lecture 3 - section 7.3 the logarithm function, part iijiwenhe/math1432/lectures/lecture03.pdfjiwen...

101
Differentiation ln |x | Integration Lecture 3 Section 7.3 The Logarithm Function, Part II Jiwen He Department of Mathematics, University of Houston [email protected] http://math.uh.edu/jiwenhe/Math1432 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 1 / 19

Upload: others

Post on 02-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration

Lecture 3Section 7.3 The Logarithm Function, Part II

Jiwen He

Department of Mathematics, University of Houston

[email protected]://math.uh.edu/∼jiwenhe/Math1432

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 1 / 19

Page 2: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration

Section 7.2: Highlights

Properties of the Log Function

ln x =

∫ x

1

1

tdt,

d

dx(ln x) =

1

x> 0.

ln 1 = 0, ln e = 1.

ln(xy) = ln x + ln y , ln(x/y) = ln x − ln y .

ln(x r

)= r ln x , ln

(er

)= r .

domain = (0,∞), range = (−∞,∞).

limx→0+

ln x = −∞, limx→∞

ln x = ∞.

limx→∞

ln x

x r= 0, lim

x→0+x r ln x = 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 2 / 19

Page 3: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration

Section 7.2: Highlights

Properties of the Log Function

ln x =

∫ x

1

1

tdt,

d

dx(ln x) =

1

x> 0.

ln 1 = 0, ln e = 1.

ln(xy) = ln x + ln y , ln(x/y) = ln x − ln y .

ln(x r

)= r ln x , ln

(er

)= r .

domain = (0,∞), range = (−∞,∞).

limx→0+

ln x = −∞, limx→∞

ln x = ∞.

limx→∞

ln x

x r= 0, lim

x→0+x r ln x = 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 2 / 19

Page 4: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration

Section 7.2: Highlights

Properties of the Log Function

ln x =

∫ x

1

1

tdt,

d

dx(ln x) =

1

x> 0.

ln 1 = 0, ln e = 1.

ln(xy) = ln x + ln y , ln(x/y) = ln x − ln y .

ln(x r

)= r ln x , ln

(er

)= r .

domain = (0,∞), range = (−∞,∞).

limx→0+

ln x = −∞, limx→∞

ln x = ∞.

limx→∞

ln x

x r= 0, lim

x→0+x r ln x = 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 2 / 19

Page 5: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration

Section 7.2: Highlights

Properties of the Log Function

ln x =

∫ x

1

1

tdt,

d

dx(ln x) =

1

x> 0.

ln 1 = 0, ln e = 1.

ln(xy) = ln x + ln y , ln(x/y) = ln x − ln y .

ln(x r

)= r ln x , ln

(er

)= r .

domain = (0,∞), range = (−∞,∞).

limx→0+

ln x = −∞, limx→∞

ln x = ∞.

limx→∞

ln x

x r= 0, lim

x→0+x r ln x = 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 2 / 19

Page 6: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration

Section 7.2: Highlights

Properties of the Log Function

ln x =

∫ x

1

1

tdt,

d

dx(ln x) =

1

x> 0.

ln 1 = 0, ln e = 1.

ln(xy) = ln x + ln y , ln(x/y) = ln x − ln y .

ln(x r

)= r ln x , ln

(er

)= r .

domain = (0,∞), range = (−∞,∞).

limx→0+

ln x = −∞, limx→∞

ln x = ∞.

limx→∞

ln x

x r= 0, lim

x→0+x r ln x = 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 2 / 19

Page 7: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration

Section 7.2: Highlights

Properties of the Log Function

ln x =

∫ x

1

1

tdt,

d

dx(ln x) =

1

x> 0.

ln 1 = 0, ln e = 1.

ln(xy) = ln x + ln y , ln(x/y) = ln x − ln y .

ln(x r

)= r ln x , ln

(er

)= r .

domain = (0,∞), range = (−∞,∞).

limx→0+

ln x = −∞, limx→∞

ln x = ∞.

limx→∞

ln x

x r= 0, lim

x→0+x r ln x = 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 2 / 19

Page 8: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration

Section 7.2: Highlights

Properties of the Log Function

ln x =

∫ x

1

1

tdt,

d

dx(ln x) =

1

x> 0.

ln 1 = 0, ln e = 1.

ln(xy) = ln x + ln y , ln(x/y) = ln x − ln y .

ln(x r

)= r ln x , ln

(er

)= r .

domain = (0,∞), range = (−∞,∞).

limx→0+

ln x = −∞, limx→∞

ln x = ∞.

limx→∞

ln x

x r= 0, lim

x→0+x r ln x = 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 2 / 19

Page 9: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Differentiation: Chain Rule

Theorem

d

dx

(ln u(x)

)=

1

u(x)

d

dx

(u(x)

), for x s.t. u(x) > 0.

Proof.

By the chain rule,d

dx

(ln u

)=

d

du

(ln u

)du

dx=

1

u

du

dx.

Examples

d

dx

(ln(1 + x2)

)=

1

1 + x2

d

dx

(1 + x2

)=

1

1 + x2· 2x =

2x

1 + x2,

for all x ⇐ 1 + x2 > 0.d

dx

(ln(1 + 3x)

)=

1

1 + 3x

d

dx

(1 + 3x

)=

1

1 + 3x· 3 =

3

1 + 3x,

for all x > −13 ⇐ 1 + 3x > 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 3 / 19

Page 10: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Differentiation: Chain Rule

Theorem

d

dx

(ln u(x)

)=

1

u(x)

d

dx

(u(x)

), for x s.t. u(x) > 0.

Proof.

By the chain rule,d

dx

(ln u

)=

d

du

(ln u

)du

dx=

1

u

du

dx.

Examples

d

dx

(ln(1 + x2)

)=

1

1 + x2

d

dx

(1 + x2

)=

1

1 + x2· 2x =

2x

1 + x2,

for all x ⇐ 1 + x2 > 0.d

dx

(ln(1 + 3x)

)=

1

1 + 3x

d

dx

(1 + 3x

)=

1

1 + 3x· 3 =

3

1 + 3x,

for all x > −13 ⇐ 1 + 3x > 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 3 / 19

Page 11: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Differentiation: Chain Rule

Theorem

d

dx

(ln u(x)

)=

1

u(x)

d

dx

(u(x)

), for x s.t. u(x) > 0.

