of the Peru continental margin by dissolution of fish debris. Geochim Cosmochim Acta, 45:577-588 Snmmerhayes CP (1987) Organic-rich Cretaceous sediments from the north Atlantic. In: Brooks J, Fleet AJ (eds) Marine petroleum source rocks. Geol Soc Lond Spec Publ, 26:301-316 Swift DJP, Rice DD (1984) Sand bodies on muddy shelves: a model for sedi- mentation in the Western Interior Seaway, North America. In: Tillman RW, Siemers CT (eds) Siliciclastic shelf sediments. Soc Econ Paleontol Mineral Spec Publ, 34:43-62

Thierstein HR (1979) Paleoceanographic implications of organic carbon and carbonate distribution in Mesozoic deep sea sediments. In: Talwani M, Hay WW, Ryan WFB (eds) Deep drilling results in the Atlantic Ocean: continental margins and paleoenvironment. Am Geophys Union, Maurice Ewing Ser, 3: 249-274 Thompson JB, Mullins HT, Newton CR, Vercoutere TL (1985) Alternative biofacies model for dysaerobic communities. Lethaia, 18: 169-179 Triimpy R (1973) The timing of orogenic events in the central Alps. In: De Jong K, Scholten R (eds) Gravity and tectonics. Wiley, New York pp 229-251 Triimpy R (1980) Geology of Switzerland. Wepf, Basel, pp 104 Triimpy R (1982) Alpine paleogeography: a reappraisal. In: Hsi~ KJ (ed) Mountain building processes. Academic Press, London New York, pp 149-156 Triimpy R (1985) Die Plattentektonik und die Entstehung der Alpen. Njblatt Natf Ges Ziirich, 129/5:5-47 Tschudy RH (1984) Palynological evidence for change in continental floras at the Cretaceous Tertiary boundary. In: Berggren WA, Van Couvering JA (eds) Catastrophics and earth history. Princeton Univ Press, pp 315-337 Tucholke BE, Vogt PR (1979) Western north Atlantic; sedimentary evolution and aspects of tectonic history. Init Rep DSDP, 43:791-825

Vail PR, Mitchum RM Jr, Todd RG, Widmier JM, Thompson S III, Sangree JB, Bubb JN, Hatleilid WG (1977) Seismic stratigraphy and global changes of sea level. In: Payton CE (ed) Seismic stratigraphy - applications to hydrocar- bon exploration. Am Assoc Pet Geol Mem, 26:49-212 Vail PR, Hardenboi J, Todd RG (1984) Jurassic unconformities, chronostrati- graphy and sea level changes from seismic and biostratigraphy. In: Schlee JS (ed) Interregional unconformities and hydrocarbon accumulation. Am Assoc Pet Geol Mem, 36:7-36 Vakhrameev U (1978) The climates of the northern hemisphere in the Creta- ceous in the light of paleobotanical data. Paleontol J, 2:143-154 Vandenberg J (1979) Reconstructions of the western Mediterranean area for the Mesozoic and Tertiary time span. Geol Mijnbouw, 58/2:153-160

134

Vercoutere TL, Mullins HT, McDougali K, Thompson JB (1987) Sedimentation across the central California oxygen minimum zone: an alternative coastal upwelling sequence. J Sediment Pet, 57/4:709-722 Voigt E (1962) Friihdiagenetische Deformation der turonen Pl~nerkalke bei Halle/Westf. als Folge einer Grossgleitung unter besonderer Berticksichtigung des Phacoid-Problems. Mitt Geol Staatsinst Hamburg, 31:146-275 Volk T (1987) Feedbacks between weathering and atmospheric CO 2 over the last 100 million years. Am J Sci, 287:763-779

Weidich KF (1987) Das Ultrahelvetikum von Liebenstein (Allg~iu) und seine Foraminiferenfauna. Zitteliana, 15:193-217 Weimer RJ (1984) Relation of unconformities, tectonics and sea level changes, Cretaceous of Western Interior, USA. In: Schlee JS (ed) Interregional uncon- formities and hydrocarbon accumulation. Am Assoc Pet Geol Mem, 36:7-36 Williams LA (1984) Subtidal stromatolites in the Monterey Formation and other organic rich rocks as suggested source contributors to petroleum forma- tion. Am Assoc Pet Geol Bull, 68:1879-1893 Williams LA, Reimers CE (1983) Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: preliminary report. Geology, 11: 267-269 Winkler W, Liidin P (1986) Flysch and melange formations related to early Alpine subduction in the eastern Alps (Switzerland, Austria, Germany). Int Assoc Sediment, Canberra, (abstr) p 333 Wyssling G (1985) Palinspastische Abwicklung der helvetischen Decken von Vorarlberg und Allgau. Jahrb Geol Bundesanst Vienna, 127/4:701-706 Wyssling G (1986) Der fri~hkretazische helvetische Schelf im Vorarlberg und Allg~iu. Stratigraphie, Sedimentologie und Pal~iogeographie. Jahrb Geol Bun- desanst Vienna, 129/1:161-265

Yingst JY, Rhoads DC (1980) The role of bioturbation in the enhancement of bacterial growth rates in marine sediments. In: Tenore KR, Coull BC (eds) Marine benthic dynamics. Univ South Carolina Press, pp 407-421

Zacher W (1973) Das Helvetikum zwischen Rhein und Iller (Allg~iu-Vorarl- berg): tektonische, pal~iogeographische und sedimentologische Untersuchungen. Geotekt Forsch, 44:1-74 Ziegler PA (1982) Geological atlas of western and central Europe. Elsevier, Amsterdam, pp 136 Ziegler PA (1987) Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland - a geodynamic model. Tectonophysics, 137:389-420 Ziegler PA (1988) Evolution of the Artic-North Atlantic and the western Tethys. Am Assoc Pet Geol Mem, 43, pp 198

Subject Index

The numbers of text figures are given in italic type; page numbers appear in roman type.

