lecture 7 optical lithography

Upload: kr-prajapat

Post on 14-Apr-2018

238 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Lecture 7 Optical Lithography

    1/40

    4/23/20

    ECE416/516ICTechnologies

    ProfessorJamesE.MorrisSpring2012

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Chapter7OpticalLithography

    2

  • 7/30/2019 Lecture 7 Optical Lithography

    2/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.1SimplifiedICdesignprocessflowdiagram.3

    Lecture topics:

    A. Light sources

    B. Wafer exposure systems

    1. Optics

    2. Projection

    3. Proximity/contact

    4. Immersion

    C. Photoresist (also lecture 8) D. Simulation

    E. Sub-wavelength lithography

    F. Interference effects

    G. Minimum feature sizes

    LectureObjectives:

    Can calculate resolution limits

    and line width errors due to

    optical limitations

    Can calculate PR exposure

    variations due to standing wave

    effects

    Lecture emphasis:

    Optical Limits

    o Proximity Printing

    o Projection Printing

    Technology Comparisons

  • 7/30/2019 Lecture 7 Optical Lithography

    3/40

    4/23/20

    - Process of image transfer to wafer

    - Origin pattern drawn N x

    - Images control diffusion, oxidation, & metallization sequences

    - expose parts, mask others

    -Masking levels refer to each mask used

    -Lithographic Sequence:

    1. Draw mask 100-2000x final size

    2. Photographically reduce to 10x final size (glass)

    3. Step & repeat -> [1 x final size] x [ matrix of images ] (glass)

    4. Spin coat substrate with photoresist

    - thickness (spin rate)-1/2

    5. Expose PR through mask & develop to dissolve unwanted PR, etc.

    Registration tolerance --> design rules

    f1

    f2 Mask 1ideal

    pos iti on

    Mask 2 ideal

    po sit ion

  • 7/30/2019 Lecture 7 Optical Lithography

    4/40

    4/23/20

    Estimated final tolerance:

    - T 3[( f1/2 )2 + (f2/2 )2 + r2]1/2

    where r is registration errors Gaussian distribution if independent

    For f1 ~ f2 ~ r~ 0.15m- T ~ 0.6 m- limits how densely features can be packed

    Ideal feature separation mask 1 to mask 2> 1/2 (f1 + f2)

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.2Excerptoftypicaldesignruleset.Thisportiondealswithfirstmetalrulesforaparticulartechnology.

    8

  • 7/30/2019 Lecture 7 Optical Lithography

    5/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.3 Typicalphotomasksincluding(fromleft)a1 plateforcontactorprojectionprinting,a10 plateforareductionstepper,anda10 platewithpellicles.

    9

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.4 Projectedlithographyrequirementsshowingoverlayaccuracy(rightaxis)andresolutionrequirements(leftaxis).Datatakenfrom2005InternationalTechnology RoadmapforSemiconductors.

    10

  • 7/30/2019 Lecture 7 Optical Lithography

    6/40

    4/23/20

    11

    LITHOGRAPHY

    0.7X in linear dimension every 3 years. Placement accuracy 1/3 of feature size. 35% of wafer manufacturing costs for lithography. Note the ??? - single biggest uncertainty about the future of the roadmap.

    Year of Production 1998 2000 2002 2004 2007 2010 2013 2016 2018

    Technolo gy Node (half pitch) 250

    nm

    180 nm 130 nm 90 nm 65 nm 45 nm 32 nm 22 nm 18 nm

    MPU Printed Gate Length 100 nm 70 nm 53 nm 35 nm 25 nm 18 nm 13 nm 10 nm

    DRAM Bits/ Chip (Sampl ing) 256M 512M 1G 4G 16G 32G 64G 128G 128G

    MPU Transistors/C hip (x106) 550 1100 2200 4400 8800 14,000

    Gate CD Control 3 (nm) 3.3 2.2 1.6 1.16 0.8 0.6

    Overlay (nm) 32 23 18 12.8 8.8 7.2

    Field Size (mm) 22x32 22x32 22x32 22x32 22x32 22x32 22x32 22x32 22x32

    Exposure Tech nology 248

    nm

    248 nm 248 nm

    + RET

    193nm

    + RET

    193nm +

    RET

    193nm

    + RET

    + H2O

    193nm

    + RET

    + H2O

    157nm??

