lecture 4: the electromagnetic...

34
Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, ˇ Zeljko Ivezi´ c Lecture 4: The Electromagnetic Spectrum 1

Upload: others

Post on 22-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Astr 102: Introduction to AstronomyFall Quarter 2009, University of Washington, Zeljko Ivezic

Lecture 4:

The Electromagnetic Spectrum

1

Page 2: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Understanding Stellar and Galaxy Properties, andCosmology

Four blocks: introduction to astrophysical tools, stars, galaxies,

cosmology.

The goals of this class are:

• Understanding the formation and evolution of stars using sim-

ple physical principles

• Understanding the formation and evolution of galaxies

• Understanding the cosmological evolution of the Universe

2

Page 3: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Physics that we need to know

Before we start with astrophysics, you need to be familiar with

these terms:

• scientific notation

• definition and units: distance, time, velocity, acceleration,

angular size, mass, momentum, angular momentum, force,

energy, power, temperature

• states of matter: solid, liquid, gas, ions

• the four forces of nature: gravity, electromagnetic force,

weak and strong nuclear force

• light: dual wave/particle nature, interaction with matter

3

Page 4: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

• energy transfer mechanisms: conduction, convection, radia-

tion

• thermal radiation: Planck function

Page 5: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Thermal radiation distribution:!•! If its hotter, its BLUER. !•! If its hotter, there’s MORE of it "

BRIGHTER !

LOW ENERGY!HIGH ENERGY!(Log-log plot) ! Astronomy 102, Autumn 2009, Copyright@2009 E. Agol & J. Dalcanton U.W.

4

Page 6: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Thermal radiation distribution:!•! This spectral shape is closely related to

the distribution of particle velocities. !

Linear version of the logarithmic plot below.!

P.S. Note that the plots on the right have energy decreasing to the right, whereas the left hand plot is opposite ! Astronomy 102, Autumn 2009, Copyright@2009 E. Agol & J. Dalcanton U.W.

5

Page 7: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Planck Function

Describes how much electromagnetic power is emitted at a given

wavelength (or frequency) by a black body of a given tempera-

ture:

Iν(ν, T ) = 4π

(hν3

c2

) (1

exp (hν/kT )− 1

)(1)

This form gives power per per unit area of emitting surface, and

per unit frequency (the unit is W m−2 Hz−1).

Here, h = 6.63×10−34 Js is the Planck constant, and c = 2.998×108 m/s is the speed of light (roughly 200,000 miles/second!).

Also, the power per unit wavelength (see the plots on previous

slides) is

Iλ(λ, T ) =ν

λIν(ν, T ) (2)

with νλ = c (true for any wave).

6

Page 8: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

From Planck function, we can derive:

• the Stefan-Boltzmann law: F = σT4, and

• the Wien’s law: Tλmax = C, with C ≈ 3000 K µm.

More details: http://en.wikipedia.org/wiki/Planck’s law

Page 9: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Electromagnetic Radiation

Astronomers care for every photon: from radio togamma rays!

7

Page 10: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Why do astronomers care for every photon? That is,why are the wavelengths other than visual important?After all, the Planck function radiation is described by2 numbers (temperature and flux)!

• Radiation from astronomical sources is NOT Planckian

8

Page 11: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Multiple components

9

Page 12: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Bright in infrared,10

Page 13: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

...and invisible in optical

11

Page 14: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Circumstellar disk (the star is masked)12

Page 15: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Comet

13

Page 16: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Saturn

14

Page 17: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

• Radiation from astronomical sources is NOT Planckian

– Radiative transfer effects (e.g. circumstellar dust)

– Non-thermal processes (e.g. synchrotron emission)

15

Page 18: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Optical Continum Emission 16

Page 19: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Optical Line Emission 17

Page 20: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Soft X rays 18

Page 21: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Infrared (60 µm) Emission 19

Page 22: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Radio Continuum (6 cm) Emission 20

Page 23: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Radio Line (21 cm) Emission 21

Page 24: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Why do astronomers care for every photon?

• Radiation from astronomical sources is NOT Planckian

– Radiative transfer effects

– Non-thermal processes (e.g. synchrotron emission)

• Dust Obscuration (end emission!)

22

Page 25: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Optical – Near-IR (1 µm)– Far-IR (100 µm)

• Dust obscures optical radiation, and re-emits it at infrared

wavelengths.

23

Page 26: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Again, an infrared view can be VERY different from optical view.

24

Page 27: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

eagle

25

Page 28: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Why do astronomers care for every photon?

• Radiation from astronomical sources is NOT Planckian

– Radiative transfer effects

– Non-thermal processes (e.g. synchrotron emission)

• Dust Obscuration (end emission!)

• Cosmological Reddening

26

Page 29: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

The most distant known quasars

27

Page 30: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

A quasar at z ≈ 6.28

gri riz

Hint: Look between the star and the galaxy, and down a little

28

Page 31: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Atmospheric water absorbs infrared ra-diation, except in a few 1-2 and 100 µmwindows.

29

Page 32: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Can we get at least some photons at the groundlevel?

30

Page 33: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Yes, if you go high and dry.

31

Page 34: Lecture 4: The Electromagnetic Spectrumfaculty.washington.edu/ivezic/Teaching/Astr102/lecture4.pdf · pl o t bel o w.! P.S. N o t e tha t the pl o ts o n the r ig h t ha v e en e

Next time: sections 1.1 and 1.2!

32