Abrasion 50, 46, 98 Aconeceras 80 Adriatic promontory 55, 107 Africa,

general 55, 2 South 4

Age inversion 28, 49 Albian,

general 2, 3, 19, 20, 24, 28, 3, 7, 20, 29-58, 77, 78, 84, 89, 96, 103, 113, 116

Lower 2, 15, 19, 20, 24, 28, 44, 56, 57, 3, 9, 24, 29- 55, 77, 78, 103, 115, 116

Middle 2, 19, 20, 24, 28, 49, 3, 37-55, 77, 78, 106, 116

Upper 2, 19, 20, 24, 28, 29, 1, 3, 4, 7, 9, 20, 24, 37- 58, 78, 80, 84, 89, 113, 116

Algae general 20, 30 soft-bodied 110 zooxanthellid 110

Allgfiu 56, 57, 7, 14, 69, 108 Allocyclic 113 Alps,

general 55, 104, 107 helvetic 1, I, 4, 9 northern 9 Swiss 14

Amalgamation 36, 37, 67 Amden Formation 2, 3, 7, 15,

19, 32, 34, 42, 49, 4, 7, 70, 71-74, 105, 107, 108

America, South 2 North 2

Ammonoid, boreal 43, 77, 78, 80, 116 cosmopolitan 43, 78, 80, l l6 eurythermic 116 general 2, 23-25, 43, I, 3,

7, 13, 14, 20, 29, 30, 37, 41, 51, 54, 77-80, 83, 89, 97, 98, 106, 108, 110

lytoceratid 80 pan-European 77, 78 phylloceratid 80 tethyan 43, 77, 78, 115, 116

Anahoplites 54, 78 Angiosperms 3 Anglo-Parisian Basin 80, 103,

110, 115 Anisoceras 43, 77 Anoxia 3, 59 Anoxic,

environment, local 54, 98 "event" 55, 89, 107 microenvironment 94, 100 zone 54, 94

Apatite 93, 94, I00 appenninica Zone 2, 28, 54,

56, 58 Apt 78 Aptian,

general 2-4, 7, 56, 57, I, 1-3, 7, 9-37, 54, 75, 77, 80, 101, 105, 108, 110, 115

Lower 2, 4, 56, 57, 1, 4, 7, 9-15, 54, 69, 76, 77, 84, 101, 103, 105, 108, 110, 115

Upper 2, 4, 7, 15, 28, 49, 56, 57, 2, 3, 7, 9, 11-37, 52, 54, 76, 77, 80, 81, 84, 89, 101, 105, 108,

136

110, 113, 115 Apulia 108 Aragonite 112 archaeocretacea Zone 2, 28,

32, 33, 43, 51, 59, 64 Armorican Massif 44 asymetrica Zone 2 Atlantic 55, 2, 3 Aubrig Beds 2, 7, 19-22, 24,

29, 31, 34, 37, 41, 43, 56, 64, 80, 84, 90, 96, 100, 106, 107

Aucellina 30, 54 Austria, western 1, I, 1, 4,

7,9 "Autocyclic" 113

Barremian 2, 3, 49, 55, 56, 1, 3, 4, 9, 75, 108, 115, 116

"Basal phosphatic bed" 43 Basinal phase 107, 108, 113,

115, 116 Baturin cycle 28, 51, 54, 83,

86, 93, 94, 100 Bedload transport 97 Bedsole 13, 33, 24 Belemnite 22, 13 Benthic/planktonic ratio 103 Benthos 51, 87, 98 Berriasian 3 Betlis Formation 3, 114 Beudanticeras 23, 43, 37, 77 Bioclast 24, 30, 41 Biology,

change I, 2, 3 ecology 2, 54 evolution I

Biopelmicrite 5 Biopelsparite 45, 9 Biosparite 20 Biostratigraphy 21, 7, 20, 41,

77 Bioturbation 10, 20, 51, 54,

21, 24, 37, 51, 87, 98, 100 Biozonation 2, 6 Birostrina 23, 54 Biscay 55

Bivalve, endobiontic 89 epibiontic 30 filamentous 24 general 5, 11, 20, 30, 41 inoceramid 19, 23, 7, 41,

51, 54 rudistic 1 I0

Black pebble 20 Bohemian Massif 44, 84 Boreal,

influence 78 realm 115 sea 80, 103 water 103, 110, 115

Boulder 36, 30 Bouma-TA_ E 12, 13, 24, 26 Boundary,

Albian-Cenomanian 29, 30, 56-58, 116

Aptian-Albian 7, 15, 16, 19, 55, 56, 1, 3, 20, 24, 29- 37, 77, 78, 103, 107, 113, 115

Barremian-Aptian 56, 9, 115 Cenomanian-Turonian 32, 55,

1, 3, 59-64, 107, 116 Coniacian-Santonian 70-71,

116 Cretaceous-Tertiary 2 Santonian-Campanian 1, 55,

71-74, 108, 116 Turonian-Coniacian 34, 55,

1, 64-70, 77, 108, 116 Brabant Massif 44 Brachiopod 5, 13, 20, 89 Brancoceras 54, 80 Breccia 35, 65 Brianqonnais 55, 108 Brisi Beds 2, 4, 7, 9, 10, 15,

17-19, 24, 28, 34, 39, 49, 56, 20, 20-24, 26, 29, 33, 64, 76, 90, 96, 100, 101, 106, 110, 113

Brisi Limestone 7, 8, 10, 15, 17, 18, 28, 49, 56, 20, 21, 24, 29, 30, 33, 90, 100,

137

101, 103, 106, 110, 113 brotzeni Zone 2, 43, 51, 56 Bryozoa 18, 45, 20, 30, 83,

100 Burial, catastrophic 54, 2,

94-100, 115, 116 Burrow 33, 51, 26, 59 Bypassing 16, 20, 51, I, II,

2, 51, 96

CaCO 3, distribution 22 global cycle 112 precipitation 110 production 112 remobilization 41

Calcarenite I0, 9, 14, 20, 22, 24

Calcareous, bioclast 41 fauna 115 fossil 22, 41, 110 nodule 22, 41 ooze 7, 56, 116 sponge 110

Calcisphere 24, 103 Calcite compensation depth 2,

112 Calcite,

cementation 97 neomorphic 41 sparry 47

Calciturbidite 24, 67 California 89 Cambrian 113 Campanian

general 2, 3, 55, 3, 71-74, 75, 116

Lower 2, 49, 55, 7, 9, 71- 74, 116

Upper 2, 55, 4 Canada 4 Carbonate,

general 14, 2-4, 20, 115 hemipelagic 14 pelagic 10, I, 1, 4, 117 platform 56

producing organisms 110, 115 production 108, 110, 114 shallow-water I, II, 1, 4,

7, 9, 75, 101, 110, 113, 115, 117

Carbon-isotope shift 59 Caribbean area 55 Carpathians 3, 4, 9 Cataclysm, externally derived

