lecture iii: heterogeneous environments200.145.112.249/webcast/files/lecture3_debarre.pdf ·...

89
Lecture III: Heterogeneous environments January F. Débarre São Paulo, Jan

Upload: others

Post on 27-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Lecture III: Heterogeneous environments

January 2017

F. Débarre São Paulo, Jan 2017 1

Page 2: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model

Habitat 1 Habitat 2

Dispersal

∞ individuals

then

F. Débarre São Paulo, Jan 2017 2

Page 3: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model

Habitat 1 Habitat 2

Dispersal

∞ individuals

then

F. Débarre São Paulo, Jan 2017 2

Page 4: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model

Habitat 1 Habitat 2

Dispersal

∞ individuals

then

F. Débarre São Paulo, Jan 2017 2

Page 5: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Outline

Introduction

Discrete timemodelsSo� selectionHard selection

Continuous timemodel

F. Débarre São Paulo, Jan 2017 3

Page 6: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Discrete timemodels

Models with global pooling: all individuals join a pool of dispersers.

No dri�:∞ individuals in each deme.

F. Débarre São Paulo, Jan 2017 4

Page 7: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Discrete timemodels

Models with global pooling: all individuals join a pool of dispersers.

No dri�:∞ individuals in each deme.

F. Débarre São Paulo, Jan 2017 4

Page 8: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Discrete timemodels

Models with global pooling: all individuals join a pool of dispersers.

No dri�:∞ individuals in each deme.

F. Débarre São Paulo, Jan 2017 4

Page 9: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Discrete timemodels

Models with global pooling: all individuals join a pool of dispersers.

No dri�:∞ individuals in each deme.

F. Débarre São Paulo, Jan 2017 4

Page 10: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Levenemodel”Or the importance of being clear about life-cycles...

Reproduction,Selection

Densityregulation

Pooling

Settlement

Viabilities:

A aIn habitat 1 w1 > v1In habitat 2 w2 < v2

Notation:c Proportion of type-1 habitatsp Frequency of A in the population.

∆p = p′ − p

= cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

[Levene, 1953, Ravigné et al., 2004]

F. Débarre São Paulo, Jan 2017 5

Page 11: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Levenemodel”Or the importance of being clear about life-cycles...

Reproduction,Selection

Densityregulation

Pooling

Settlement Viabilities:

A aIn habitat 1 w1 > v1In habitat 2 w2 < v2

Notation:c Proportion of type-1 habitatsp Frequency of A in the population.

∆p = p′ − p

= cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

[Levene, 1953, Ravigné et al., 2004]

F. Débarre São Paulo, Jan 2017 5

Page 12: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Levenemodel”Or the importance of being clear about life-cycles...

Reproduction,Selection

Densityregulation

Pooling

Settlement Viabilities:

A aIn habitat 1 w1 > v1In habitat 2 w2 < v2

Notation:c Proportion of type-1 habitatsp Frequency of A in the population.

∆p = p′ − p

= cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

[Levene, 1953, Ravigné et al., 2004]

F. Débarre São Paulo, Jan 2017 5

Page 13: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Levenemodel”Or the importance of being clear about life-cycles...

Reproduction,Selection

Densityregulation

Pooling

Settlement Viabilities:

A aIn habitat 1 w1 > v1In habitat 2 w2 < v2

Notation:c Proportion of type-1 habitatsp Frequency of A in the population.

∆p = p′ − p

= cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

[Levene, 1953, Ravigné et al., 2004]

F. Débarre São Paulo, Jan 2017 5

Page 14: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Levenemodel” (2)

∆p = cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

Equilibria:

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1v1

+ (1− c)w2v2

< 1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●●

otherwise

p∗ = cv2

v2 − w2− (1− c) v1

w1 − v1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cv1w1

+ (1− c) v2w2

< 1

F. Débarre São Paulo, Jan 2017 6

Page 15: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Levenemodel” (2)

∆p = cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

Equilibria:

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1v1

+ (1− c)w2v2

< 1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●●

otherwise

p∗ = cv2

v2 − w2− (1− c) v1

w1 − v1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cv1w1

+ (1− c) v2w2

< 1

F. Débarre São Paulo, Jan 2017 6

Page 16: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Levenemodel” (2)

∆p = cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

Equilibria:

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1v1

+ (1− c)w2v2

< 1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●●

otherwise

p∗ = cv2

v2 − w2− (1− c) v1

w1 − v1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cv1w1

+ (1− c) v2w2

< 1

F. Débarre São Paulo, Jan 2017 6

Page 17: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Levenemodel” (2)

∆p = cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

Equilibria:

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1v1

+ (1− c)w2v2

< 1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●●

otherwise

p∗ = cv2

v2 − w2− (1− c) v1

w1 − v1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cv1w1

+ (1− c) v2w2

< 1

F. Débarre São Paulo, Jan 2017 6

Page 18: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Levenemodel” (2)

∆p = cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

Equilibria:

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1v1

+ (1− c)w2v2

< 1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●●

otherwise

p∗ = cv2

v2 − w2− (1− c) v1

w1 − v1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cv1w1

+ (1− c) v2w2

< 1

F. Débarre São Paulo, Jan 2017 6

Page 19: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Levenemodel”

Reproduction,Selection

Densityregulation

Pooling

Settlement Viabilities:

A aIn habitat 1 w1 > v1In habitat 2 w2 < v2

Notation:c Proportion of type-1 habitatsp Frequency of A in the population.