    ??? ???

    Data Volume/Mas k lev el (GB) 216 729 1644 3700 8326 12490

    4/23/2012 ECE416/516ICTechnologies Spring2011

    12

    Historical Development and Basic Concepts

    Patterning process consistsof mask design, maskfabrication and waferprinting.

    CAD System Layout Simulation Design Rule Checking

    ElectronGun

    Focus

    Deflection

    Mask

    Mask Making Wafer Exposure

    LightSource

    Mask

    Wafer

    CondenserLens

    ReductionLens

    AerialImage

    (Surface)

    N Well P Well

    P+ N+ N+P+

    P

    LatentImage

    in Photoresist

    TiN LocalInterconnect Level

    (See Chapter 2)

    It is convenient to divide thewafer printing process into threeparts A: Light source, B. Waferexposure system, C. Resist.

    Aerial image is the pattern ofoptical radiation striking the topof the resist.

    Latent image is the 3D replicaproduced by chemical processesin the resist.

    4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    7/40

    4/23/20

    13

    A. Light Sources

    Decreasing feature sizes require the use of shorter .

    Traditionally Hg vapor lamps have been used which generate many spectrallines from a high intensity plasma inside a glass lamp.

    (Electrons are excited to higher energy levels by collisions in the plasma.Photons are emitted when the energy is released.)

    g line - i line - (used for 0.5 m, 0.35 m)

    Brightest sources in deep UV are excimer lasers

    436 nm 365 nm

    Kr NF3 energy KrF photon emission (1)

    KrF - (used for 0.25 m, 0.18m, 0.13 m) ArF - (used for 0.13m, 0.09m, . . . ) FF - (used for ??)

    248 nm 193 nm 157 nm

    Issues include finding suitable resists and transparent optical components atthese wavelengths.

    4/23/2012 ECE416/516ICTechnologies Spring2011

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.14 Linespectraoftypicalmercuryarclampshowingthepositionsofthetwolinesmostcommonlyusedinlithography.

    Figure7.13Typicalhighpressure,shortarcmercurylamp(courtesyOsramSylvania).HighTelectronsgray body radiation, (absorbed by silica glass)

    Hgatoms

    14

  • 7/30/2019 Lecture 7 Optical Lithography

    8/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.15Schematicofatypicalsourceassemblyforacontact/proximityprinter(afterJain).15

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.17Opticaltrainforanexcimerlaserstepper(afterJain).16

  • 7/30/2019 Lecture 7 Optical Lithography

    9/40

    4/23/20

    17

    B. Wafer Exposure Systems

    Three types ofexposure systemshave been used.

    MaskPhotoresist

    Si Wafer

    LightSource

    OpticalSystem

    Contact Printing Proximity Printing Projection Printing

    Gap

    1:1 Exposure Systems Usually 4X or 5XReduction

    Contact printing is capable of high resolution but has unacceptable defectdensities.

    Proximity printing cannot easily print features below a few m (except forx-ray systems).

    Projection printing provides high resolution and low defect densities anddominates today.

    Typical projection systems use reduction optics (2X - 5X), step and repeat or stepand scan mechanical systems, print 50 wafers/hour and cost $10 - 25M.

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Usually x, y, & control to align mask to substrate

    - alignment marks

    mask

    PR

    wafersContact

    Proximity

    Projection

    Simultaneous XY scan

    of mask & wafer

  • 7/30/2019 Lecture 7 Optical Lithography

    10/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure 7.5 Schematic of a simple lithographic exposure system.

    19

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.6 Huygens'sprincipleappliedtotheopticalsystemshowninFigure7.5.Apointsourceisusedtoexposeanapertureinadarkfieldmask.

    dRR

    eAjR

    erEr

    RRjk

    rj

    ),(

    ),(

    0

    )(

    )(),(

    20

  • 7/30/2019 Lecture 7 Optical Lithography

    11/40

    4/23/20

    21

    B1. Optics - Basics and Diffraction (Huygens-Fresnel principle)

    Ray tracing (assuming light travels in straight lines) works well as long as thedimensions are large compared to .

    At smaller dimensions, diffraction effects dominate.