2 Cenomanian,

general 2, 3, 28, 29, 55, 3, 56-64, 77, 80, 87, 116

Lower 2, 29, 49, 55, 1, 4, 7, 9, 56-58, 89, 103, 116

Middle 2, 29, 55, 9, 58, 86, 116

Upper 2, 32, 55, 7, 9, 37, 58-64, 107, 116

"Cenoman"-Transgression 55, 4, 103

Cenozoic I, 2 Channel 4, 7, 16, 19, 20, 28,

9, 14, 20, 24, 30, 33, 35, 51, 54, 58, 67, 74, 76, 77, 81, 103, 104, 115, l l6

Channel and fan system, distal fan system 11, 26 general 7, 10, 11, 15, 19,

20, 51, 4, 24, 26, 29, 35, 51, 76, 106, If5, I16

mid-fan system 11-13, 24 proximal fan system 11, 24

Cheloniceras 43, 14, 77, 78 Chondrites 37 Clay 24, 24, 26, 29, 41, 58,

116 Climate,

change I, 2, 3, 103, l l3, 117

cool 3, 112 deterioration 103, l l0, 112,

115, 116 humid 112

Cluster cement 53 CO 2,

atmospheric I, 2, 112

138

outgassing 2, 112 Coarsening upward 22, 37, 41,

84 Coated grain 91 Cobble 36, 84 Cohesiveness 67 Collision, continent-continent

2 Colombiceras 43, 14, 20, 77,

78 Community, biotic 54, 2, 94,

98, 115, 116 Compaction rates 75, 76 Compressive stress 104, 113 concavata Zone 2, 64 Concentration, physical 51 Condensation 21, II, 1, 7, 1 I,

20, 37, 41, 43, 51, 56, 58, 90, 97, 101, 104-107, 113, 115-117

Conglomerate 35, 54 Coniacian 2, 3, 34, 49, 55, 2,

3, 7, 9, 64-71, 77, 103, 116 Contourite 29, 115 Coral,

scleractinian 3, 9, 110 solitary 23, 25, 89

Cornubian Massif 44 Corpuscules, rod-like 53 crassicostatum-subnodosocosta-

turn Zone 2 Cretaceous,

Lower 2, 4, 9, 112, 113, 115 Upper 9, 75, 103, 104, 107,

108, 115, 116 Crinoid 6, 8, 10, 18, 11, 14,

20, 30, 89, 115 Cross stratification

hummocky 21 tabular 21 tangentially 9, 20, 21

Crust, oceanic 44 thinned continental 108

Current, activity 56, 1, 51, 80, 83,

87, 89, 94, 96, 98, 104,

117 axis 57, 81, 89, 96, 116 bifurcated 20, 83, 84, 106,

116 bifurcation point 41, 83 Boreal-Tethys 80 bottom-hugging l, 2, 29, 81,

110 circulation 44, I, 2 contouring 14, 29, 86, l l5 dominated 7, 54, 80, l l5 east-west directed 4, 6, 15,

16, 19, 20, 30, 44, 49, 51, 56, 57, I, 2, 80, 81, 83, 84, 96, 98, 101, 103, 106, 108, 114

erosion 51, 1, 7, 37, 83, 86, 98, 101, 105, 106, 110, 112, 115

flow pattern 57, 108 general 44, 80-87, 113 geostrophic 1, 80, 81 gradient 83 impuls 100 induced Baturin cycling 51,

100 induced sandwiching 37, 41,

83 longshore 56, 104 north-south directed 44, I,

2 path 105 ripple 12 scouring 49 shift 56, 57, 84, 86, 87,

89, 98, 100, 101, 103-108, 110, 112-116

strength 41, 87, 110 system 51, 56, 57, 41, 80,

83, 84, 86, 87, 96, 100, 103, 106, 110, 112, 113, 115

velocity) 86, 96, 98, 100 winnowing 51, 41, 83, 117

cushrnani Zone 2, 32, 58, 59, 64

Cycle,

139

Baturin 28, 51, 54, 83, 86, 93, 94, 100

"Grand" 113 half- 112 Milankovitch 113 periodicity 113 physicochemical 94, 98 sedimentary II, 2, 4, 9, 112

Cyclicity 113, 115

Dacycladacea 9 Debris flow 4, 28, 36, 37, 13,

33, 64, 65, 67, 76, 105, 116 Debrite 13, 33 Decomposition, postmortal 97 Deepening upward 3, I, 1, 8,

75, 103, 112 Deep water circulation 107 Deep water stromatolites 90 dentatus Zone 2 Denudation I Depositional system 29, 35,

54, 71 Depth-related difference 80 deshayesi Zone 2, 14 Deshayesites 14 Detritus 17, 20, 24, 3, 4, 13,

14, 24, 29, 37, 51, 52, 71, 83, 96, 101, 103

Diachronous 6, 14, 56, 104- 107, 115

Diagenesis, early 93, 94, 96 Diagenetic overprinting 22, 41 Diffusion 94 Dipoloceras 78 Discontinuity, sedimentary 1,

30, 33, 80 dispar Zone 2, 19, 24, 47, 41,

43, 51, 54 Dissolution, selective 22 Douvilleiceras 54 Dropstone 48 Drowning 10, 56, 57, I, II, 3,

4, 7, 76, 108-112, 115, 116 Drusberg Formation 2-4, 6, 7,

16, 34, 36, 56, 4, 9, 11, 14, 51, 65, 67, 76, 105

Dufrenoyia 14, 20 Durancian Isthmus 44 Durschl~igi Bed 2, 15, 19, 24,

43, 77, 80, 84, 89 Dysaerobic conditions 89

Earthquakes 104 Echinoderm 24, 41, 89, 97, 100 Echinoid 13, 41 Ecology 2, 54 elevata Zone 2 Emersion 1 Encrusting, sessile, organism

45, 49, 83 Endofauna 24, 98 England 4 Eo-alpine,

front 108 zone 108

Epicenter 69 Epicontinental sea I, 3, 4 Equilibrium 96, 97, 115, 116 Erosion 4, 6, 7, 15-17, 19,

20, 28-30, 32, 34, 36, 38, 46, 49, 5I, 54-56, 7, 11, 20, 24, 29, 33, 35, 37, 41, 51, 56, 58, 59, 64, 65, 67, 69, 70, 74, 76, 80, 81, 83, 84, 103-108, 112, 113, 116

Escragnolles 78 Euhoplites 54 Europe,

eastern 115 general 55, 107, 108 northern 112 southern 115 western 44

European craton 55 Eutrophic community 89 Event bed 1, 14, 24, 70 Evolution I, 3 Exesion I Extinction 3