∆p = p′ − p

=[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

[Dempster, 1955, Ravigné et al., 2004]

F. Débarre São Paulo, Jan 2017 7

Page 20: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Dempster model”

/“Model 3”

Reproduction,Selection

Densityregulation

Pooling

Settlement Viabilities:

A aIn habitat 1 w1 > v1In habitat 2 w2 < v2

Notation:c Proportion of type-1 habitatsp Frequency of A in the population.

∆p = p′ − p

=[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

[Dempster, 1955, Ravigné et al., 2004]

F. Débarre São Paulo, Jan 2017 7

Page 21: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Dempster model”

/“Model 3”

Reproduction,Selection

Densityregulation

Pooling

Settlement Viabilities:

A aIn habitat 1 w1 > v1In habitat 2 w2 < v2

Notation:c Proportion of type-1 habitatsp Frequency of A in the population.

∆p = p′ − p

=[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

[Dempster, 1955, Ravigné et al., 2004]

F. Débarre São Paulo, Jan 2017 7

Page 22: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Dempster model”/“Model 3”

Reproduction,Selection

Pooling

Settlement

Densityregulation

Viabilities:

A aIn habitat 1 w1 > v1In habitat 2 w2 < v2

Notation:c Proportion of type-1 habitatsp Frequency of A in the population.

∆p = p′ − p

=[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

[Dempster, 1955, Ravigné et al., 2004]

F. Débarre São Paulo, Jan 2017 7

Page 23: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Dempster model”/“Model 3” (2)

∆p =[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

Equilibria:

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1 + (1− c)w2cv1 + (1− c)v2

< 1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●●

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1 + (1− c)w2cv1 + (1− c)v2

> 1

F. Débarre São Paulo, Jan 2017 8

Page 24: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Dempster model”/“Model 3” (2)

∆p =[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

Equilibria:

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1 + (1− c)w2cv1 + (1− c)v2

< 1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●●

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1 + (1− c)w2cv1 + (1− c)v2

> 1

F. Débarre São Paulo, Jan 2017 8

Page 25: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Dempster model”/“Model 3” (2)

∆p =[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

Equilibria:

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1 + (1− c)w2cv1 + (1− c)v2

< 1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●●

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1 + (1− c)w2cv1 + (1− c)v2

> 1

F. Débarre São Paulo, Jan 2017 8

Page 26: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Dempster model”/“Model 3” (2)

∆p =[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

Equilibria:

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1 + (1− c)w2cv1 + (1− c)v2

< 1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●●

Frequency of A (p)∆(

p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1 + (1− c)w2cv1 + (1− c)v2

> 1

F. Débarre São Paulo, Jan 2017 8

Page 27: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

“Dempster model”/“Model 3” (2)

∆p =[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

Equilibria:

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1 + (1− c)w2cv1 + (1− c)v2

< 1

Frequency of A (p)

∆(p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●●

Frequency of A (p)∆(

p)

0.0 0.2 0.4 0.6 0.8 1.0

−0.01

0.0

0.01

● ●

cw1 + (1− c)w2cv1 + (1− c)v2

> 1

F. Débarre São Paulo, Jan 2017 8

Page 28: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Regimes of selection

Levene

– So� selection

∆p = cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

I Contribution from each habitat does not depend on theircompositionProportion of individuals coming from type-1 habitats is c.

Dempster

– Hard selection

∆p =[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

I Contribution from each habitat depends on their compositionProportion of individuals coming from type-1 habitats is

c w1p+v1(1−p)[cw1+(1−c)w2] p+[cv1+(1−c)v2] (1−p) .

[Wallace, 1975]

F. Débarre São Paulo, Jan 2017 9

Page 29: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Regimes of selection

Levene – So� selection

∆p = cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

I Contribution from each habitat does not depend on theircompositionProportion of individuals coming from type-1 habitats is c.

Dempster

– Hard selection

∆p =[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

I Contribution from each habitat depends on their compositionProportion of individuals coming from type-1 habitats is

c w1p+v1(1−p)[cw1+(1−c)w2] p+[cv1+(1−c)v2] (1−p) .

[Wallace, 1975]

F. Débarre São Paulo, Jan 2017 9

Page 30: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Regimes of selection

Levene – So� selection

∆p = cw1p

w1p + v1(1− p)+ (1− c) w2p

w2p + v2(1− p)− p.

I Contribution from each habitat does not depend on theircompositionProportion of individuals coming from type-1 habitats is c.

Dempster – Hard selection

∆p =[cw1 + (1− c)w2] p

[cw1 + (1− c)w2] p + [cv1 + (1− c)v2] (1− p)− p.

I Contribution from each habitat depends on their compositionProportion of individuals coming from type-1 habitats is

c w1p+v1(1−p)[cw1+(1−c)w2] p+[cv1+(1−c)v2] (1−p) .

[Wallace, 1975]

F. Débarre São Paulo, Jan 2017 9

Page 31: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

So� selection, hard selection

Origin of the terms

I International monetary exchange:so� vs. hard currencies.

I Context: mutation load

(c)[Wallace,1968,p.428]

In-between and beyond

I Density dependence,I Non global pooling,I Multiple dispersal steps.

[Wallace, 1968, Wallace, 1975, Débarre and Gandon, 2011]F. Débarre São Paulo, Jan 2017 10

Page 32: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

So� selection, hard selection

Origin of the termsI International monetary exchange:so� vs. hard currencies.