    LightSource

    ApertureImagePlane

    If the aperture is on the order of , the light spreads out after passing through

    the aperture. (The smaller the aperture, the more it spreads out.)

    a). b).

    2121

    2

    1

    2

    1

    0101

    2

    000

    *

    cos

    sourcespoint2for0,)(

    ,)(

    2121

    EEEE

    eEeEeEeEILWb

    EeEeEILWa

    jjjj

    jj

    4/23/2012

    22

    Diffracted LightCollected Light

    ImagePlaneAperture

    PointSource

    CollimatingLens FocusingLens

    f

    d

    A simple exampleis the image formedby a small circularaperture (Airy disk).

    Note that a point imageis formed only if ,

    or .

    If we want to image the apertureon an image plane (resist), we cacollect the light using a lens andfocus it on the image plane.

    But the finite diameter of the lensmeans some information is lost(higher spatial frequencycomponents).

    1.22 f/d 0f 0 d

    Diffraction is usually described in terms of two limiting cases: Fresnel diffraction - near field. Fraunhofer diffraction - far field.

    wheref=focallength,d=focusinglensdiameterDiameterofcentralmaximum=1.22f/d

    4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    12/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure 7.8 Typical far field (Fraunhofer) image.

    ndiffractioFraunhoferIf222 rgW

    g

    yL

    g

    yL

    I

    g

    xW

    g

    xW

    IIIg

    LWoIyxI yxyxe

    2

    2sin

    ,2

    2sin

    ,)2)(2(

    )(),( 222

    B2

    Projection

    printing

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure 7.21 Schematic for the optical train of a simple projection printer.

    Projection

    NA=nsinRefractiveindex n=1forairRayleighsresolutioncriterion Wmin =k1/NA

    24

  • 7/30/2019 Lecture 7 Optical Lithography

    13/40

    4/23/20

    25

    B2. Projection Systems (Fraunhofer Diffraction)

    These are the dominant systems in use today. Performance is usually describedin terms of: resolution

    depth of focus field of view modulation transfer function alignment accuracy throughput

    ImagePlane

    PointSources d

    A

    BA'

    B'

    EntranceAperture

    Consider this basic optical projectionsystem.

    Rayleigh suggested that a reasonablecriterion for resolution is that thecentral maximum of each point sourcelie at the first minimum of the Airypattern.

    With this definition,

    sin

    61.0

    sin2

    22.122.1

    nfn

    f

    d

    fR (2)

    The numerical aperture of the lens is by definition, NA represents the ability of the lens to collect diffracted light.

    NA n sin (3)4/23/2012 ECE416/516ICTechnologies Spring2011

    26

    R 0.61 NA k 1 NA (4) k1 is an experimental parameter which depends on the lithography system

    and resist properties ( 0.4 - 0.8).

    Obviously resolution can be increased by: decreasing k1 decreasing increasing NA (bigger lenses)

    However, higher NA lenses also decrease the depth of focus. (See next slidefor derivation.)

    DOF 2 NA

    2 k2

    NA2

    (5)

    k2 is usually experimentally determined.

    Thus a 248nm (KrF) exposure system with a NA = 0.6 would have a resolutionof 0.3 m (k1 = 0.75) and a DOF of 0.35 m (k2 = 0.5).

    R=Wmin &DOF= inCampbell4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    14/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologiesSpring2011 27

    d

    Entranceaperture

    Imageplane

    Limitoffocus

    f

    RayleighcriterionforDOF:

    222

    22

    )()(2

    2/sin

    2211

    4:smallFor

    4/cos

    NAk

    NADOF

    NAf

    d

    28

    Another useful concept is the modulation transfer function or MTF, defined

    as shown below.

    MTF IMAX IMIN

    IMAX IMIN (6)

    Intensityat Mask

    Intensityon Wafer

    0

    1

    0

    1IMAX

    IMIN

    Aperture

    LightSource

    CondenserLens

    Objective orProjection

    Lens

    Photoresiston Wafer

    Mask

    Position Position

    Note that MTF will be afunction of feature size

    4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    15/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure 7.9 Far field image for a diffraction grating.

    3

    2

    15

    15

    shownpatterngrating

    ndiffractiofore.g.

    image,anfor

    :Define

    minmax

    minmax

    MTF

    II

    II

    MTF

    29

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.10

    Plot

    of

    dose

    versus

    position

    on

    the

    wafer.