Facies, anomaly 84 belts 75

140

boundary 77 change 21, 24, 8, 21, 33, 76 progradation 7, 10, 22, 29,

86 transition 22, 29, 76, 77 type 6, 11, 13, 21, 24, 26 zones 51, 9, 29, 56

Faecal pellets 100 Failure 34, 55, 65, 69, 77,

101, 104, 105, 108, 116, 117 Fault,

bounded uplift 65 escarpment 65 sedimentary 35, 65, 104,

107, 108, 117 talus fan 35, 65

Faulting, normal 65 Fern 3 Fish 89, 98 Florida 3 Flute cast 35 Fluxoturbidite 36, I, 67 Food chain 89 Food web 87 Foraminifera,

agglutinated 52 benthic 14, 24, 3, 29, 41,

110 general 100, 103 globotruncanid 41, 7, 51 miliolid 8, 9 orbitonilid 8, 9, 20, 106,

110 planktonic 2, 28, 3, 41, 59,

87 sessile 52, 83

Foreset 9, 21 Fossil,

endobiontic 83 epibiontic 83 mold 46, 83

Fracture 38 France,

northwestern 4 southeastern 4, 7, 9, 69, 78

Francolite 4 Freschen Beds,

general 2, 7, 19, 20, 29, 49, 24-26, 29, 35, 51, 54, 81, 87, 90, 100, 106, 107

lower part 2, 7, 10-13, 15, 29, 49, 24-26, 29, 35, 54, 76, 106

upper part 2, 7, 19, 20, 29, 32, 49, 24, 51, 52, 54

furcata Zone 2, 14

Gains Beds 2, 4, 7, 10, 15, 19, 34, 56, 13, 22, 24, 26, 29, 33, 51, 76, 96, 100, 101, 106

Gargasiceras 80 Garschella Formation 2, 3, 16,

29, 34-37, 43, 4, 7, 10-54, 56, 58, 64, 65, 67, 75, 77, 80, 84, 91, 100, 105, 106, 112, 113

Gastropod 13, 41, 89 Gault 4 Gemsm~ittli Formation 3 Geohistory diagram 75, 113 Germany,

northwestern 4 southeastern 14, 69, 108

Glauco-apatite 101 Glaucogenesis 51, 89, 100-101 Glauconite,

detrital 100, 101 formation 101 general 24, 4, 20, 100-101 pristine 100

Glauconite maximum zone 51 Glauconitic 7, 9, 10, 18, 22,

24, 25, 28, 35-38, 45, 47- 49, 51, I, 1, 3, 4, 7, 13, 21, 24, 29, 30, 41, 43, 51, 54, 56, 58, 59, 64, 67, 75, 80, 100-101, 116

Glauconitite 100 Glauconitized 13 Globotruncanid 41, 7, 51, 64,

67, 69 Gneiss coble 48, 84 G6tzis Beds,

141

archaeocretacea Zone G6tzis Bed 2, 7, 15, 19, 29, 32, 33, 59-64, 77, 105, 107

Upper Turonian-Coniacian G6tzis Beds 2, 7, 15, 19, 29, 34-38, 42, 49, 64, 65- 70, 74, 77, 104, 107

Grading, normally 21, 36, 13, 24, 35,

59, 67 inversely 21, 36, 13, 67, 84

Granule 30, 51 Granulometry 41 Gravel 54, 100 Gravity flow 42, 1, 4, 35, 51,

58, 64, 67, 74, 90, 104, 105, 107, 108, 116

Gulf of Mexico 3 Gymnosperms 3

Hamites 23, 43, 77 Hauterivian 3 Hedbergella 24, 20, 26, 87 Hedbergella micrite 5, 6, 23,

11, 13, 14, 24, 26, 37, 41 Heim, Arnold I, 1, 80 Helvetic,

Alps 1, I, 4, 9 area 77 realm 55, 101 sediments 89 shelf 49, 51, 9, 54, 56, 59,

64, 70, 71, 75, 77, 80, 81, 87, 89, 103, 106, 107, 110, 113, 115, 117

zone 1, 55, 7, 108, 113, 115, 116

helvetica Zone 2, 59, 64 Hermatypic organism 110, 115 Hiatus,

artificial 105 general 1, 11, 59, 65, 70,

105-107, 112, 117 Himalayas 4 Hochkugel Beds 7, 10, 14, 19,

49, 26-29, 51, 81, 106 Hohenems Nappe 1

Hoplites 43, 54, 78 Hybrid 90 Hydraulic tunneling 20, 28,

49, 75 Hydrodynamic activity 75 Hypacanthoplites 43, 46, 37,

54, 77 Hysteroceras 23, 43, 54, 78

Iberian Massif 44 Ice cap 3 Illite/kaolinite ratio 112 Incision, sedimentary 19, 76 inflatum Zone 2, 19, 24, 25,

41, 43, 96 Injection 37 Inoceramid 19, 23, 7, 51, 54 Inoceramid prism 24, 41, 54 Interchannel area 15, 19, 35,

37, 51, 106, 116 Interdistributory area 19 Interface,

oxic-anoxic 54, 94, 98, 100 sediment-water 94

Interstitial water 94 Inversion 108, 116 Irrigation 98 Isotopic closure 84

jacobi Zone 2, 17, 19, 24, 28, 29, 37, 43, 51

Jauberticeras 43, 77

Kamm Bed 2, 19, 29, 31, 34, 38, 49, 56, 58, 81, 84, 89, 90, 106

Kieselkalk Formation 3, 114 Klaus Beds 2, 7, 15, 16-19,

24, 28, 49, 56, 20, 22, 30- 33, 35, 37, 43, 51, 54, 75, 77, 81, 93, 103, 106

Kossmatella 43, 77

Labeceras 43, 78 Laminated

general 7, 10, 15, 16, 19, 20, 51, 26, 29, 35, 51,

142

54, 56, 81, 115, 116 plane 9, 51, 21, 24 ripple cross 24

Laminations 36, 37, 87 lautus Zone 2 Leimern Beds 7 Leymeriella 43, 37, 54, 77 Line source 64 Lithification, early diagene-

tic 17, 50, 33, 90 Lithoclast 8, 45, 50, 11, 13,

20, 30, 46, 67, 83, 90 Load cast 35 London-Brabant-Ardennes Massif

80 loricatus Zone 2, 19, 51, 96 Luitere Bed 2, 4-7, 43, 49,

56, 11-13, 14, 20, 29, 75, 77, 80, 89, 90, 101, 106, 108, 110, 113

Lyelliceras 80 Lytoceras 77

Madagascar 4 Maestrichtian 3 marnmillatum Zone 2, 19, 24,

25, 28, 47, 43, 51, 96 Margin, passive 75 Marginotruncana 41, 69 Marl 7, 10, 15, 16, 19, 20,