I Context: mutation load

(c)[Wallace,1968,p.428]

In-between and beyond

I Density dependence,I Non global pooling,I Multiple dispersal steps.

[Wallace, 1968, Wallace, 1975, Débarre and Gandon, 2011]F. Débarre São Paulo, Jan 2017 10

Page 33: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

So� selection, hard selection

Origin of the termsI International monetary exchange:so� vs. hard currencies.

I Context: mutation load

(c)[Wallace,1968,p.428]

In-between and beyond

I Density dependence,I Non global pooling,I Multiple dispersal steps.

[Wallace, 1968, Wallace, 1975, Débarre and Gandon, 2011]F. Débarre São Paulo, Jan 2017 10

Page 34: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

So� selection, hard selection

Origin of the termsI International monetary exchange:so� vs. hard currencies.

I Context: mutation load

(c)[Wallace,1968,p.428]

In-between and beyond

I Density dependence,I Non global pooling,I Multiple dispersal steps.

[Wallace, 1968, Wallace, 1975, Débarre and Gandon, 2011]F. Débarre São Paulo, Jan 2017 10

Page 35: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

So� selection, hard selection

Origin of the termsI International monetary exchange:so� vs. hard currencies.

I Context: mutation load

(c)[Wallace,1968,p.428]

In-between and beyond

I Density dependence,I Non global pooling,I Multiple dispersal steps.

[Wallace, 1968, Wallace, 1975, Débarre and Gandon, 2011]F. Débarre São Paulo, Jan 2017 10

Page 36: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Between so� and hard selection

Life-cycle

[Débarre and Gandon, 2011]F. Débarre São Paulo, Jan 2017 11

Page 37: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Between so� and hard selection

Life-cycle

[Débarre and Gandon, 2011]F. Débarre São Paulo, Jan 2017 11

Page 38: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Between so� and hard selection (continued)

Coexistence of the extreme specialists

[Débarre and Gandon, 2011]

F. Débarre São Paulo, Jan 2017 12

Page 39: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Outline

Introduction

Discrete timemodels

Continuous timemodel

F. Débarre São Paulo, Jan 2017 13

Page 40: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model ingredients

I Two habitats, 1 and 2, in equal proportions;

I Continuous trait determines adaptation to local habitat

z0 1

I Logistic growth

I Additional mortality in habitat j of an individual with trait z isg (1− fj(z))

I Dispersal in the other habitat at ratem

∂Nj(z, t)∂t

=

[

(1−

∫Nj(y, t)dy

)− g (1− fj(z))

]Nj(z, t)

+ m(Nl(z, t)− Nj(z, t))

+

∫µ(y)Nj(z − y, t)dy − Nj(z, t)

.

[Débarre et al., 2013]F. Débarre São Paulo, Jan 2017 14

Page 41: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model ingredients

I Two habitats, 1 and 2, in equal proportions;

I Continuous trait determines adaptation to local habitat

z0 1

I Logistic growth

I Additional mortality in habitat j of an individual with trait z isg (1− fj(z))

I Dispersal in the other habitat at ratem

∂Nj(z, t)∂t

=

[

(1−

∫Nj(y, t)dy

)− g (1− fj(z))

]Nj(z, t)

+ m(Nl(z, t)− Nj(z, t))

+

∫µ(y)Nj(z − y, t)dy − Nj(z, t)

.

[Débarre et al., 2013]F. Débarre São Paulo, Jan 2017 14

Page 42: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model ingredients

I Two habitats, 1 and 2, in equal proportions;

I Continuous trait determines adaptation to local habitat

z0 1

I Logistic growth

I Additional mortality in habitat j of an individual with trait z isg (1− fj(z))

I Dispersal in the other habitat at ratem

∂Nj(z, t)∂t

=

[(1−

∫Nj(y, t)dy

)

− g (1− fj(z))

]Nj(z, t)

+ m(Nl(z, t)− Nj(z, t))

+

∫µ(y)Nj(z − y, t)dy − Nj(z, t)

.

[Débarre et al., 2013]F. Débarre São Paulo, Jan 2017 14

Page 43: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model ingredients

I Two habitats, 1 and 2, in equal proportions;

I Continuous trait determines adaptation to local habitat

z0 1

I Logistic growth

I Additional mortality in habitat j of an individual with trait z isg (1− fj(z))

I Dispersal in the other habitat at ratem

∂Nj(z, t)∂t

=

[(1−

∫Nj(y, t)dy

)− g (1− fj(z))

]Nj(z, t)

+ m(Nl(z, t)− Nj(z, t))

+

∫µ(y)Nj(z − y, t)dy − Nj(z, t)

.

[Débarre et al., 2013]F. Débarre São Paulo, Jan 2017 14

Page 44: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model ingredients

I Two habitats, 1 and 2, in equal proportions;

I Continuous trait determines adaptation to local habitat

z0 1

I Logistic growth

I Additional mortality in habitat j of an individual with trait z isg (1− fj(z))

I Dispersal in the other habitat at ratem

∂Nj(z, t)∂t

=

[(1−

∫Nj(y, t)dy

)− g (1− fj(z))

]Nj(z, t)

+ m(Nl(z, t)− Nj(z, t))

+

∫µ(y)Nj(z − y, t)dy − Nj(z, t)

.