Proof.

By the chain rule,d

dx

(ln u

)=

d

du

(ln u

)du

dx=

1

u

du

dx.

Examples

d

dx

(ln(1 + x2)

)=

1

1 + x2

d

dx

(1 + x2

)=

1

1 + x2· 2x =

2x

1 + x2,

for all x ⇐ 1 + x2 > 0.d

dx

(ln(1 + 3x)

)=

1

1 + 3x

d

dx

(1 + 3x

)=

1

1 + 3x· 3 =

3

1 + 3x,

for all x > −13 ⇐ 1 + 3x > 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 3 / 19

Page 12: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Differentiation: Chain Rule

Theorem

d

dx

(ln u(x)

)=

1

u(x)

d

dx

(u(x)

), for x s.t. u(x) > 0.

Proof.

By the chain rule,d

dx

(ln u

)=

d

du

(ln u

)du

dx=

1

u

du

dx.

Examples

d

dx

(ln(1 + x2)

)=

1

1 + x2

d

dx

(1 + x2

)=

1

1 + x2· 2x =

2x

1 + x2,

for all x ⇐ 1 + x2 > 0.d

dx

(ln(1 + 3x)

)=

1

1 + 3x

d

dx

(1 + 3x

)=

1

1 + 3x· 3 =

3

1 + 3x,

for all x > −13 ⇐ 1 + 3x > 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 3 / 19

Page 13: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Find the domain of f and find f ′(x) if f (x) = ln(x√

4 + x2).

Solution

For x ∈ domain(f ), we need x√

4 + x2 > 0, thus x > 0.

Before differentiating f , simplify it:

f (x) = ln(x√

4 + x2)

= ln x+ln(√

4 + x2)

= ln x+1

2ln

(4+x2

).

Thus

f ′(x) =1

x+

1

2

1

4 + x2

(4+x2

)′=

1

x+

1

2

1

4 + x2·2x =

1

x+

x

4 + x2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 4 / 19

Page 14: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Find the domain of f and find f ′(x) if f (x) = ln(x√

4 + x2).

Solution

For x ∈ domain(f ), we need x√

4 + x2 > 0, thus x > 0.

Before differentiating f , simplify it:

f (x) = ln(x√

4 + x2)

= ln x+ln(√

4 + x2)

= ln x+1

2ln

(4+x2

).

Thus

f ′(x) =1

x+

1

2

1

4 + x2

(4+x2

)′=

1

x+

1

2

1

4 + x2·2x =

1

x+

x

4 + x2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 4 / 19

Page 15: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Find the domain of f and find f ′(x) if f (x) = ln(x√

4 + x2).

Solution

For x ∈ domain(f ), we need x√

4 + x2 > 0, thus x > 0.

Before differentiating f , simplify it:

f (x) = ln(x√

4 + x2)

= ln x+ln(√

4 + x2)

= ln x+1

2ln

(4+x2

).

Thus

f ′(x) =1

x+

1

2

1

4 + x2

(4+x2

)′=

1

x+

1

2

1

4 + x2·2x =

1

x+

x

4 + x2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 4 / 19

Page 16: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Find the domain of f and find f ′(x) if f (x) = ln(x√

4 + x2).

Solution

For x ∈ domain(f ), we need x√

4 + x2 > 0, thus x > 0.

Before differentiating f , simplify it:

f (x) = ln(x√

4 + x2)

= ln x+ln(√

4 + x2)

= ln x+1

2ln

(4+x2

).

Thus

f ′(x) =1

x+

1

2

1

4 + x2

(4+x2

)′=

1

x+

1

2

1

4 + x2·2x =

1

x+

x

4 + x2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 4 / 19

Page 17: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

Specify the domain of f .

Solution

Forx4

x − 1> 0, we need x > 1, thus

domain(f ) = (1,∞).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 18: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

Specify the domain of f .

Solution

Forx4

x − 1> 0, we need x > 1, thus

domain(f ) = (1,∞).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 19: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

On what intervals does f increase? Decrease?Find the extrem values of f .

Solution

Simplify f (x) = 4 ln x − ln (x − 1). Then

f ′(x) =4

x− 1

x − 1=

3x − 4

x(x − 1).

Thus f ↓ on (1, 43) and ↑ on (4

3 ,∞).

At x = 43 , f ′(x) = 0. Thus

f (43) = 4 ln 4− 3 ln 3 ≈ 2.25

is the (only) local and absolute minimum.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 20: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

On what intervals does f increase? Decrease?Find the extrem values of f .

Solution

Simplify f (x) = 4 ln x − ln (x − 1). Then

f ′(x) =4

x− 1

x − 1=

3x − 4

x(x − 1).

Thus f ↓ on (1, 43) and ↑ on (4

3 ,∞).

At x = 43 , f ′(x) = 0. Thus

f (43) = 4 ln 4− 3 ln 3 ≈ 2.25

is the (only) local and absolute minimum.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 21: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

On what intervals does f increase? Decrease?Find the extrem values of f .

Solution

Simplify f (x) = 4 ln x − ln (x − 1). Then

f ′(x) =4

x− 1

x − 1=

3x − 4

x(x − 1).

Thus f ↓ on (1, 43) and ↑ on (4

3 ,∞).

At x = 43 , f ′(x) = 0. Thus

f (43) = 4 ln 4− 3 ln 3 ≈ 2.25

is the (only) local and absolute minimum.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 22: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

On what intervals does f increase? Decrease?Find the extrem values of f .

Solution

Simplify f (x) = 4 ln x − ln (x − 1). Then

f ′(x) =4

x− 1

x − 1=

3x − 4

x(x − 1).

Thus f ↓ on (1, 43) and ↑ on (4

3 ,∞).

At x = 43 , f ′(x) = 0. Thus

f (43) = 4 ln 4− 3 ln 3 ≈ 2.25

is the (only) local and absolute minimum.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 23: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

Determine the concavity and inflection points.

Solution

From f ′(x) = 4x −

1x−1 , we have

f ′′(x) = − 4

x2+

1

(x − 1)2= −(x − 2)(3x − 2)

x2(x − 1)2.

At x = 2, f ′′(x) = 0 (23 /∈ domain(f ) is

ignored). Then, the graph is concave up on(1, 2), concave down on (2,∞).