    Dose

    is

    given

    by

    the

    intensity

    of

    thelightintheaerealimagemultipliedbytheexposuretime.TypicalunitsaremJ/cm2.

    DD100 PRwillcompletelydissolveindeveloperD0

  • 7/30/2019 Lecture 7 Optical Lithography

    16/40

    4/23/20

    IdealPRdevelopsforD>Dcr only ActualPRpartiallydevelopsforD0>D>D100

    >Partiallydissolves

    1

    0

    1

    0

    Dose

    Dose

    Ideal PR

    Actual PR

    DCr

    D100%

    D0%

    Rayleighresolutionlimit:ResolvableseparationSr =0.6 /NA

    Examplesforobjectsequalsize&spacing

    Notesquarepatternfromsineintensityallowsopticalprinttofinerlinesthanoriginallypredicted(duetoclippingactionofnonlinearPR)

    Notealsocoherenceeffects(CampbellFig.7.18)

    Image

    intensities

    Developed

    patterns

    optically

    resolvable

  • 7/30/2019 Lecture 7 Optical Lithography

    17/40

    4/23/20

    33

    Finally, another basic concept is thespatial coherence of the light source.

    LightSource

    MaskCondensorLens

    s d

    Practical light sources are not pointsources.the light striking the mask will not beplane waves.

    The spatial coherence of the system isdefined as

    S light source diametercondenser lens diameter

    sd

    (7)

    or often as S NA condenser

    NA projection optics (8)

    Typically, S 0.5 to 0.7 in modern systems.

    [Note:SketchMTFvs (featuresize)1andvariationwithSnext]4/23/2012 ECE416/516ICTechnologies Spring2011

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.22 Modulationtransferfunctionasafunctionofthenormalizedspatialfrequencyforaprojectionlithographysystemwithspatialcoherenceasaparameter.

    S=(Sourceimagediameter)/(Pupildiameter)

    34

  • 7/30/2019 Lecture 7 Optical Lithography

    18/40

    4/23/20

    35

    Illumination System EngineeringAperture Projection

    Lens

    "Captured"Diffracted

    Light

    "Lost"Diffracted

    Light

    "Captured"Diffracted

    Light

    "Lost"Diffracted

    Light

    Wafer

    Off-axis illumination also allowssome of the higher order diffractedlight to be captured and hence canimprove resolution.

    Aperture

    PointSource

    CollimatingLens

    ProjectionLens

    Photoresiston Wafer

    Kohler illumination systems focus thelight at the entrance pupil of the objectivelens. This captures diffracted lightequally well from all positions onthe mask.

    Advanced optical systems using Kohlerillumination and/or off axis illumination

    are commonly used today.

    4/23/2012 ECE416/516ICTechnologies Spring2011

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.23Schematicfortheoperationofascanningmirrorprojectionlithographysystem(courtesyofCanonU.S.A.).

    36

  • 7/30/2019 Lecture 7 Optical Lithography

    19/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.26ConfigurationofStepandScan193nmsystem.Thelaserisattheleft.Thereticleisattheupperright,whilethewaferisatthelowerright(photocourtesyASML).

    37

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.7 Typicalnearfield(Fresnel)diffractionpattern.

    ndiffractioFresnelIf 222 rgW

    ForWverylarge ray tracing

    Image width on waferW=W(g/D)

    38

    B3. Contact/proximity systems

  • 7/30/2019 Lecture 7 Optical Lithography

    20/40

    4/23/20

    39

    B3. Contact and Proximity Systems (Fresnel Diffraction)

    Contact printing systems operate in the near field or Fresnel diffraction regime. There is always some gap g between the mask and resist.

    WaferResistMaskAperture

    IncidentPlaneWave

    Light Intensityat Resist Surface

    g

    W

    The aerial image can be constructed by imagining point sources within theaperture, each radiating spherical waves (Huygens wavelets). Interference effects and diffraction result in ringing and spreading outside

    the aperture.

    4/23/2012 ECE416/516ICTechnologies Spring2011

    40

    Fresnel diffraction applies when g W2 (9)

    Within this range, the minimum resolvable feature size is Wmin g (10) Thus if g = 10 m and an i-line light source is used, Wmin 2 m.