[Débarre et al., 2013]F. Débarre São Paulo, Jan 2017 14

Page 45: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model ingredients

I Two habitats, 1 and 2, in equal proportions;

I Continuous trait determines adaptation to local habitat

z0 1

I Logistic growth

I Additional mortality in habitat j of an individual with trait z isg (1− fj(z))

I Dispersal in the other habitat at ratem

∂Nj(z, t)∂t

=

[(1−

∫Nj(y, t)dy

)− g (1− fj(z))

]Nj(z, t)

+ m(Nl(z, t)− Nj(z, t))

+

∫µ(y)Nj(z − y, t)dy − Nj(z, t).

[Débarre et al., 2013]F. Débarre São Paulo, Jan 2017 14

Page 46: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model ingredients (2)

Adaptation to local conditions

Trait (z)

Exp

. gro

wth

rat

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

f1(z)

f 2(z

)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

f2(z) = u (f1(z))

Trade-o�

1− g(1− fj(z))

f1(z) = 1− z2f2(z) = 1− (1− z)2

F. Débarre São Paulo, Jan 2017 15

Page 47: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model ingredients (2)

Adaptation to local conditions

Trait (z)

Exp

. gro

wth

rat

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

f1(z)

f 2(z

)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

f2(z) = u (f1(z))

Trade-o�

1− g(1− fj(z))

f1(z) = 1− z2f2(z) = 1− (1− z)2

F. Débarre São Paulo, Jan 2017 15

Page 48: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model ingredients (2)

Adaptation to local conditions

Trait (z)

Exp

. gro

wth

rat

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

f1(z)

f 2(z

)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

f2(z) = u (f1(z))

Trade-o�

1− g(1− fj(z))

f1(z) = 1− z2f2(z) = 1− (1− z)2

F. Débarre São Paulo, Jan 2017 15

Page 49: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Model ingredients (2)

Adaptation to local conditions

Trait (z)

Exp

. gro

wth

rat

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

f1(z)

f 2(z

)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

f2(z) = u (f1(z))

Trade-o�

1− g(1− fj(z))

f1(z) = 1− z2f2(z) = 1− (1− z)2

F. Débarre São Paulo, Jan 2017 15

Page 50: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Adaptive dynamics[Meszéna et al., 1997]

Resident only

dN1dt

= [(1− N1)− g(1− f1(zr))]N1 + m(N2 − N1)

dN2dt

= [(1− N2)− g(1− f2(zr))]N2 + m(N1 − N2)

→ equilibrium densities (N1, N2)

Dynamics of a rare mutant

dNm1dt

=[(1− N1

)− g(1− f1(zm))

]Nm1 + m(Nm2 − Nm1 )

dNm2dt

=[(1− N2

)− g(1− f2(zm))

]Nm2 + m(Nm1 − Nm2 )

→ invasion fitness λ(zm, zr)Dominant eigenvalue of the Jacobian matrix obtained from the above system.

eigenvalues more on stability analysis

F. Débarre São Paulo, Jan 2017 16

Page 51: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Adaptive dynamics[Meszéna et al., 1997]

Resident only

dN1dt

= [(1− N1)− g(1− f1(zr))]N1 + m(N2 − N1)

dN2dt

= [(1− N2)− g(1− f2(zr))]N2 + m(N1 − N2)

→ equilibrium densities (N1, N2)

Dynamics of a rare mutant

dNm1dt

=[(1− N1

)− g(1− f1(zm))

]Nm1 + m(Nm2 − Nm1 )

dNm2dt

=[(1− N2

)− g(1− f2(zm))

]Nm2 + m(Nm1 − Nm2 )

→ invasion fitness λ(zm, zr)Dominant eigenvalue of the Jacobian matrix obtained from the above system.

eigenvalues more on stability analysis

F. Débarre São Paulo, Jan 2017 16

Page 52: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Adaptive dynamics[Meszéna et al., 1997]

Resident only

dN1dt

= [(1− N1)− g(1− f1(zr))]N1 + m(N2 − N1)

dN2dt

= [(1− N2)− g(1− f2(zr))]N2 + m(N1 − N2)

→ equilibrium densities (N1, N2)

Dynamics of a rare mutant

dNm1dt

=[(1− N1

)− g(1− f1(zm))

]Nm1 + m(Nm2 − Nm1 )

dNm2dt

=[(1− N2

)− g(1− f2(zm))

]Nm2 + m(Nm1 − Nm2 )

→ invasion fitness λ(zm, zr)Dominant eigenvalue of the Jacobian matrix obtained from the above system.

eigenvalues more on stability analysis

F. Débarre São Paulo, Jan 2017 16

Page 53: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Adaptive dynamics[Meszéna et al., 1997]

Resident only

dN1dt

= [(1− N1)− g(1− f1(zr))]N1 + m(N2 − N1)

dN2dt

= [(1− N2)− g(1− f2(zr))]N2 + m(N1 − N2)

→ equilibrium densities (N1, N2)

Dynamics of a rare mutant

dNm1dt

=[(1− N1

)− g(1− f1(zm))

]Nm1 + m(Nm2 − Nm1 )

dNm2dt

=[(1− N2

)− g(1− f2(zm))

]Nm2 + m(Nm1 − Nm2 )

→ invasion fitness λ(zm, zr)Dominant eigenvalue of the Jacobian matrix obtained from the above system.

eigenvalues more on stability analysis

F. Débarre São Paulo, Jan 2017 16

Page 54: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Adaptive dynamics (2)

Selection gradient

D(zr) =∂λ

∂zm

∣∣∣∣zm=zr

= g

1− 2zr +N1 − N2 − g(1− 2zr)√

4m2 + (g(1− 2zr)− (N1 − N2))2

It vanishes when zr = z∗ = 1

2 : by symmetry indeed, N1 = N2 at this point.