The point(2, f (2)) = (2, 4 ln 2) ≈ (2, 2.77)

is the only point of inflection.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 24: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

Determine the concavity and inflection points.

Solution

From f ′(x) = 4x −

1x−1 , we have

f ′′(x) = − 4

x2+

1

(x − 1)2= −(x − 2)(3x − 2)

x2(x − 1)2.

At x = 2, f ′′(x) = 0 (23 /∈ domain(f ) is

ignored). Then, the graph is concave up on(1, 2), concave down on (2,∞).

The point(2, f (2)) = (2, 4 ln 2) ≈ (2, 2.77)

is the only point of inflection.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 25: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

Determine the concavity and inflection points.

Solution

From f ′(x) = 4x −

1x−1 , we have

f ′′(x) = − 4

x2+

1

(x − 1)2= −(x − 2)(3x − 2)

x2(x − 1)2.

At x = 2, f ′′(x) = 0 (23 /∈ domain(f ) is

ignored). Then, the graph is concave up on(1, 2), concave down on (2,∞).

The point(2, f (2)) = (2, 4 ln 2) ≈ (2, 2.77)

is the only point of inflection.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 26: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

Determine the concavity and inflection points.

Solution

From f ′(x) = 4x −

1x−1 , we have

f ′′(x) = − 4

x2+

1

(x − 1)2= −(x − 2)(3x − 2)

x2(x − 1)2.

At x = 2, f ′′(x) = 0 (23 /∈ domain(f ) is

ignored). Then, the graph is concave up on(1, 2), concave down on (2,∞).

The point(2, f (2)) = (2, 4 ln 2) ≈ (2, 2.77)

is the only point of inflection.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 27: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

Skectch the graph, specifying the asymptotes.

Solution

From f ′(x) = 4x −

1x−1 , we have

limx→1+

f ′(x) = −∞, limx→∞

f ′(x) = 0.

From f (x) = 4 ln x − ln(x − 1), we have

limx→1+

f (x) = ∞, limx→∞

f (x) = ∞.

The line x = 1 is a vertical asymptote.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 28: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

Skectch the graph, specifying the asymptotes.

Solution

From f ′(x) = 4x −

1x−1 , we have

limx→1+

f ′(x) = −∞, limx→∞

f ′(x) = 0.

From f (x) = 4 ln x − ln(x − 1), we have

limx→1+

f (x) = ∞, limx→∞

f (x) = ∞.

The line x = 1 is a vertical asymptote.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 29: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

Skectch the graph, specifying the asymptotes.

Solution

From f ′(x) = 4x −

1x−1 , we have

limx→1+

f ′(x) = −∞, limx→∞

f ′(x) = 0.

From f (x) = 4 ln x − ln(x − 1), we have

limx→1+

f (x) = ∞, limx→∞

f (x) = ∞.

The line x = 1 is a vertical asymptote.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 30: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = ln

(x4

x − 1

).

Skectch the graph, specifying the asymptotes.

Solution

From f ′(x) = 4x −

1x−1 , we have

limx→1+

f ′(x) = −∞, limx→∞

f ′(x) = 0.

From f (x) = 4 ln x − ln(x − 1), we have

limx→1+

f (x) = ∞, limx→∞

f (x) = ∞.

The line x = 1 is a vertical asymptote.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 5 / 19

Page 31: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .Specify the domain of f and find the intercepts.

Solution

ln x is defined only for x > 0, thus

domain(f ) = (0,∞).

There is no y -intercept. Since

f (1) = 1 · ln 1 = 0,

x = 1 is the only x-intercept.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 32: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .Specify the domain of f and find the intercepts.

Solution

ln x is defined only for x > 0, thus

domain(f ) = (0,∞).

There is no y -intercept. Since

f (1) = 1 · ln 1 = 0,

x = 1 is the only x-intercept.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 33: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .Specify the domain of f and find the intercepts.

Solution

ln x is defined only for x > 0, thus

domain(f ) = (0,∞).

There is no y -intercept. Since

f (1) = 1 · ln 1 = 0,

x = 1 is the only x-intercept.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 34: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .On what intervals does f increase? Decrease?Find the extrem values of f .

Solution

We have f ′(x) = x · 1

x+ ln x = 1 + ln x .

For f ′(x) = 0, we have

1 + ln x = 0 ⇒ ln x = −1 ⇒ x =1

e.

Thus f ↓ on (0, 1e ) and ↑ on (1

e ,∞).

At x = 1e , f ′(x) = 0. Thus

f (1e ) = 1

e ln 1e = −1

e ≈ −0.368.is the (only) local and absolute minimum.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 35: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .On what intervals does f increase? Decrease?Find the extrem values of f .

Solution

We have f ′(x) = x · 1

x+ ln x = 1 + ln x .

For f ′(x) = 0, we have

1 + ln x = 0 ⇒ ln x = −1 ⇒ x =1

e.

Thus f ↓ on (0, 1e ) and ↑ on (1

e ,∞).

At x = 1e , f ′(x) = 0. Thus

f (1e ) = 1

e ln 1e = −1

e ≈ −0.368.is the (only) local and absolute minimum.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 36: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .On what intervals does f increase? Decrease?Find the extrem values of f .

Solution

We have f ′(x) = x · 1

x+ ln x = 1 + ln x .

For f ′(x) = 0, we have

1 + ln x = 0 ⇒ ln x = −1 ⇒ x =1

e.

Thus f ↓ on (0, 1e ) and ↑ on (1

e ,∞).

At x = 1e , f ′(x) = 0. Thus

f (1e ) = 1

e ln 1e = −1

e ≈ −0.368.is the (only) local and absolute minimum.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 37: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .On what intervals does f increase? Decrease?Find the extrem values of f .

Solution

We have f ′(x) = x · 1

x+ ln x = 1 + ln x .

For f ′(x) = 0, we have

1 + ln x = 0 ⇒ ln x = −1 ⇒ x =1

e.

Thus f ↓ on (0, 1e ) and ↑ on (1

e ,∞).

At x = 1e , f ′(x) = 0. Thus

f (1e ) = 1

e ln 1e = −1

e ≈ −0.368.is the (only) local and absolute minimum.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 38: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .Determine the concavity and inflection points.