    Summary of wafer printing systems:

    WaferResistMaskAperture

    IncidentPlaneWave

    Light Intensityat Resist Surface

    W

    Contact

    Proximity Projection

    Separation Dependson Type of System

    4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    21/40

    4/23/20

    Maskclosetowafer/resistminimizediffraction/divergence.

    Separation ~m Fresnel(nearfield)diffraction Minimumlinewidth:

    Wm =(d )1/2

    (d=maskwafer

    separation)

    10

    1

    .11 10 100

    Mask-wafer spacing (m)

    Line width (m) Wm

    = 36 nmuv = 249 nm

    Deep uv

    1 nmx-ray

    D g

    ForW2>> (g2+r2)1/2

    W=W(g/D)

    r

    mask

    pt source

    2 W

    2 L

    wafer

    wafer

    position

    Intensity

  • 7/30/2019 Lecture 7 Optical Lithography

    22/40

    4/23/20

    Penumbraeffectonlinewidth: W=2dtanwhere angleoffcollimation

    Wellcollimatedlightminimizespenumbra. Wellcollimatedlightmaximizesdiffraction. ~ fewdegreesforoptimumbalance.

    w

    mask

    wafer

    d

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.19Typicalcontactexposuresystem(courtesyofKarlSuss).

    Contactexposure

    44

  • 7/30/2019 Lecture 7 Optical Lithography

    23/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.20 Intensityasafunctionofpositiononthewaferforaproximityprintingsystemwherethegapincreaseslinearlyfromg = 0tog = 15m(afterGeikasandAbles).

    Contact proximity

    Gapg

  • 7/30/2019 Lecture 7 Optical Lithography

    24/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.24 Setupofanimmersionsystemusingsurfacetension(fromSwitkesetal.,reprintedfromtheMay2003editionofMicrolithographyWorld.Copyright2003byPennWell.)

    B4.Immersion

    gratinguniformafor2WPwhere.

    andO,Hfor43.1

    )/(1

    )/(

    DOF

    DOFand

    )2/(sin.4

    P2

    2

    22

    1(air)n

    n(liq)

    2

    Pnn

    P

    Pn

    nDOF

    P

    47

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.25 NozzlesystemusedbyNikontoputthewaterdownandsuctionitupforeachstage(fromGeppert,reprintedbypermissionIEEE.)

    48

  • 7/30/2019 Lecture 7 Optical Lithography

    25/40

    4/23/20

    49

    C. Optical Intensity Pattern in the Resist (Latent Image)

    Aerial Image Ii(x,y)

    Exposing Light

    P

    P WellN Well

    PNP+ P+ N+ N+

    Latent Image inResist I(x,y,z)

    The second step in lithographysimulation is the calculation of thelatent image in the resist.

    The light intensity duringexposure in the resist is a functionof time and position because of Light absorption and bleaching. Defocusing. Standing waves.

    These are generally accounted for by modifying Eqn. (21) as follows:

    I x, y, z I i x, yI r x ,y , z (22)

    where Ir(x,y,z) models these effects.

    4/23/2012 ECE416/516ICTechnologies Spring2011

    50

    Microns0 0.8 1.6 2.4

    Microns

    0

    0.4

    0.8

    1.2

    Example of calculation of light intensitydistribution in a photoresist layer duringexposure using the ATHENA simulator.A simple structure is defined with aphotoresist layer covering a silicon substrawhich has two flat regions and a slopedsidewall. The simulation shows the [PAC]calculated concentration after an exposureof 200 mJ cm-2. Lower [PAC] valuescorrespond to more exposure. The colorcontours thus correspond to the integratedlight intensity from the exposure.

    C. Photoresist Exposure

    Neglecting standing wave effects (for the moment), the light intensity in theresist falls off as

    dI

    dz I (23

    (The probability of absorption is proportional to the light intensity and theabsorption coefficient.)

    4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    26/40

    4/23/20

    51

    The absorption coefficient depends on the resist properties and on the [PAC].

    resist Am B (24)where A and B are resist parameters (first two Dill parameters) and

    m PACPAC

    0

    (25)

    m is a function of time and is given by

    dm

    dt C Im (26)

    Substituting (24) into (23), we have:

    IBAmIdz

    dI (27)

    Eqns. (26) and (27) are coupled equations which are solved simultaneously byresist simulators.