Convergence stability

dD(zr)dzr

∣∣∣∣zr=z∗

=gm

(g− 2m +

dN1dzr

(z∗))

Invadability

∂2λ

∂z2m

∣∣∣∣zm=zr=z∗

=g (g− 2m)

m.

F. Débarre São Paulo, Jan 2017 17

Page 55: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Adaptive dynamics (2)

Selection gradient

D(zr) =∂λ

∂zm

∣∣∣∣zm=zr

= g

1− 2zr +N1 − N2 − g(1− 2zr)√

4m2 + (g(1− 2zr)− (N1 − N2))2

It vanishes when zr = z∗ = 1

2 : by symmetry indeed, N1 = N2 at this point.

Convergence stability

dD(zr)dzr

∣∣∣∣zr=z∗

=gm

(g− 2m +

dN1dzr

(z∗))

Invadability

∂2λ

∂z2m

∣∣∣∣zm=zr=z∗

=g (g− 2m)

m.

F. Débarre São Paulo, Jan 2017 17

Page 56: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Adaptive dynamics (2)

Selection gradient

D(zr) =∂λ

∂zm

∣∣∣∣zm=zr

= g

1− 2zr +N1 − N2 − g(1− 2zr)√

4m2 + (g(1− 2zr)− (N1 − N2))2

It vanishes when zr = z∗ = 1

2 : by symmetry indeed, N1 = N2 at this point.

Convergence stability

dD(zr)dzr

∣∣∣∣zr=z∗

=gm

(g− 2m +

dN1dzr

(z∗))

Invadability

∂2λ

∂z2m

∣∣∣∣zm=zr=z∗

=g (g− 2m)

m.

F. Débarre São Paulo, Jan 2017 17

Page 57: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Pairwise invasibility plots (PIPs)

g = 2m = 0.45

g = 2m = 0.85

g = 2m = 1.2

z∗ not CS, not ES z∗ CS, not ES z∗ CS and ES

Bistability Branching point ESS

Mutual invasibility

F. Débarre São Paulo, Jan 2017 18

Page 58: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Pairwise invasibility plots (PIPs)

g = 2m = 0.45

g = 2m = 0.85

g = 2m = 1.2

z∗ not CS, not ES z∗ CS, not ES z∗ CS and ES

Bistability Branching point ESS

Mutual invasibility

F. Débarre São Paulo, Jan 2017 18

Page 59: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Identify polymorphic equilibria

There are now 2 resident types, with traits zr and z′r ; because of symmetryin the model, z′r = 1− zr .

I System of 2× 2 equations for the dynamics of the residents; identifythe equilibrium (N1, N2, N′1 = N2 , N′2 = N1).

I Mutant dynamics

dNm1dt

=[(1− N1 − N′1

)− g(1− f1(zm))

]Nm1 + m(Nm2 − Nm1 )

dNm2dt

=[(1− N2 − N′2

)− g(1− f2(zm))

]Nm2 + m(Nm1 − Nm2 )

I Determine invasion condition λ(zm, zr, z′r), selection gradients∂λ∂zm

,and identify singular strategies:

zr =12−√1− 4(m/g)2

2; z′r = 1− zr.

F. Débarre São Paulo, Jan 2017 19

Page 60: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Identify polymorphic equilibria

There are now 2 resident types, with traits zr and z′r ; because of symmetryin the model, z′r = 1− zr .

I System of 2× 2 equations for the dynamics of the residents; identifythe equilibrium (N1, N2, N′1 = N2 , N′2 = N1).

I Mutant dynamics

dNm1dt

=[(1− N1 − N′1

)− g(1− f1(zm))

]Nm1 + m(Nm2 − Nm1 )

dNm2dt

=[(1− N2 − N′2

)− g(1− f2(zm))

]Nm2 + m(Nm1 − Nm2 )

I Determine invasion condition λ(zm, zr, z′r), selection gradients∂λ∂zm

,and identify singular strategies:

zr =12−√1− 4(m/g)2

2; z′r = 1− zr.

F. Débarre São Paulo, Jan 2017 19

Page 61: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Identify polymorphic equilibria

There are now 2 resident types, with traits zr and z′r ; because of symmetryin the model, z′r = 1− zr .

I System of 2× 2 equations for the dynamics of the residents; identifythe equilibrium (N1, N2, N′1 = N2 , N′2 = N1).

I Mutant dynamics

dNm1dt

=[(1− N1 − N′1

)− g(1− f1(zm))

]Nm1 + m(Nm2 − Nm1 )

dNm2dt

=[(1− N2 − N′2

)− g(1− f2(zm))

]Nm2 + m(Nm1 − Nm2 )

I Determine invasion condition λ(zm, zr, z′r), selection gradients∂λ∂zm

,and identify singular strategies:

zr =12−√1− 4(m/g)2

2; z′r = 1− zr.