Solution

From f ′(x) = 1 + ln x , we have

f ′′(x) =1

x> 0, for all x > 0.

Then, the graph is concave up on (0,∞).

There is no point of inflection.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 39: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .Determine the concavity and inflection points.

Solution

From f ′(x) = 1 + ln x , we have

f ′′(x) =1

x> 0, for all x > 0.

Then, the graph is concave up on (0,∞).

There is no point of inflection.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 40: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .Determine the concavity and inflection points.

Solution

From f ′(x) = 1 + ln x , we have

f ′′(x) =1

x> 0, for all x > 0.

Then, the graph is concave up on (0,∞).

There is no point of inflection.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 41: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .Determine the concavity and inflection points.

Solution

From f ′(x) = 1 + ln x , we have

f ′′(x) =1

x> 0, for all x > 0.

Then, the graph is concave up on (0,∞).

There is no point of inflection.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 42: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .Skectch the graph.

Solution

From f ′(x) = 1 + ln x , we have

limx→0+

f ′(x) = −∞, limx→∞

f ′(x) = ∞.

From f (x) = x ln x , we have

limx→0+

f (x) = 0, limx→∞

f (x) = ∞.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 43: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .Skectch the graph.

Solution

From f ′(x) = 1 + ln x , we have

limx→0+

f ′(x) = −∞, limx→∞

f ′(x) = ∞.

From f (x) = x ln x , we have

limx→0+

f (x) = 0, limx→∞

f (x) = ∞.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 44: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Example

Example

Let f (x) = x ln x .Skectch the graph.

Solution

From f ′(x) = 1 + ln x , we have

limx→0+

f ′(x) = −∞, limx→∞

f ′(x) = ∞.

From f (x) = x ln x , we have

limx→0+

f (x) = 0, limx→∞

f (x) = ∞.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 6 / 19

Page 45: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Chain Rule Graphing

Quiz

Quiz

1. ln 1 =? : (a) −1, (b) 0, (c) 1.

2. ln e =? : (a) 0, (b) 1, (c) e.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 7 / 19

Page 46: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

f (x) = ln |x |, x 6= 0

Graph

The graph has two branches:y = ln(−x), x < 0 and y = ln x , x > 0,

each is the mirror image of the other.

Theorem

d

dx

(ln |x |

)=

1

x⇔

∫1

xdx = ln |x |+ C

Proof.

For x > 0,d

dx

(ln |x |

)=

d

dx

(ln x

)=

1

x.

For x < 0,d

dx

(ln |x |

)=

d

dx

(ln(−x)

)=

1

−x

d

dx(−x) =

1

x.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 8 / 19

Page 47: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

f (x) = ln |x |, x 6= 0

Graph

The graph has two branches:y = ln(−x), x < 0 and y = ln x , x > 0,

each is the mirror image of the other.

Theorem

d

dx

(ln |x |

)=

1

x⇔

∫1

xdx = ln |x |+ C

Proof.

For x > 0,d

dx

(ln |x |

)=

d

dx

(ln x

)=

1

x.

For x < 0,d

dx

(ln |x |

)=

d

dx

(ln(−x)

)=

1

−x

d

dx(−x) =

1

x.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 8 / 19

Page 48: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

f (x) = ln |x |, x 6= 0

Graph

The graph has two branches:y = ln(−x), x < 0 and y = ln x , x > 0,

each is the mirror image of the other.

Theorem

d

dx

(ln |x |

)=

1

x⇔

∫1

xdx = ln |x |+ C

Proof.

For x > 0,d

dx

(ln |x |

)=

d

dx

(ln x

)=

1

x.

For x < 0,d

dx

(ln |x |

)=

d

dx

(ln(−x)

)=

1

−x

d

dx(−x) =

1

x.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 8 / 19

Page 49: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

f (x) = ln |x |, x 6= 0

Graph

The graph has two branches:y = ln(−x), x < 0 and y = ln x , x > 0,

each is the mirror image of the other.

Theorem

d

dx

(ln |x |

)=

1

x⇔

∫1

xdx = ln |x |+ C

Proof.

For x > 0,d

dx

(ln |x |

)=

d

dx

(ln x

)=

1

x.

For x < 0,d

dx

(ln |x |

)=

d

dx

(ln(−x)

)=

1

−x

d

dx(−x) =

1

x.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 8 / 19

Page 50: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Power Rule:

∫xn dx

Power Rule

∫xn dx =

1

n + 1xn+1 + C , if n 6= −1,

ln |x |+ C , if n = −1.

Example∫x + 1

x2dx =

∫ (1

x+

1

x2

)dx = ln |x | − 1

x+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 9 / 19

Page 51: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Power Rule:

∫xn dx

Power Rule

∫xn dx =

1

n + 1xn+1 + C , if n 6= −1,

ln |x |+ C , if n = −1.

Example∫x + 1

x2dx =

∫ (1

x+

1

x2

)dx = ln |x | − 1

x+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 9 / 19

Page 52: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Differentiation: Chain Rule

Theorem

d

dx

(ln |u(x)|

)=

1

u(x)

d

dx

(u(x)

), for x s.t. u(x) 6= 0.

Proof.

By the chain rule,d

dx

(ln |u|

)=

d

du

(ln |u|

)du

dx=

1

u

du

dx.

Examples

d

dx

(ln |1− x3|

)=

1

1− x3

d

dx

(1− x3

)=−3x2

1− x3.

d

dx

(ln

∣∣∣∣x − 1

x − 2

∣∣∣∣) =d

dx(ln |x − 1|)− d

dx(ln |x − 2|)

=1

x − 1− 1

x − 2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 10 / 19

Page 53: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Differentiation: Chain Rule

Theorem

d

dx

(ln |u(x)|

)=

1

u(x)

d

dx

(u(x)

), for x s.t. u(x) 6= 0.

Proof.

By the chain rule,d

dx

(ln |u|

)=

d

du

(ln |u|

)du

dx=

1

u

du

dx.

Examples

d

dx

(ln |1− x3|

)=

1

1− x3

d

dx

(1− x3

)=−3x2

1− x3.

d

dx

(ln

∣∣∣∣x − 1

x − 2

∣∣∣∣) =d

dx(ln |x − 1|)− d

dx(ln |x − 2|)

=1

x − 1− 1

x − 2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 10 / 19

Page 54: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Differentiation: Chain Rule

Theorem

d

dx

(ln |u(x)|

)=

1

u(x)

d

dx

(u(x)

), for x s.t. u(x) 6= 0.