    4/23/2012 ECE416/516ICTechnologies Spring2011

    [PAC] = photoactive compound concentration

    C is 3rd Dill parameter

    52

    The Dill resist parameters (A, B and C) can be experimentally measuredfor a resist.

    LightSource

    CondenserLens

    Photoresiston Transparent

    SubstrateFilter to Select

    Particular

    LightDetector

    TransmittedLight

    D

    Transmittance

    Exposure Dose (mJ cm-2)

    1

    0.75

    0.5

    0.25

    200 400 600

    T

    T0

    By measuring T0 and T,

    A, B and C can be extracted.

    2

    120

    1200

    0

    1

    11where|

    )1(

    ln1

    ln1

    resist

    resistE

    n

    nT

    dE

    dT

    TTAT

    BAC

    TD

    B

    T

    T

    D

    A

    4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    27/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.11Contourplot(left)and10slicethroughthecenterofprojectedintensityasafunctionofpositionforagratingwith1.6mpitch,exposedatR=436nmandNA= 0.43.

    D.Simulation

    53

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure 7.12 Same 1D plot for a grating with a pitch of 0.8 m exposed on the same system.

    54

  • 7/30/2019 Lecture 7 Optical Lithography

    28/40

    4/23/20

    55

    Models and Simulation

    Lithography simulation relies on models from two fields of science: Optics to model the formation of the aerial image.

    Chemistry to model the formation of the latent image in the resist.

    A. Wafer Exposure System Models

    There are several commercially available simulation tools that calculate theaerial image - PROLITH, DEPICT, ATHENA. All use similar physical models.

    We will consider only projection systems.

    Light travels as an electromagnetic wave.

    W, t Re U Wejt where U W C Wej P P, t C Wcos t (t)

    or, in complex exponential notation,

    (13)

    (14)

    4/23/2012 ECE416/516ICTechnologies Spring2011

    56

    Consider a genericprojection system:

    Aperture

    LightSource

    Condenser

    Lens

    Objective orProjection

    Lens

    Photoresiston Wafer

    Mask

    z

    x

    y

    x1y1 Planex'y' Plane

    x y Plane

    The mask is considered to havea digital transmission function:

    After the light is diffracted, it is

    described by the Fraunhoferdiffraction integral:

    where fx and fy are the spatialfrequencies of the diffractionpattern, defined as

    t x1 , y 1 1 in clear areas0 in opaque areas

    (15)

    x',y' t x1 , y1e2j fxxfy ydxdy (16)fx x'

    z and fy y'z4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    29/40

    4/23/20

    57

    (x,y) is the Fourier transform of the mask pattern. fx ,fy F t x1 , y 1 (17)

    The light intensity is simply the square of the magnitude of the field, so thatI fx ,fy fx ,fy 2 F t x1 , y 12 (18)

    Example - consider a longrectangular slit. The Fouriertransform of t(x) is in standardtexts and is the sin(x)/x function.

    Mask

    t(x)

    F{t(x)}

    I(x')

    w/2

    x

    z

    Aperture

    LightSource

    CondenserLens

    Objective orProjection

    Lens

    Photoresiston Wafer

    Mask

    z

    x

    y

    x1y1 Planex'y' Plane

    x y Plane

    4/23/2012 ECE416/516ICTechnologies Spring2011

    58

    But only a portion of the light is collected. This is characterized by a pupil function:

    P fx ,fy 1 if fx2 fy2 NA

    0 if fx2 fy2 NA

    (19)

    The objective lens now performs the inverse Fourier transform.

    x, y F1 fx ,fy P fx , fy F1 F t x1 , y1 P fx ,fy (20)

    resulting in a light intensity at the resist surface (aerial image) given by

    I i x, y x, y2 (21)

    Summary: Lithography simulators performthese calculations, given a mask design and

    the characteristics of an optical system.These simulators are quite powerful today.Math is well understood and fast algorithmshave been implemented in commercial tools.These simulators are widely used.