F. Débarre São Paulo, Jan 2017 19

Page 62: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Local vs. global equilibria

“Strict” adaptive dynamicsAsymmetric equilibriumadaptation to one habitat only

Local stability

PDEmodel / larger mutationsPolymorphic equilibriumadaptation to both habitats

Global stability

[Mirrahimi, 2016]

F. Débarre São Paulo, Jan 2017 20

Page 63: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Local vs. global equilibria

“Strict” adaptive dynamicsAsymmetric equilibriumadaptation to one habitat only

Local stability

PDEmodel / larger mutationsPolymorphic equilibriumadaptation to both habitats

Global stability

[Mirrahimi, 2016]

F. Débarre São Paulo, Jan 2017 20

Page 64: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Local vs. global equilibria

“Strict” adaptive dynamicsAsymmetric equilibriumadaptation to one habitat onlyLocal stability

PDEmodel / larger mutationsPolymorphic equilibriumadaptation to both habitatsGlobal stability

[Mirrahimi, 2016]

F. Débarre São Paulo, Jan 2017 20

Page 65: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

A few take-homemessages

I Question the tools you are using, the assumptions that you aremaking;Potential issues of generality and robustness

I Symmetry makes analyses easier. But it isn’t realistic!

F. Débarre São Paulo, Jan 2017 21

Page 66: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

References

Débarre, F. and Gandon, S. (2011). Evolution in heterogeneous environments: between so� and hardselection. The American Naturalist, 177(3):E84–E97.

Débarre, F., Ronce, O., and Gandon, S. (2013). Quantifying the e�ects of migration andmutation onadaptation and demography in spatially heterogeneous environments. Journal of evolutionary biology,26(6):1185–1202.

Dempster, E. R. (1955). Maintenance of genetic heterogeneity. In Cold Spring Harbor Symposia onQuantitative Biology, volume 20, pages 25–32. Cold Spring Harbor Laboratory Press.

Levene, H. (1953). Genetic equilibriumwhenmore than one ecological niche is available. The AmericanNaturalist, 87(836):331–333.

Meszéna, G., Czibula, I., and Geritz, S. (1997). Adaptive dynamics in a 2-patch environment: a toy modelfor allopatric and parapatric speciation. Journal of Biological Systems, 5(02):265–284.

Mirrahimi, S. (2016). A Hamilton-Jacobi approach to characterize the evolutionary equilibria inheterogeneous environments. arXiv preprint arXiv:1612.06193.

Otto, S. P. and Day, T. (2007). A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution,volume 13. Princeton University Press.

Ravigné, V., Olivieri, I., and Dieckmann, U. (2004). Implications of habitat choice for protectedpolymorphisms. Evolutionary Ecology Research, 6(1):125–145.

Wallace, B. (1968). Topics in population genetics. New York: WW Norton & Co., Inc.

Wallace, B. (1975). Hard and so� selection revisited. Evolution, pages 465–473.

F. Débarre São Paulo, Jan 2017 22

Page 67: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Appendix

F. Débarre São Paulo, Jan 2017 23

Page 68: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Interlude – How to find the leading eigenvaluedNm1dt

= h1(Nm1 ,Nm2 )

dNm2dt

= h2(Nm1 ,Nm2 )

Jacobian matrix

J =

(∂h1∂Nm1

∂h1∂Nm2

∂h2∂Nm1

∂h2∂Nm2

)∣∣∣∣∣Nm1 =N

m2 =0

=

(a bc d

)Characteristic polynomial

P(x) = x2 − (a + d) x + (a d − b c)

Leading eigenvalue

λ =12

(a + d +

√a2 + d2 − 2ad + 4bc

)

back moreF. Débarre São Paulo, Jan 2017 24

Page 69: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Interlude – How to find the leading eigenvaluedNm1dt

= h1(Nm1 ,Nm2 )

dNm2dt

= h2(Nm1 ,Nm2 )

Jacobian matrix

J =

(∂h1∂Nm1

∂h1∂Nm2

∂h2∂Nm1

∂h2∂Nm2

)∣∣∣∣∣Nm1 =N

m2 =0

=

(a bc d

)

Characteristic polynomial

P(x) = x2 − (a + d) x + (a d − b c)

Leading eigenvalue

λ =12

(a + d +

√a2 + d2 − 2ad + 4bc

)

back moreF. Débarre São Paulo, Jan 2017 24

Page 70: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Interlude – How to find the leading eigenvaluedNm1dt

= h1(Nm1 ,Nm2 )

dNm2dt

= h2(Nm1 ,Nm2 )

Jacobian matrix

J =

(∂h1∂Nm1

∂h1∂Nm2

∂h2∂Nm1

∂h2∂Nm2

)∣∣∣∣∣Nm1 =N

m2 =0

=

(a bc d

)Characteristic polynomial

P(x) = x2 − (a + d) x + (a d − b c)

Leading eigenvalue

λ =12

(a + d +

√a2 + d2 − 2ad + 4bc

)

back moreF. Débarre São Paulo, Jan 2017 24

Page 71: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Interlude – How to find the leading eigenvaluedNm1dt

= h1(Nm1 ,Nm2 )

dNm2dt

= h2(Nm1 ,Nm2 )

Jacobian matrix

J =

(∂h1∂Nm1

∂h1∂Nm2

∂h2∂Nm1

∂h2∂Nm2

)∣∣∣∣∣Nm1 =N

m2 =0

=

(a bc d

)Characteristic polynomial

P(x) = x2 − (a + d) x + (a d − b c)