49, 57, 4, 11, 13, 14, 24, 26, 29, 51, 54, 71, 76, 80, 81, 87, 100, 115, 116

Marocco 4 Mega-"phacoid" 42, 74 Megaturbidite 36, 1, 67, 116 melchioris Zone 2, 14, 20, 29 Mesozoic 2, 113 Metamorphose, HP/LT 55 Micrite 5, 6, 14, 17, 23-25,

28, 30, 31, 33, 36-38, 47, 9, 11, 13, 24, 26, 30, 33, 35, 43, 49, 51, 54, 56, 64, 65, 67, 71, 90, 100, 101

Micritized 8, 18, 20, 30 Microbial,

activity 91, 94, 98

colony 5, 27, 52, 83, 90, 91, 93

community 89 growth rates 98, 110 mat 6, 16, 20, 26, 28, 30,

31, 44, 50-52, 54, 11, 13, 49, 56, 89, 90, 91, 94, 97, 98, 110

organic matter, decay 93, 94 organism 93 phosphate-rich granules 100

Microbial mat optimum zone 51 Microfossil 24 Microstromatolite 50, 90 Mid-Cretaceous I, 2-7, 75, 80,

81, 90, 96, 100, 104, 107, 113, 115, 117

Miliolid 8, 9 Mittagspitz Formation 2, 4, 6,

7, 19, 29, 49, 56, 4, 14, 20, 29, 76, 81, 105, 106

Mixed layer 89 Mojsicovicsia 80 Moldadanubicum 84 Mortoniceras 43, 54, 78 Mud 10, 16, 20, 48, 49, 57, 4,

I1, 24, 26, 29, 51, 54, 71, 76, 81, 100, 115, 116

Mud flow 67, 70

Nautiloid 47 Nekton,

general 98 benthos-oriented 98

Neophlycticeras 78 Niederi Beds 2, 7, 15, 19-21,

24, 29, 34, 37-41, 43, 80, 84, 85, 96, 101, 106

nolani-nodosocostatum Zone 2, 17, 28, 29

Nondeposition 37, 80, 104 North American craton 113 Nutrient,

excess 1 I0 -rich water 1, 89, 98 recycling 98

143

Obrution, deposit 98 -type burial 98

Oceanic turnover rates 3 (3hrli Formation 3, 114 Oligotrophy 110, 115 Olistolite 55 Olistostrome 42, 74 Onlap 6, 76 Ooid shoal 49, 9, 115 Orbital parameters 117 Orbitolinid 8, 9, 20, 106, 110 Ordovician 113 Organic matter,

burial 54, 2, 94, 98, 100 content 110, 112, 115 decay 94 general 90, 93, 94, 98, 115 inclusion rates 93 oxidation 93 particulate 89, 94 recycling 93, 94 residence time 94 resuspension 93 suspended 110 undegraded 100

Orogenic, front 104 phase 55, 103, 104, 107, 108

Otohoplites 54, 78 Overbank deposit 11, 24 Oversteepening 69, 77 Oxidation 54, 93 Oxic zone 94 Oxygen,

availability 110 content 3, 101, 110, 112 depleted 114, 115 level 87, 90 short-term increase in 87

Oxygen Minimum Zone, edge 87 general 6, 16, 20, 30, 51,

I, 2, 87-89, 98, 115 upper boundary 89 vertical fluctuation 89

Oxyhydroxide,

iron 83, 94, 98 manganese 94, 98

Oxytropidoceras 54

Pacific 3 Palaeophycus 37, 98 Paleobiogeography I, 77-80 Paleoceanography,

chemical l general I, 2, 3, 7, 75, 77,

96, 115 physical 1

Paleocene 3 Paleozoic 113 Palimpsest sandbody 96, 115,

116 Palinspastic map 4, 7, 15, 19,

29, 32, 34, 56 Parahoplites 14, 77, 78 Patch reef 49, 9 Pebble 17, 18, 24, 28, 36, 52,

30, 33, 51 Pellet 14, 29, 100 Peloid 13 Penninic zone 1, 26 Permeability 98 Phacoid 36, 37, 42, 67 Phanerozoic 2, 3 Phosphate,

allochthonous 50, 13, 43, 83, 90, 91, 100

autochthonous 6, 20, 28, 30, 33, 35, 49, 83, 90

condensed 23, 50, 51, 54, l l, 33, 35, 41, 43, 54, 56, 83, 90, 91, 100, 101, 106, 108, 113, 115

early stage 93 general 24-28, 49, 51, 54,

56, 1, 46, 51, 86, 90, 93, 113

generation 25, 27, 28, 45, 54, 13, 30, 46, 83, 90

multi-event winnowed 23, 54, 46, 56, 90, 113

one-generation lO0 pristine 5, 50, 13, 90, 91

144

Phosphate maximum zone 51, 100 Phosphate pump and shuttle 54,

94 Phosphatic,

ammonoid 19, 23-25, 46, 14, 37, 41, 51, 77-80, 83, 106

crust 5, 6, 26, 28, 51, 11, 49, 83, 90, 100

diaclast 18, 1, 13, 14 envelop 83, 91 general 6, 25, 31, 53, I, 3,

4, 7, 8, 11, 29, 33, 43, 49, 54, 56, 67, 75, 77, 80, 84, 87, 90, 93, 97, 106, 108, 113, 115

horizon 1 lamina 45, 83, 91 lithoclast 45, 50, 30, 46,

83, 90 particle 6, 16-18, 20, 23-

25, 27, 28, 30, 45, 50, 51, 54, 1, 11, 13, 30, 33, 35, 46, 49, 51, 58, 83, 90, 91, 100

rim 101 system 96

Phosphatization 4, 15-17, 19, 29, 30, 45-47, 50, 53, 54, 56, 20, 33, 35, 37, 41, 83, 87, 89-101, 103, 115, 116

Phosphogenesis 4, 19, 20, 51, 54, II, 20, 49, 51, 58, 87, 89-101, 103, 112, 114, 116

Photomicrograph 5, 14, 18, 27, 45, 52, 53

Phylloceras 43, 77 Physical conditions 117 Physicochemical cycle 94, 98 Physiographic changes 103 Phytoplankton, siliceous 89 Pictetia 43, 77 Placopsilina 52 Platform,

carbonate 4, 56, 57, I, II, 1, 4, 7, 9, 11, 75, 76, 86, 101, 105, 106, 108- 112, 114, 115

drowning 10, 56, 57, I, II, 1, 3, 4, I1, 76, 106, 108- 112, 115, 116

evolving 4, 9, 114 margin 4, 6, 10, 57, 4, 11,

13, 76, 77, 80 progradation 114 regeneration 110

Plattenwald Bed 2, 7, 15, 16, 19-21, 24-29, 34, 43, 45-47, 49, 51, 53, 35, 37, 43-51, 54, 56, 64, 65, 75, 77, 80, 8~4, 89, 90, 96, 106, 107

pO 4 ~-, concentration 94, 98, 100 dissolved 94 flux 90, 93 release 94

Point source 64 "Pompeii"-like burial 98, 100 Precambrian 84 Predator 54, 98 Pressure solution, selective