Proof.

By the chain rule,d

dx

(ln |u|

)=

d

du

(ln |u|

)du

dx=

1

u

du

dx.

Examples

d

dx

(ln |1− x3|

)=

1

1− x3

d

dx

(1− x3

)=−3x2

1− x3.

d

dx

(ln

∣∣∣∣x − 1

x − 2

∣∣∣∣) =d

dx(ln |x − 1|)− d

dx(ln |x − 2|)

=1

x − 1− 1

x − 2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 10 / 19

Page 55: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Differentiation: Chain Rule

Theorem

d

dx

(ln |u(x)|

)=

1

u(x)

d

dx

(u(x)

), for x s.t. u(x) 6= 0.

Proof.

By the chain rule,d

dx

(ln |u|

)=

d

du

(ln |u|

)du

dx=

1

u

du

dx.

Examples

d

dx

(ln |1− x3|

)=

1

1− x3

d

dx

(1− x3

)=−3x2

1− x3.

d

dx

(ln

∣∣∣∣x − 1

x − 2

∣∣∣∣) =d

dx(ln |x − 1|)− d

dx(ln |x − 2|)

=1

x − 1− 1

x − 2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 10 / 19

Page 56: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Logarithmic Differentiation

Theorem

Let g(x) = g1(x) · g2(x) · · · gn(x). Then

g ′(x) = g(x)

(g ′1(x)

g1(x)+

g ′2(x)

g2(x)+ · · ·+ g ′n(x)

gn(x)

).

Proof.

First write

ln |g(x)| = ln (|g1(x)| · |g2(x)| · · · |gn(x)|)= ln |g1(x)|+ ln |g2(x)|+ · · ·+ ln |gn(x)|.

Then differentiate

g ′(x)

g(x)=

g ′1(x)

g1(x)+

g ′2(x)

g2(x)+ · · ·+ g ′n(x)

gn(x).

Multiplying by g(x) gives the result.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 11 / 19

Page 57: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Logarithmic Differentiation

Theorem

Let g(x) = g1(x) · g2(x) · · · gn(x). Then

g ′(x) = g(x)

(g ′1(x)

g1(x)+

g ′2(x)

g2(x)+ · · ·+ g ′n(x)

gn(x)

).

Proof.

First write

ln |g(x)| = ln (|g1(x)| · |g2(x)| · · · |gn(x)|)= ln |g1(x)|+ ln |g2(x)|+ · · ·+ ln |gn(x)|.

Then differentiate

g ′(x)

g(x)=

g ′1(x)

g1(x)+

g ′2(x)

g2(x)+ · · ·+ g ′n(x)

gn(x).

Multiplying by g(x) gives the result.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 11 / 19

Page 58: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Logarithmic Differentiation

Theorem

Let g(x) = g1(x) · g2(x) · · · gn(x). Then

g ′(x) = g(x)

(g ′1(x)

g1(x)+

g ′2(x)

g2(x)+ · · ·+ g ′n(x)

gn(x)

).

Proof.

First write

ln |g(x)| = ln (|g1(x)| · |g2(x)| · · · |gn(x)|)= ln |g1(x)|+ ln |g2(x)|+ · · ·+ ln |gn(x)|.

Then differentiate

g ′(x)

g(x)=

g ′1(x)

g1(x)+

g ′2(x)

g2(x)+ · · ·+ g ′n(x)

gn(x).

Multiplying by g(x) gives the result.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 11 / 19

Page 59: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Logarithmic Differentiation

Theorem

Let g(x) = g1(x) · g2(x) · · · gn(x). Then

g ′(x) = g(x)

(g ′1(x)

g1(x)+

g ′2(x)

g2(x)+ · · ·+ g ′n(x)

gn(x)

).

Proof.

First write

ln |g(x)| = ln (|g1(x)| · |g2(x)| · · · |gn(x)|)= ln |g1(x)|+ ln |g2(x)|+ · · ·+ ln |gn(x)|.

Then differentiate

g ′(x)

g(x)=

g ′1(x)

g1(x)+

g ′2(x)

g2(x)+ · · ·+ g ′n(x)

gn(x).

Multiplying by g(x) gives the result.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 11 / 19

Page 60: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Examples

Examples

Find f ′(x) if

g(x) = x(x − 1)(x − 2)(x − 3).

g(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2.

Solution

ln |g(x)| = ln |x |+ ln |x − 1|+ ln |x − 2|+ ln |x − 3|.

g ′(x)

g(x)=

1

x+

1

x − 1+

1

x − 2+

1

x − 3.

g ′(x) = x(x − 1)(x − 2)(x − 3)

(1

x+

1

x − 1+

1

x − 2+

1

x − 3

).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 12 / 19

Page 61: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Examples

Examples

Find f ′(x) if

g(x) = x(x − 1)(x − 2)(x − 3).

g(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2.

Solution

ln |g(x)| = ln |x |+ ln |x − 1|+ ln |x − 2|+ ln |x − 3|.

g ′(x)

g(x)=

1

x+

1

x − 1+

1

x − 2+

1

x − 3.

g ′(x) = x(x − 1)(x − 2)(x − 3)

(1

x+

1

x − 1+

1

x − 2+

1

x − 3

).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 12 / 19

Page 62: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Examples

Examples

Find f ′(x) if

g(x) = x(x − 1)(x − 2)(x − 3).

g(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2.

Solution

ln |g(x)| = ln |x |+ ln |x − 1|+ ln |x − 2|+ ln |x − 3|.

g ′(x)

g(x)=

1

x+

1

x − 1+

1

x − 2+

1

x − 3.

g ′(x) = x(x − 1)(x − 2)(x − 3)

(1

x+

1

x − 1+

1

x − 2+

1

x − 3

).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 12 / 19

Page 63: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Examples

Examples

Find f ′(x) if

g(x) = x(x − 1)(x − 2)(x − 3).

g(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2.