Leading eigenvalue

λ =12

(a + d +

√a2 + d2 − 2ad + 4bc

)back more

F. Débarre São Paulo, Jan 2017 24

Page 72: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

Model

dN1dt

= f1(N1,N2, . . . ,Nk)

dN2dt

= f2(N1,N2, . . . ,Nk)

. . .

dNkdt

= fk(N1,N2, . . . ,Nk)

Equilibria(N∗

1 ,N∗2 , . . . ,N∗

k ) is such that

f1(N∗1 ,N

∗2 , . . . ,N

∗k ) = 0

f2(N∗1 ,N

∗2 , . . . ,N

∗k ) = 0. . .

fk(N∗1 ,N

∗2 , . . . ,N

∗k ) = 0

F. Débarre São Paulo, Jan 2017 25

Page 73: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

Model

dN1dt

= f1(N1,N2, . . . ,Nk)

dN2dt

= f2(N1,N2, . . . ,Nk)

. . .

dNkdt

= fk(N1,N2, . . . ,Nk)

Equilibria(N∗

1 ,N∗2 , . . . ,N∗

k ) is such that

f1(N∗1 ,N

∗2 , . . . ,N

∗k ) = 0

f2(N∗1 ,N

∗2 , . . . ,N

∗k ) = 0. . .

fk(N∗1 ,N

∗2 , . . . ,N

∗k ) = 0

F. Débarre São Paulo, Jan 2017 25

Page 74: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

1 Write system of equations for the change over time of a small derivationfrom the equilibrium

For variable i and an equilibrium N∗ = (N∗1 , . . . ,N∗k), let’s define

δi = Ni − N∗i .

Then

dδidt

=dNidt

= fi(N1, . . . ,Nk)= fi(δ1 + N∗1 , . . . , δk + N∗k).

F. Débarre São Paulo, Jan 2017 26

Page 75: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

1 Write system of equations for the change over time of a small derivationfrom the equilibrium

For variable i and an equilibrium N∗ = (N∗1 , . . . ,N∗k), let’s define

δi = Ni − N∗i .

Then

dδidt

=dNidt

= fi(N1, . . . ,Nk)

= fi(δ1 + N∗1 , . . . , δk + N∗k).

F. Débarre São Paulo, Jan 2017 26

Page 76: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

1 Write system of equations for the change over time of a small derivationfrom the equilibrium

For variable i and an equilibrium N∗ = (N∗1 , . . . ,N∗k), let’s define

δi = Ni − N∗i .

Then

dδidt

=dNidt

= fi(N1, . . . ,Nk)

= fi(δ1 + N∗1 , . . . , δk + N∗k).

F. Débarre São Paulo, Jan 2017 26

Page 77: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

1 Write system of equations for the change over time of a small derivationfrom the equilibrium

For variable i and an equilibrium N∗ = (N∗1 , . . . ,N∗k), let’s define

δi = Ni − N∗i .

Then

dδidt

=dNidt

= fi(N1, . . . ,Nk)= fi(δ1 + N∗1 , . . . , δk + N∗k).

F. Débarre São Paulo, Jan 2017 26

Page 78: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

2 Get a linear approximation of this system (Taylor series)

First-order approximation of the dynamics of δi:dδidt

= fi(δ1 + N∗1 , . . . , δk + N∗k )

≈ fi(N∗1 , . . . ,N∗k )︸ ︷︷ ︸

=0

+k∑j=1

(Nj − N∗j )︸ ︷︷ ︸δj

∂fi∂Nj

∣∣∣∣N=N∗

In matrix form:dδ1dt...dδkdt

=

∂f1∂N1

· · · ∂f1∂Nk

... · · ·...

∂fk∂N1

· · · ∂fk∂Nk

∣∣∣∣∣∣∣N=N∗︸ ︷︷ ︸

Jacobian matrix

·

δ1...δk

dδdt

= J · δ

F. Débarre São Paulo, Jan 2017 27

Page 79: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

2 Get a linear approximation of this system (Taylor series)

First-order approximation of the dynamics of δi:dδidt

= fi(δ1 + N∗1 , . . . , δk + N∗k )

≈ fi(N∗1 , . . . ,N∗k )︸ ︷︷ ︸

=0

+k∑j=1

(Nj − N∗j )︸ ︷︷ ︸δj

∂fi∂Nj

∣∣∣∣N=N∗

In matrix form:dδ1dt...dδkdt

=

∂f1∂N1

· · · ∂f1∂Nk

... · · ·...

∂fk∂N1

· · · ∂fk∂Nk

∣∣∣∣∣∣∣N=N∗︸ ︷︷ ︸

Jacobian matrix

·

δ1...δk

dδdt

= J · δ

F. Débarre São Paulo, Jan 2017 27

Page 80: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

2 Get a linear approximation of this system (Taylor series)

First-order approximation of the dynamics of δi:dδidt

= fi(δ1 + N∗1 , . . . , δk + N∗k )

≈ fi(N∗1 , . . . ,N∗k )︸ ︷︷ ︸

=0

+k∑j=1

(Nj − N∗j )︸ ︷︷ ︸δj

∂fi∂Nj

∣∣∣∣N=N∗

In matrix form:dδ1dt...dδkdt

=

∂f1∂N1

· · · ∂f1∂Nk

... · · ·...