41 primitiva Zone 2, 64, 65 Prodeshayesites 14 Productivity event 107 Prohysteroceras 78 Protetragonites 43, 77 Pseudosparite 21, 24, 26, 41 Puzosia 77 Pyritization 87

Quartz 18, 21, 24, 28, 36, 20, 30, 64

Radiolaria 14, 26 Ramp,

distally steepened 76, 77, 116

homoclinal 9, 76, 77, 115 Rankweil Beds 2, 7, 15, 16,

18-20, 34, 43, 49, 56, 20, 22, 29, 30, 33, 37, 51, 52, 54, 58, 76, 77, 81, 93, 96, 103, 106

Rankweil Ramp 2, 15, 16, 19,

145

20, 29, 30, 32, 34, 35, 37, 41, 51, 54, 58, 59, 64, 65, 67, 69, 70, 74, 75, 76, 77, 80, 81, 101, 103-108, 116

87Rb/86Sr dating 84 Redeposition, sedimentary 4,

15, 17, 19, 29, 36, 38, 42, 56, 1, 4, 7, 9, 14, 20, 24, 29, 33, 35, 54, 56, 59, 64, 67, 69, 77, 81, 83, 84, 93, 96, 101, 103, 105, 107

Redox boundary 100 Reduction 94 Reexposure 45, 47, 54, 65, 83 Regime,

transpressional 55, 77, 107, 108, 113, 115

compressional 108, 113 Regression 30, 2 reicheli Zone 2, 58, 59 Replenishment, sand 96, 116 Resuspension 29, 64, 86, 93,

98, 115 Revolution, French 2 Reworking, sedimentary 42, 1,

4, 20, 35, 51, 54, 59, 64, 65, 67, 83

Ridge volume 3 Ripple 12 Rotalipora 21, 24, 54 Rotation, continental 2 Rudist 9, 110

Saline water 3 Salinity stratification 3 Sand,

asymmetric sandbody 20, 37 depletion 96 glauconitic 7, 9, 10, 18-21,

24, 25, 28, 33, 35-38, 45, 47, 49, 51, 21, 30, 37, 41, 43, 51, 54, 58, 59, 64, 67, 80, 84, 87, 116

matrix-rich sandstone 100 matrix-poor sandstone 101 migrating sandbody 54 packages 96

palimpsest 98, 115, 116 replenishment 96, 116 sandbar 7 sandbed 2 sandbody, 20, 54, 37, 41,

83, 84, 96, 98, 101 sandridge 24 sandsheet 21, 20, 24, 41, 98 sandstone 7, 9, 21, 25, 33,

36, 37, 45, 49, 51, 4, 13, 30, 41, 59, 67, 76, 80, 84, 113

siliciclastic 20, 24, 51, 14, 24, 51, 76, 96, 98, 100, 101, 105, 115, 116

wedge-shaped sandbody 41, 83 Sandwiching, by a paired

current system 37, 41, 83 S~ntis Nappe 1, 2, 4, 7, 6 Santonian,

general 2, 3, 55, 3, 67, 70- 74, 75, 116

Lower 2, 55, 70-71 Upper 2, 55, I, 1, 4, 7, 9,

70-74, 116 Scavenger 98 Schistes lustres 26 Schrattenkalk Formation 2-9,

15-19, 24, 34-36, 45, 51, 56, 57, 4, 7, 9, 11, 13, 14, 20, 30, 33, 37, 43, 51, 65, 67, 75, 76, 90, 101, 105, 106, 108, 110, 113

Scolicia 13, 24 Scouring 64 Sea level,

elevated 52 eustatic change 3, 84, 96,

101-104, 113 fall 86, 101, 103-106, 108,

115, 116 highstand I, 3 relative change 3, 55, 56,

II, 8, 101-105, 112, 114, 116, 117

rise 56, 35, 80, 96, 101, 103-108, 110, 113, 115,

146

116 Seaway, circum-equatorial 2 Sediment,

autochthonous 32, 64 accumulation profile 6, 10,

16, 20, 30 accumulation rates 6, 10,

16, 20, 29, 30, 51, 7, 11, 35, 37, 43, 52, 58, 59, 64, 70, 75, 80, 81, 83, 84, 87, 90, 93, 94, 96-98, 100, 101, 104, 105, 112- 114, 116

allochthonous 28, 30, 33, 43, 49

bypassing 6, 16, 20, 51, I, II, 2, 51,96

calcareous 24, 41, 81, 115 compaction rates I01 condensed I, 1, 4, 7, 8, 11,

33, 37, 43, 54, 56, 90, 104, 106, 112, 113, 115, 117

detritus-rich 24, 3, 4, 49, 75

glauconitic I, 1, 3, 7, 21, 43, 54, 56, 75

hemipelagic 4, 6, 51, 4, 14, 81, 83, 86, 115

laminated 7, 9, 10, 15, 19, 51, 21, 24, 51, 54, 81, 115

micritic 49, 54, 56 mixing rates 98 muddy 115 nonphosphatic 24, 25, 49,

51, 54, 83 pelagic 10, 29, 30, I, 1, 4,

51, 56, 58, 64, 75 phosphatic 6, 23-28, 30, I,

1 , 3 , 7 , 8 , 1 1 , 1 4 , 3 0 , 33, 43, 49, 56, 75, 80, 83, 90, 97, 100, 101, 113, 115, 117

siliceous 89 siliciclastic 20, 22, 24,

96, 97, 103, 105, 106 spillover 6, 20, 51, 116 stabilizer 54, 90, 98 turbiditic 86 winnowed 43, 49, 90

Sedimentary cycle, asymmetric II, 2 general 9, 112 termination 2, 9

Sedimentary regime, current-dominated 7, 54 detritus-dominated 7 pelagic 7, 56, 59, 64, 71,

113, 115, 116 Sedimentary slide 42, 74

116 Sedimentary structure 1 I0 Seewen Formation

general 2, 3, 7, 15, 19, 24, 28-30, 32-42, 49, 4, 7, 26, 56-71, 74, 81, 103, 106, 107

lower part 2, 7, 15, 19, 21, 24, 28-30, 32-34, 36, 49, 43, 56-59

upper part 2, 7, 15, 19, 29, 32-34, 36, 38-42, 49, 64- 71

Sellamatt Beds 2, 15, 19-21, 24, 49, 37, 41, 43, 49, 75, 80, 83, 84, 96, 100, 106