Solution

ln |g(x)| = ln |x |+ ln |x − 1|+ ln |x − 2|+ ln |x − 3|.

g ′(x)

g(x)=

1

x+

1

x − 1+

1

x − 2+

1

x − 3.

g ′(x) = x(x − 1)(x − 2)(x − 3)

(1

x+

1

x − 1+

1

x − 2+

1

x − 3

).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 12 / 19

Page 64: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Examples

Examples

Find f ′(x) if

g(x) = x(x − 1)(x − 2)(x − 3).

g(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2.

Solution

ln |g(x)| = 3 ln |x2 + 1|+ 2 ln |2x − 5| − 2 ln |x2 + 5|.

g ′(x)

g(x)= 3

2x

x2 + 1+ 2

2

2x − 5− 2

2x

x2 + 5.

g ′(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2

(6x

x2 + 1+

4

2x − 5− 4x

x2 + 5

).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 12 / 19

Page 65: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Examples

Examples

Find f ′(x) if

g(x) = x(x − 1)(x − 2)(x − 3).

g(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2.

Solution

ln |g(x)| = 3 ln |x2 + 1|+ 2 ln |2x − 5| − 2 ln |x2 + 5|.

g ′(x)

g(x)= 3

2x

x2 + 1+ 2

2

2x − 5− 2

2x

x2 + 5.

g ′(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2

(6x

x2 + 1+

4

2x − 5− 4x

x2 + 5

).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 12 / 19

Page 66: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Examples

Examples

Find f ′(x) if

g(x) = x(x − 1)(x − 2)(x − 3).

g(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2.

Solution

ln |g(x)| = 3 ln |x2 + 1|+ 2 ln |2x − 5| − 2 ln |x2 + 5|.

g ′(x)

g(x)= 3

2x

x2 + 1+ 2

2

2x − 5− 2

2x

x2 + 5.

g ′(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2

(6x

x2 + 1+

4

2x − 5− 4x

x2 + 5

).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 12 / 19

Page 67: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Examples

Examples

Find f ′(x) if

g(x) = x(x − 1)(x − 2)(x − 3).

g(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2.

Solution

ln |g(x)| = 3 ln |x2 + 1|+ 2 ln |2x − 5| − 2 ln |x2 + 5|.

g ′(x)

g(x)= 3

2x

x2 + 1+ 2

2

2x − 5− 2

2x

x2 + 5.

g ′(x) =(x2 + 1)3(2x − 5)2

(x2 + 5)2

(6x

x2 + 1+

4

2x − 5− 4x

x2 + 5

).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 12 / 19

Page 68: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration Properties Chain Rule Log Differentiation

Quiz (cont.)

Quiz (cont.)

3. limx→0+

ln x =? : (a) −∞, (b) 0, (c) ∞.

4. limx→∞

ln x =? : (a) −∞, (b) 0, (c) ∞.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 13 / 19

Page 69: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Integration: u-Substitution

Theorem ∫g ′(x)

g(x)dx = ln |g(x)|+ C , x 6= 0.

Proof.

Let u = g(x), thus du = g ′(x)dx , then∫g ′(x)

g(x)dx =

∫1

udu = ln |u|+ C = ln |g(x)|+ C .

Example

Calculate

∫x2

1− 4x3dx .

Let u = 1− 4x3, thus du = −12x2dx , then∫x2

1− 4x3dx = − 1

12

∫1

udu = − 1

12ln |u|+ C = − 1

12ln |1− 4x3|+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 14 / 19

Page 70: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Integration: u-Substitution

Theorem ∫g ′(x)

g(x)dx = ln |g(x)|+ C , x 6= 0.

Proof.

Let u = g(x), thus du = g ′(x)dx , then∫g ′(x)

g(x)dx =

∫1

udu = ln |u|+ C = ln |g(x)|+ C .

Example

Calculate

∫x2

1− 4x3dx .

Let u = 1− 4x3, thus du = −12x2dx , then∫x2

1− 4x3dx = − 1

12

∫1

udu = − 1

12ln |u|+ C = − 1

12ln |1− 4x3|+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 14 / 19

Page 71: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Integration: u-Substitution

Theorem ∫g ′(x)

g(x)dx = ln |g(x)|+ C , x 6= 0.

Proof.

Let u = g(x), thus du = g ′(x)dx , then∫g ′(x)

g(x)dx =

∫1

udu = ln |u|+ C = ln |g(x)|+ C .

Example

Calculate

∫x2

1− 4x3dx .

Let u = 1− 4x3, thus du = −12x2dx , then∫x2

1− 4x3dx = − 1

12

∫1

udu = − 1

12ln |u|+ C = − 1

12ln |1− 4x3|+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 14 / 19

Page 72: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Integration: u-Substitution

Theorem ∫g ′(x)

g(x)dx = ln |g(x)|+ C , x 6= 0.

Proof.

Let u = g(x), thus du = g ′(x)dx , then∫g ′(x)

g(x)dx =

∫1

udu = ln |u|+ C = ln |g(x)|+ C .

Example

Calculate

∫x2

1− 4x3dx .

Let u = 1− 4x3, thus du = −12x2dx , then∫x2

1− 4x3dx = − 1

12

∫1

udu = − 1

12ln |u|+ C = − 1

12ln |1− 4x3|+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 14 / 19

Page 73: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples: u-Substitution

Examples∫ln x

xdx .∫1√

x(1 +√

x)dx .∫ 2

1

6x2 + 2

x3 + x + 1dx .

Solution

Set u = ln x , du =1

xdx . Then∫

ln x

xdx =

∫udu =

1

2u2 + C =

1

2(ln x)2 + C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 15 / 19

Page 74: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples: u-Substitution

Examples∫ln x

xdx .∫1√

x(1 +√

x)dx .∫ 2

1

6x2 + 2

x3 + x + 1dx .

Solution

Set u = ln x , du =1

xdx . Then∫

ln x

xdx =

∫udu =

1

2u2 + C =

1

2(ln x)2 + C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 15 / 19

Page 75: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples: u-Substitution

Examples∫ln x

xdx .∫1√

x(1 +√

x)dx .∫ 2

1

6x2 + 2

x3 + x + 1dx .

Solution

Set u = 1 +√

x , du =1

2√

xdx . Then

∫1√

x(1 +√

x)dx = 2

∫1

udu = 2 ln |u|+ C = 2 ln

(1 +

√x)+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 15 / 19

Page 76: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples: u-Substitution

Examples∫ln x

xdx .∫1√

x(1 +√

x)dx .∫ 2

1

6x2 + 2

x3 + x + 1dx .