    MaskTransmittance

    t(x1,y1)

    Far FieldFraunhofer

    Diffraction Pattern Pupil FunctionP(fx,fy)

    Lens Performs InverseFourier Transform

    Light Intensity

    (x,y) = F-1{(fx,fy)P(fx,fy)} Ii(x,y) = (x,y)2

    (fx,fx) = F{t(x1,y1)}4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    30/40

    4/23/20

    59

    Microns

    Microns

    0

    1

    2

    3

    -1

    -2

    -3 0 1 2 3-1-2

    -3

    Microns0 1 2-1-2

    Microns

    0

    1

    2

    -1

    -2

    Microns

    0

    1

    2

    -1

    -2

    Microns0 1 2-1-2

    Exposure system: NA =0.43, partially coherentg-line illumination( = 436 nm). Noaberrations ordefocusing. Minimumfeature size is 1 m.

    ATHENA simulator (Silvaco). Colors correspond to optical intensity in theaerial image.

    Same example except thatthe feature size has beenreduced to 0.5 m. Notethe poorer image.

    Same example except thatthe illuminationwavelength has now beenchanged to i-lineillumination ( = 365 nm)and the NA has beenincreased to 0.5. Note the

    improved image.

    4/23/2012 ECE416/516ICTechnologies Spring2011

    60

    E. SubWavelength Lithography

    Beginning in 1998, chip manufacturers began to manufacture chips withfeature sizes smaller than the wavelength of the light used to expose thephotoresist.

    This is possible because of the use of a variety of tricks- illumination system optimization- optical pattern correction (OPC), and- phase shift mask techniques.

    E. Mask Engineering - OPC and Phase Shifting

    Optical Proximity Correction (OPC) can be used to compensate somewhat for

    diffraction effects. Sharp features are lost because higher spatial frequencies are lost due to

    diffraction. These effects can be calculated and can be compensated for.

    4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    31/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure 7.27 Basic concept of phase shift masksas described by Levenson et al. [49].

    Creating phase shift masks involves massive numerical calculations and oftenthe implementation involves two exposures - a binary mask and a phase shiftmask - before the resist pattern is developed.

    61

    62

    Another approach uses phase shifting to sharpen printed images.

    Mask

    Amplitudeof Mask

    Amplitudeat Wafer

    Intensityat Wafer

    180 Phase Shift

    A number of companies now provide OPC and phase shifting software services. The advanced masks which these make possible allow sharper resist images

    and/or smaller feature sizes for a given exposure system.

    4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    32/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure 7.28 Selfaligned method of phase shifting the radiation at the edges of a pattern.

    63

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.29 Lightfromtheexposedregionscanbereflectedbywafertopologyandbeabsorbedintheresistinnominallyunexposedregions.

    Here,inthelaterstages,withsurfacetopography

    64

    Reflection & Scattering

  • 7/30/2019 Lecture 7 Optical Lithography

    33/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.30 Resistlinesforpatterningthemetalrunningdiagonallyfromthelowerleft.OntherightisanexpandedviewofthegeometrydescribedinFigure7.31(afterListvanetal.).

    65

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.31Micrographsofresistlinesonreflectivemetalwithoutandwitha2700antireflectinglayerundertheresist(afterListvanetal.).

    66

  • 7/30/2019 Lecture 7 Optical Lithography

    34/40

    4/23/20

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.32Theformationofstandingwavesintheresist.67

    F.InterferenceEffects

    EI =E0 cos(t - z)ER =RE0 cos(t + z) =2 (n i k)/R=reflectioncoefficient=r2

    =[(n1n2)/(n1+n2)]2

    n2 =Sicomplexrefractiveindexn1 =PRcomplexrefractiveindexk 0forPRoroxide, 2 n/

    EI +ER =E0[cos(t z)+Rcos(t + z)]>StandingWave

    Es=Eso sint sin((2 nz)/ + )Maxima/Minimaseparations /2nMinimawhen(2 nz/ )+ =m

    m=0,1,2,...Forr= 1(Si,GaAs,metals), =0.minimaatz=m/2n,m=0,1,2&exposureduetointensityI=I0 sin2 z

    Notes:(1)Poordevelopmentatsurface(2)PRonoxide>opticalpropertiessimilar,soSWcontinuousacrossinterface;

    adjustthicknessofoxideZ0 togetantinodeatPR/oxideinterface.