∂fk∂N1

· · · ∂fk∂Nk

∣∣∣∣∣∣∣N=N∗︸ ︷︷ ︸

Jacobian matrix

·

δ1...δk

dδdt

= J · δ

F. Débarre São Paulo, Jan 2017 27

Page 81: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

2 Get a linear approximation of this system (Taylor series)

First-order approximation of the dynamics of δi:dδidt

= fi(δ1 + N∗1 , . . . , δk + N∗k )

≈ fi(N∗1 , . . . ,N∗k )︸ ︷︷ ︸

=0

+k∑j=1

(Nj − N∗j )︸ ︷︷ ︸δj

∂fi∂Nj

∣∣∣∣N=N∗

In matrix form:dδ1dt...dδkdt

=

∂f1∂N1

· · · ∂f1∂Nk

... · · ·...

∂fk∂N1

· · · ∂fk∂Nk

∣∣∣∣∣∣∣N=N∗︸ ︷︷ ︸

Jacobian matrix

·

δ1...δk

dδdt

= J · δ

F. Débarre São Paulo, Jan 2017 27

Page 82: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

2 Get a linear approximation of this system (Taylor series)

First-order approximation of the dynamics of δi:dδidt

= fi(δ1 + N∗1 , . . . , δk + N∗k )

≈ fi(N∗1 , . . . ,N∗k )︸ ︷︷ ︸

=0

+k∑j=1

(Nj − N∗j )︸ ︷︷ ︸δj

∂fi∂Nj

∣∣∣∣N=N∗

In matrix form:dδ1dt...dδkdt

=

∂f1∂N1

· · · ∂f1∂Nk

... · · ·...

∂fk∂N1

· · · ∂fk∂Nk

∣∣∣∣∣∣∣N=N∗︸ ︷︷ ︸

Jacobian matrix

·

δ1...δk

dδdt

= J · δ

F. Débarre São Paulo, Jan 2017 27

Page 83: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

2 Get a linear approximation of this system (Taylor series)

First-order approximation of the dynamics of δi:dδidt

= fi(δ1 + N∗1 , . . . , δk + N∗k )

≈ fi(N∗1 , . . . ,N∗k )︸ ︷︷ ︸

=0

+k∑j=1

(Nj − N∗j )︸ ︷︷ ︸δj

∂fi∂Nj

∣∣∣∣N=N∗

In matrix form:dδ1dt...dδkdt

=

∂f1∂N1

· · · ∂f1∂Nk

... · · ·...

∂fk∂N1

· · · ∂fk∂Nk

∣∣∣∣∣∣∣N=N∗︸ ︷︷ ︸

Jacobian matrix

·

δ1...δk

dδdt

= J · δ

F. Débarre São Paulo, Jan 2017 27

Page 84: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

3 Solve the di�erential equation dδdt = J · δ

δ(t) = c1δ(1)eλ1t + · · ·+ ckδ(k)eλkt,

with the ci constants determined by the initial conditions, and δ(i) an eigenvectorassociated to the eigenvalue λi, i.e., J · δ(i) = λi δ(i).

(c)[OttoandDay,2007]

λ = A+ Bı back

F. Débarre São Paulo, Jan 2017 28

Page 85: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

3 Solve the di�erential equation dδdt = J · δ

δ(t) = c1δ(1)eλ1t + · · ·+ ckδ(k)eλkt,

with the ci constants determined by the initial conditions, and δ(i) an eigenvectorassociated to the eigenvalue λi, i.e., J · δ(i) = λi δ(i).

(c)[OttoandDay,2007]

λ = A+ Bı back

F. Débarre São Paulo, Jan 2017 28

Page 86: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous time

3 Solve the di�erential equation dδdt = J · δ

δ(t) = c1δ(1)eλ1t + · · ·+ ckδ(k)eλkt,

with the ci constants determined by the initial conditions, and δ(i) an eigenvectorassociated to the eigenvalue λi, i.e., J · δ(i) = λi δ(i).

(c)[OttoandDay,2007]

λ = A+ Bı backF. Débarre São Paulo, Jan 2017 28

Page 87: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous timeAnd how do I find these eigenvalues?

Theory

M · u = λ u ⇐⇒ (M− λ I) · u = 0.

u 6= 0, so we have to solve the characteristic polynomial

Det (M− λ I) = 0,

whose roots (λ1, . . . , λk) are the eigenvalues ofM.

Practice

back

F. Débarre São Paulo, Jan 2017 29

Page 88: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous timeAnd how do I find these eigenvalues?

Theory

M · u = λ u ⇐⇒ (M− λ I) · u = 0.

u 6= 0, so we have to solve the characteristic polynomial

Det (M− λ I) = 0,

whose roots (λ1, . . . , λk) are the eigenvalues ofM.

Practice

back

F. Débarre São Paulo, Jan 2017 29

Page 89: Lecture III: Heterogeneous environments200.145.112.249/webcast/files/lecture3_Debarre.pdf · 2017-01-27 · Habitat1 Habitat2 Dispersal 1individuals then F.DébarreSãoPaulo,Jan2017

Stability analysis – Continuous timeAnd how do I find these eigenvalues?

Theory

M · u = λ u ⇐⇒ (M− λ I) · u = 0.

u 6= 0, so we have to solve the characteristic polynomial

Det (M− λ I) = 0,

whose roots (λ1, . . . , λk) are the eigenvalues ofM.

Practice

back

F. Débarre São Paulo, Jan 2017 29