Solution

Set u = 1 +√

x , du =1

2√

xdx . Then

∫1√

x(1 +√

x)dx = 2

∫1

udu = 2 ln |u|+ C = 2 ln

(1 +

√x)+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 15 / 19

Page 77: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples: u-Substitution

Examples∫ln x

xdx .∫1√

x(1 +√

x)dx .∫ 2

1

6x2 + 2

x3 + x + 1dx .

Solution

Set u = x3 + x + 1, du = (3x2 + 1)dx . At x = 1, u = 3; atx = 2, u = 11. Then∫ 2

1

6x2 + 2

x3 + x + 1dx = 2

∫ 11

3

1

udu = 2 [ln |u|]113 = 2 (ln 11− ln 3) .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 15 / 19

Page 78: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples: u-Substitution

Examples∫ln x

xdx .∫1√

x(1 +√

x)dx .∫ 2

1

6x2 + 2

x3 + x + 1dx .

Solution

Set u = x3 + x + 1, du = (3x2 + 1)dx . At x = 1, u = 3; atx = 2, u = 11. Then∫ 2

1

6x2 + 2

x3 + x + 1dx = 2

∫ 11

3

1

udu = 2 [ln |u|]113 = 2 (ln 11− ln 3) .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 15 / 19

Page 79: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples: u-Substitution

Examples∫ln x

xdx .∫1√

x(1 +√

x)dx .∫ 2

1

6x2 + 2

x3 + x + 1dx .

Solution

Natural log arises (only) when integrating a quotient whosenumerator is the derivative of its denominator (or a constantmultiple of it).∫

g ′(x)

g(x)dx =

∫1

udu = ln |u|+ C = ln |g(x)|+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 15 / 19

Page 80: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Integration of Trigonometric Functions

Recall that∫cos x dx = sin x + C ⇔ d

dxsin x = cos x .∫

sin x dx = − cos x + C ⇔ d

dxcos x = − sin x .∫

sec2 x dx = tan x + C ⇔ d

dxtan x = sec2 x .∫

csc2 x dx = − cot x + C ⇔ d

dxcot x = − csc2 x .∫

sec x tan x dx = sec x + C ⇔ d

dxsec x = sec x tan x .∫

csc x cot x dx = − csc x + C ⇔ d

dxcsc x = − csc x cot x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 16 / 19

Page 81: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Integration of Trigonometric Functions

Recall that∫cos x dx = sin x + C ⇔ d

dxsin x = cos x .∫

sin x dx = − cos x + C ⇔ d

dxcos x = − sin x .∫

sec2 x dx = tan x + C ⇔ d

dxtan x = sec2 x .∫

csc2 x dx = − cot x + C ⇔ d

dxcot x = − csc2 x .∫

sec x tan x dx = sec x + C ⇔ d

dxsec x = sec x tan x .∫

csc x cot x dx = − csc x + C ⇔ d

dxcsc x = − csc x cot x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 16 / 19

Page 82: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Integration of Trigonometric Functions

Recall that∫cos x dx = sin x + C ⇔ d

dxsin x = cos x .∫

sin x dx = − cos x + C ⇔ d

dxcos x = − sin x .∫

sec2 x dx = tan x + C ⇔ d

dxtan x = sec2 x .∫

csc2 x dx = − cot x + C ⇔ d

dxcot x = − csc2 x .∫

sec x tan x dx = sec x + C ⇔ d

dxsec x = sec x tan x .∫

csc x cot x dx = − csc x + C ⇔ d

dxcsc x = − csc x cot x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 16 / 19

Page 83: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Integration of Trigonometric Functions

Recall that∫cos x dx = sin x + C ⇔ d

dxsin x = cos x .∫

sin x dx = − cos x + C ⇔ d

dxcos x = − sin x .∫

sec2 x dx = tan x + C ⇔ d

dxtan x = sec2 x .∫

csc2 x dx = − cot x + C ⇔ d

dxcot x = − csc2 x .∫

sec x tan x dx = sec x + C ⇔ d

dxsec x = sec x tan x .∫

csc x cot x dx = − csc x + C ⇔ d

dxcsc x = − csc x cot x .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 16 / 19

Page 84: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

New Integration Formulas

Integration of Trigonometric Functions∫tan x dx = − ln | cos x |+ C .∫cot x dx = ln | sin x |+ C .∫sec x dx = ln | sec x + tan x |+ C .∫csc x dx = ln | csc x − cot x |+ C .

Proof.

Set u = cos x , du = − sin x dx , then∫tan x dx =

∫sin x

cos xdx = −

∫1

udu = − ln |u|+ C

= − ln | cos x |+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 17 / 19

Page 85: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

New Integration Formulas

Integration of Trigonometric Functions∫tan x dx = − ln | cos x |+ C .∫cot x dx = ln | sin x |+ C .∫sec x dx = ln | sec x + tan x |+ C .∫csc x dx = ln | csc x − cot x |+ C .

Proof.

Set u = cos x , du = − sin x dx , then∫tan x dx =

∫sin x

cos xdx = −

∫1

udu = − ln |u|+ C

= − ln | cos x |+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 17 / 19

Page 86: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

New Integration Formulas

Integration of Trigonometric Functions∫tan x dx = − ln | cos x |+ C .∫cot x dx = ln | sin x |+ C .∫sec x dx = ln | sec x + tan x |+ C .∫csc x dx = ln | csc x − cot x |+ C .

Proof.

Set u = sin x , du = cos x dx , then∫cot x dx =

∫cos x

sin xdx =

∫1

udu = ln |u|+ C

= ln | sin x |+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 17 / 19

Page 87: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

New Integration Formulas

Integration of Trigonometric Functions∫tan x dx = − ln | cos x |+ C .∫cot x dx = ln | sin x |+ C .∫sec x dx = ln | sec x + tan x |+ C .∫csc x dx = ln | csc x − cot x |+ C .

Proof.

Set u = sin x , du = cos x dx , then∫cot x dx =

∫cos x

sin xdx =

∫1

udu = ln |u|+ C

= ln | sin x |+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 17 / 19

Page 88: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

New Integration Formulas

Integration of Trigonometric Functions∫tan x dx = − ln | cos x |+ C .∫cot x dx = ln | sin x |+ C .∫sec x dx = ln | sec x + tan x |+ C .∫csc x dx = ln | csc x − cot x |+ C .