Sequence, boundary 112 coarsening-upward 22, 37,

41, 84 deepening-upward 3, I, 1, 8,

112 shallowing-upward 3, 8, 112,

113 seranonis Zone 2 Serpulid 45, 83 Shale 7, 15, 19, 56 Shallowing upward 3, 8, 75,

104, 112, 113 Shark 89 Shelf,

definition 4

147

inner shelf 2, 6, 7, 10, 15- 17, 19-21, 24, 29, 30, 32, 34, 49, 51, 55-57, I,II, 4, 7, 11, 20, 24, 30, 33, 37, 41, 43, 49, 51, 54, 56, 58, 59, 64, 67, 69-71, 74, 75-77, 81, 83, 84, 86, 87, 96, I00, 101, 103, 106, 107, 115, 116

outer shelf 2, 6, 7, 10, 11, 15, 16, 19, 20, 29, 30, 32, 34, 49, 51, 56, 57, I, 4, 9, 20, 24, 26, 35, 51, 54, 58, 59, 69, 71 75-77, 81, 86, 87, 101 106, 107, 110, 115, 116

sigali Zone 2, 64, 65 Slump-folded 14, 36, 37, 42,

24, 67, 106 Solifluction, subaqueous 1 Soviet Republics 4, 78 Spain 3, 4, 9 Sparite 8, 24 Spiculitic 14, 24, 21, 24, 26,

37, 41 Spillover sediment 6, 20, 51,

116 Sponge,

general 23, 24, 13, 41, 89, 97

calcareous 110 Spreading,

general 44 rates 55, I, 2, 3

Steepening 35, 75, 76, 77, 103 Stereom 97 "Sternen Oolith" 56 Stoliczkaia 54, 78 Storm,

event 56, 9, 33, 105, 106, 110, 115

wave base, average 55 Stress, transmission mechanism

108 Stromatolite 90 Stromatoporoid 9, 110

Stylolite, bed-parallel 21, 41 Subduction 44, 55 Subplate boundary 108 Subsidence,

crustal 101, 103 differential 35, 69, 74-77,

84, 101, 103, 107, 115-117 general 113, 114

Suspension feeder 54, 89, 94, 97

Switzerland, central 7, 11, 14, 22, 69,

110 eastern 1, 56, 57, 1, 7, 11,

14, 22, 29, 33, 56, 59, 69, 75, 110

western 7, 69 Synchronous 56, 104-107 Syntaxiallly grown 8

tardefurcata Zone 2, 17, 19, 24, 25, 28, 37, 43, 51, 54, 96

Tectonic, activity I, 2, 7, 75, 112 eoalpine event 55, II, 2,

103, 107-108 event 55, 56, 101, 103, 105-

108, 110, 115-117 phases 55

Tectono-eustatic pulse 107 Tertiary 2 Tethys,

closure 2 general 115 northern Tethys margin I, 2,

3, 80, 103, 115, 117 southern Tethys margin 4 western 55

Tetragonites 77 Textural preservation 91, 97 Thalassinoides 33, 59 Tidal energy 86 Timetable 2 Time-transgressive 56, 7, 105,

106 Topography 67, 75-77, 84, 104,

148

105 Trace fossil 24 Transgression,

general 55, 1, 2 "Cenoman"-Transgression 55,

4, 103 Transparency, water 110 Transpression 77, 107, 113,

115 Transportation 51, 56, 83, 96,

97, 100, 115, 116 Truncation,

low-angle 40, 70 surface 46, 83, 105

Tunisia 4 Tunneling, hydraulic 20, 28,

49, 75 Turbidite 51, 24, 29, 35, 67,

87 Turbidity flow,

deposit 51 general 67, 87, 117 high-density 64, 105, 116

turkmenicum Zone 2, 14 Turonian,

general 2, 3, 32, 34, 55, 3, 7, 59-70, 77, 104, 116

Lower 2, 32, 55, 7, 37, 59- 64, 116

Middle 2, 37, 55, 64, 116 Upper 2, 34, 55, 7, 64-70,

103, 104, 108, 116 Tw/iriberg Bed 15, 17, 18, 49,

56, 30, 33, 77, 80, 89, 90, 103, 106

Ultrahelvetic nappe 1, 19, 41, 26, 29, 51

Unconformity, angular 70, 72, 105, 107 basal plane 104, 105 current-induced l, 104-107 general 39, II, 1, 20, 74,

101, 104-107 genuine 104, 105 high-angle 42 initiating event 104

irregular 105 multi-event 104 planar 105 single-event, truncational

1, 59, 104-107 terminating event 105 timespan included 105 time-transgressive 106

"Upper Orbitolina Beds" 4, 6, 56, 11, 20, 76, 80

Upwelling 89

Valais Trough 108 Valanginian 3 Vitznau Formation 3 Vocontian Trough 4 Volcanism,

activity 2, 112 off-ridge I, 2

Vorarlberg 1, 56, 57, 1, 7, 14, 29, 37, 77, 80, 101

Wang Formation 3 Wannenalp Bed 2, 19, 21, 23,

24, 43, 43, 77, 80, 87 Water,

jet 86 burst 86 interstitial 94 nutrient-rich 1, 89 oligotrophic 115 saline 3 storm 86 transparency 110

Wave base 55 weissi-albrechtiaustriae Zone

2 Western Interior 3 Wind energy 86 Winnowing 4, 6, 16, 19, 20,

22, 23, 25, 29, 30, 41, 51, 54, 56, 1, 11, 43, 49, 56, 70, 83, 86, 89, 100, 101, 113, 117

Zoophycus 13, 24 Zooxanthellid algae I10

Section Localities

Coordinates and locality names used here correspond to the topographic map "Hoher Freschen", 1:50.000, no. 228, Swiss Federal Topographic Survey, 3084 Wabern (cf. F611mi 1986)

Fig. 4. Section 1. Feldkirch Section 2. Schellenberg, Nofels Section 3. Moos, Emmabach Section 4. U. W~ildle Alp Section 5. Gunzmoos, Nest Alps Section 6. Laubach Alp Section 7. Hinterwang Section 8. Mittagspitz

762.900/234.150/460 762.080/235.750/460 770.470/244.970/1050 774.900/245.180/1070 777.520/246.920/1230 778.050/247.300/1280 773.030/240.250/1330 785.000/242.700/1900

Fig. 5. A. B.