    Z0 =(2m+1) /4n(3)EliminateSWformation:

    (a)thinabsorbinglayerbetweenSi&PR

    (b)dyeinPRforlightscatter(4)PlasmaetchremovesPR

    residue

  • 7/30/2019 Lecture 7 Optical Lithography

    35/40

    4/23/20

    1988Technologies: Optical Proximity

    Full Wafer Projection

    Optical Stepper

    Deep UV contact

    X-Ray

    Electron beam & ion beam

    Minimum Feature Size

    0.1 1 10 m

    Light

    Developed

    resist

    Focussed

    image

    edge

    - 0 +

    Exposure Energy

    mJ/cm

    W (m)0.1

    -0.1

    -0.2

    -0.3

    -0.4

    0

    20 807060504030

  • 7/30/2019 Lecture 7 Optical Lithography

    36/40

    4/23/20

    W (m)

    Light

    Developed

    resist

    Focussed

    image

    edge

    - 0 +

    Ratio of Water to Developers

    1 65432

    0

    -0.8

    -0.6

    -0.4

    -0.2

    +0.2

    Light

    Developed

    resist

    Focussedimage

    edge

    - 0 +

    1 5432 60

    0.05

    0.1

    W (m)

    Time Delay between exposure and Development

  • 7/30/2019 Lecture 7 Optical Lithography

    37/40

    4/23/20

    .8 1.0 1.2 1.4 1.6 m

    Light

    Developed

    resist

    Focussed

    image

    edge

    - 0 +

    -0.2

    -0.1

    0

    W (m)

    Resist Thickness

    Increasingexposuretimedecreasesintensityforthreshold.

    Light

    Developed

    resist

    Focussed

    image

    edge

    - 0 +

    Light intensity

    mask

    Diffraction

    No change

    Defocus

    Incr expos energy

    -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5

    m0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

  • 7/30/2019 Lecture 7 Optical Lithography

    38/40

    4/23/20

    Light

    Developed

    resist

    Focussedimage

    edge

    - 0 +

    W (m)

    Defocus

    Exposure times

    8.3 sec

    5.3 sec

    0 5 10 15 20 m

    -0.2

    -0.1

    0

    +0.1

    +0.2

    4/23/2012 ECE416/516ICTechnologies Spring2011

    Figure7.33Twotypicalregistrationerrors.Temperaturechanges

    76

  • 7/30/2019 Lecture 7 Optical Lithography

    39/40

    4/23/20

    Reliesonfractureofmetalfilm

    PR

    metal

    Less soluble PR

    (surface treated)

    Highly soluble PR

    metal

    metal

    78

    Some Final Thoughts

    Lithography is the key pacing item for developing new technology generations.

    Exposure tools today generally use projection optics with diffraction limitedperformance.

    Lithography simulation tools are based on Fourier optics and do an excellent jobof simulating optical system performance. Thus aerial images can be accuratelycalculated.

    A new approach to lithography may be required in the next 10 years.

    4/23/2012 ECE416/516ICTechnologies Spring2011

  • 7/30/2019 Lecture 7 Optical Lithography

    40/40

    4/23/20

    Problems: 6.1 7.46.2 7.56.5 7.6/7

    Midtermcourseevaluation:Summarizewhatyoulikeaboutthecourse,andwhatyoudontlike.

    (Suggestion:Identify5each.)Considerlectures,textbook,assignments,notes,videos,etc.(Weightedas2problems)

    4/23/2012 ECE416/516ICTechnologiesSpring2011 79

    Phasemasking Specificdesignexample

    Opticalproximitycorrection Specificdesignexample

    Throughsiliconvias (TSVs) Solidcopper&barrel

    Planarization Chemical/MechanicalPolishing

    Onchip

    resistors

    Materials/fabrication/properties

    Onchipinductors Spiralandferrite

    Waferthinning Thinwaferapplications

    Cryopumping Theoryandpractice

    Unbalancedmagnetron Sources/deposition

    Thinmetalfilmresistivity (Continuous)thicknessvariation

    Stiction avoidance Includingsurfacestructuring

    Electroless deposition Theoryandtechniques

    Atomiclayerdeposition Theoryandtechniques

    MEMSmotorfabrication Linearandrotational

    4/23/2012 ECE416/516ICTechnologies Spring2011 80