Proof.

Set u = sec x + tan x , du = (sec x tan x + sec2 x) dx , then∫sec x dx =

∫sec

sec x + tan x

sec x + tan xdx =

∫sec x tan x + sec2 x

sec x + tan xdx

=

∫1

udu = ln |u|+ C = ln | sec x + tan x |+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 17 / 19

Page 89: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

New Integration Formulas

Integration of Trigonometric Functions∫tan x dx = − ln | cos x |+ C .∫cot x dx = ln | sin x |+ C .∫sec x dx = ln | sec x + tan x |+ C .∫csc x dx = ln | csc x − cot x |+ C .

Proof.

Set u = sec x + tan x , du = (sec x tan x + sec2 x) dx , then∫sec x dx =

∫sec

sec x + tan x

sec x + tan xdx =

∫sec x tan x + sec2 x

sec x + tan xdx

=

∫1

udu = ln |u|+ C = ln | sec x + tan x |+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 17 / 19

Page 90: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

New Integration Formulas

Integration of Trigonometric Functions∫tan x dx = − ln | cos x |+ C .∫cot x dx = ln | sin x |+ C .∫sec x dx = ln | sec x + tan x |+ C .∫csc x dx = ln | csc x − cot x |+ C .

Proof.

Set u = csc x − cot x , du = (− csc x cot x + csc2 x) dx , then∫csc x dx =

∫csc

csc x − cot x

csc x − cot xdx =

∫− csc x cot x + csc2 x

csc x − cot xdx

=

∫1

udu = ln |u|+ C = ln | csc x − cot x |+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 17 / 19

Page 91: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

New Integration Formulas

Integration of Trigonometric Functions∫tan x dx = − ln | cos x |+ C .∫cot x dx = ln | sin x |+ C .∫sec x dx = ln | sec x + tan x |+ C .∫csc x dx = ln | csc x − cot x |+ C .

Proof.

Set u = csc x − cot x , du = (− csc x cot x + csc2 x) dx , then∫csc x dx =

∫csc

csc x − cot x

csc x − cot xdx =

∫− csc x cot x + csc2 x

csc x − cot xdx

=

∫1

udu = ln |u|+ C = ln | csc x − cot x |+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 17 / 19

Page 92: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples:

∫du

uExamples∫

sec2 3x

1 + tan 3xdx .∫

x sec x2 dx .∫tan(ln x)

xdx .

Solution

Set u = 1 + tan 3x , du = 3 sec2 3x dx :∫sec2 3x

1 + tan 3xdx =

1

3

∫1

udu

=1

3ln |u|+ C =

1

3ln |1 + tan 3x |+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 18 / 19

Page 93: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples:

∫du

uExamples∫

sec2 3x

1 + tan 3xdx .∫

x sec x2 dx .∫tan(ln x)

xdx .

Solution

Set u = 1 + tan 3x , du = 3 sec2 3x dx :∫sec2 3x

1 + tan 3xdx =

1

3

∫1

udu

=1

3ln |u|+ C =

1

3ln |1 + tan 3x |+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 18 / 19

Page 94: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples:

∫du

uExamples∫

sec2 3x

1 + tan 3xdx .∫

x sec x2 dx .∫tan(ln x)

xdx .

Solution

Set u = 1 + tan 3x , du = 3 sec2 3x dx :∫sec2 3x

1 + tan 3xdx =

1

3

∫1

udu

=1

3ln |u|+ C =

1

3ln |1 + tan 3x |+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 18 / 19

Page 95: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples:

∫du

uExamples∫

sec2 3x

1 + tan 3xdx .∫

x sec x2 dx .∫tan(ln x)

xdx .

Solution

Set u = x2, du = 2x dx :∫x sec x2 dx =

1

2

∫sec u du =

1

2ln | sec u + tan u|+ C

=1

2ln | sec x2 + tan x2|+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 18 / 19

Page 96: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples:

∫du

uExamples∫

sec2 3x

1 + tan 3xdx .∫

x sec x2 dx .∫tan(ln x)

xdx .

Solution

Set u = x2, du = 2x dx :∫x sec x2 dx =

1

2

∫sec u du =

1

2ln | sec u + tan u|+ C

=1

2ln | sec x2 + tan x2|+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 18 / 19

Page 97: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples:

∫du

uExamples∫

sec2 3x

1 + tan 3xdx .∫

x sec x2 dx .∫tan(ln x)

xdx .

Solution

Set u = x2, du = 2x dx :∫x sec x2 dx =

1

2

∫sec u du =

1

2ln | sec u + tan u|+ C

=1

2ln | sec x2 + tan x2|+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 18 / 19

Page 98: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples:

∫du

uExamples∫

sec2 3x

1 + tan 3xdx .∫

x sec x2 dx .∫tan(ln x)

xdx .

Solution

Set u = ln x , du = 1x dx :∫

tan(ln x)

xdx =

∫tan u du = ln | sec u|+ C

= ln | sec(ln x)|+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 18 / 19

Page 99: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples:

∫du

uExamples∫

sec2 3x

1 + tan 3xdx .∫

x sec x2 dx .∫tan(ln x)

xdx .

Solution

Set u = ln x , du = 1x dx :∫

tan(ln x)

xdx =

∫tan u du = ln | sec u|+ C

= ln | sec(ln x)|+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 18 / 19

Page 100: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Examples:

∫du

uExamples∫

sec2 3x

1 + tan 3xdx .∫

x sec x2 dx .∫tan(ln x)

xdx .

Solution

Set u = ln x , du = 1x dx :∫

tan(ln x)

xdx =

∫tan u du = ln | sec u|+ C

= ln | sec(ln x)|+ C .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 18 / 19

Page 101: Lecture 3 - Section 7.3 The Logarithm Function, Part IIjiwenhe/Math1432/lectures/lecture03.pdfJiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008

Differentiation ln |x| Integration u-Substitution Trigonometric Functions

Outline

Differentiation and GraphingChain RuleGraphing

ln |x |PropertiesChain RuleLogarithmic Differentiation

Integration and Trigonometric Functionsu-SubstitutionTrigonometric Functions

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 3 January 22, 2008 19 / 19