Unt. W~ildle Alp Schellenberg, Nofels

774.900/245.180/1070 762.080/235.750/460

Fig. 7. Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section

I . 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

Rappenloch bridge Niedere, H. Knopf N G6tzis Gsohl Alp 0rfla Gulch Moos, Emmabach Gunzmoos Alp Obersehren Alp Obersehren Alp Laubach Alp Ilgenwald Alp Hoher Freschen S Hoher Freschen Siinser Kopf Stinser Alp Street to Damuls Mellenbach Hohe Kugel

776.820/250.820/610 776.500/249.100/810 768.000/245.900/460 771.000/247.050/810 767.850/244.400/525 770.470/244.970/1050 778.000/248.300/970 781.150/248.430/1450 780.650/248.270/1510 778.050/247.300/1280 775.300/245.550/1080 777.230/242.070/1990 777.600/241.620/1900 781.900/241.850/2010 781.420/240.580/1765 798.250/242.200/1080 780.500/240.150/1560 771.800/244.820/1530

Fig. 8. Niedere, H. Knopf 776.500/249.100/810

Fig. 9. N G6tzis 768.000/245.900/460

!50

Fig. 12 and 13.

Fig. 14. A. B.

Fig. 15. Section 1. Section 2. Section 3. Section 4. Section 5. Section 6. Section 7. Section 8. Section 9. Section 10.

Fig. 18. A. B.

Fig. 19. Section 1. Section 2. Section 3. Section 4. Section 5. Section 6. Section 7. Section 8. Section 9. Section 10. Section 11. Section 12. Section 13. Section 14. Section 15. Section 16. Section 17.

Fig. 21. From left to right

Mellenbach

Staff el Alp Hohe Kugel

Chfiserrugg Stein Strahlkopf Langensack Bocksberg Hohe Lug, Emmabach Tschi~tsch Klaus Simonsbach Rankweil

Gsohl Alp Klaus

Fallbach Klausberg Hof Miiselbach Alploch Gulch Breiterberg Schwarzenberg N G6tzis Gsohl Alp Hohe Lug, Emmabach Osanken Ache Simonsbach Dafins K6rb Alp Hohe Matona Street to Damuls

Finsternaubach Hof Mi~selbach

780.500/240.i50/1560

771.870/244.250/1420 771.800/244.820/1530

742.650 764.300 772.250 779.650 775.050 769.370 765.530 766.950 783.750 767.950

/224.750/2040 /233.400/520 /247.700/950 /250.670/1100 /248.370/1160 /244.600/830 /242.320/450 /242.470/500 /248.400/780 /238.440/500

770.620/247.070/700 767.600/242.750/590

774.500/250.250/890 781.800/252.850/670 784.450/250.950/640 777.750/250.650/730 776.500/250.050/600 772.800/249.550/890 773.050/248.950/1040 768.000/245.900/460 771.000/247.050/810 769.370/244.600/830 768.020/243.070/640 777.300/247.900/980 783.750/248.400/780 770.250/240.800/750 777.100/243.630/1510 777.750/241.030/1960 798.250/242.200/1080

770.750/247.650/550 784.450/250.950/640 777.750/250.650/730

Fig. 22.

Fig. 23.

Fig. 24. From left to right

Fig. 25. A. B.

Fig. 26.

Fig. 27.

Fig. 29. Section 1. Section 2. Section 3. Section 4. Section 5. Section 6. Section 7.

Fig. 31.

Fig. 32. Section 1. Section 2. Section 3.

151

N G6tzis Strahlkopf

Steinriesler Bach

Schwarzenberg

Breiterberg Rappenloch bridge Orfla Gulch Hohe Lug, Emmabach Klaus Ache Stein

Steinriesler Bach Osanken

V. Schaner Alp

Strahlkopf

Mi~selbach Unterklien Sch. Mann Alp Simonsbach U. Saluver Alp SW Hohe Matona Hohe Matona

Mtiselbach

Orfla Gulch Hoher Freschen S Hoher Freschen

768.000/245.900/460 772.250/247.700/950

782.100/252.800/590

773.050/248.950/1040

772.800/249.550/890 776.820/250.820/610 767.850/244.400/525 769.370/244.600/830 766.950/242.470/500 777.300/247.900/980 764.300/233.400/520

782.100/252.800/590 768.020/243.070/640

776.470/247.320/980

772.430/247.270/1350

777.750/250.650/730 772.950/250.650/450 772.900/247.150/1300 783.750/248.400/780 776.850/239.870/1570 777.180/240.350/1820 777.680/241.000/1990

777.750/250.650/730

767.850/244.400/525 777.230/242.070/1990 777.600/241.620/1900

Fig. 33. A. B.

Fig. 34. Section 1. Section 2. Section 3. Section 4. Section 5. Section 6. Section 7. Section 8. Section 9. Section 10. Section 11. Section 12. Section 13. Section 14. Section 15. Section 16. Section 17. Section 18. Section 19. Section 20.

Fig. 35.

Fig. 37. A. B.

Fig. 38.

Fig. 39.

Fig, 40.

Fig. 41.

Fig. 42.

G6tznerberg Emserhalde

152

Finsternaubach Finsternaubach Fallbach Klausberg Alploch Gulch E Giitle Mtiselbach Ofen Simonsbach S~ick Alp Bocksberg Rudachbach Malertobel Rotwald Hasengerach Alp First Ratzbach R6this R6fix, R6this K6rb Alp

Rudachbach

Kobel Ache Finsternaubach

S Hof

Gsohl Alp

Hasengerach Alp

Staff el Alp

768.470/246.000/480 768.900/246.200/550

770.750/247.600/570 771.070/247.800/660 774.500/250.250/890 781.800/252.850/670 776.500/250.050/600 777.350/251.120/600 777.750/250.650/730 779.000/251.000/1020 783.750/248.400/800 779.030/250.350/1020 774.850/248.330/1180 777.600/249.030/870 771.370/240.920/960 771.750 779.200 772.800 770.950 767.750 768.800 777.100

/240.900/1230 /248.050/1340 /244.380/1590 /243.400/1010 /241.050/580 /240.700/580 /243.580/1520

777.600/249.030/870

777.470/250.020/790 770.750/247.600/570

783.850/250,650/680

770.850/247.050/710

779.420/248.250/1260

772.200/244.450~1440

Rudachbach 777.550/249.900/790

Fig. 45. A. B.

Fig. 46.

Fig. 47.

Fig. 48 and 52.

Fig. 53.

153

E Gi~tle Steinriesler Bach

Simonsbach

Bezau

Unterklien

777.350/251.120/600 782.100/252.800/590

783.750/248.400/780

772.050/250.300/460

Ki~hberg Alp 774.650/250.850/910