lecture 2 fundamentals of technological change ©2009 prentice hall 2-1

68
Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Upload: kelley-perry

Post on 30-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Lecture 2

Fundamentals of Technological Change

©2009 Prentice Hall2-1

Page 2: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-2

Page 3: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-3

Learning Objectives

1. Explain why technology tends to develop in an evolutionary manner

2. Graph & describe a technology S-curve3. Define a shift in the S-curve4. Spell out the pros and cons of using technology S-curves5. Describe the Abernathy-Utterback model of technology evolution6. Define & interpret a dominant design7. Define & explain radical and incremental technological change8. Summarize the modifications that researchers have made to the

Abernathy-Utterback model9. Describe & explain architectural innovation10. Identify the types of innovation that new and established firms are

each better suited to develop

Page 4: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

DEFINITION OF INNOVATION

• Innovation - the use of new technological or market knowledge to offer a new product or service that customers want

• Innovation = invention + commercialization

• Innovation - the adoption of ideas that are new to the adopting organization

Page 5: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Innovation

Competencesand

Assets

New technologicalknowledge

New Market Knowledge

• New Product• -Low Cost• -Improved Attributes• -New Attributes

Page 6: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

THEORIES OF INNOVATION

• Three general categories

• 1) theories that predict who might innovate

• 2) static theories

• 3) dynamic theories

Page 7: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

INNOVATION• Afuah

Innovation is the use of new technological and market knowledge to offer a new product or service to customers.

• A product/service can be considered ‘new’ if: its costs are lowered it has new attributes it is, indeed, a new product or service

Page 8: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Profits

• Profits = Revenues – Costs• = P( z , q ) x q( z ) – C( q ,

z )• where• P = price• C = cost• q = quantity• z = attributes

Page 9: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Value Creation, Costs and Competition

Page 10: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-10

Overview• Several dimensions are used to categorize

innovations. These dimensions help clarify how different

innovations offer different opportunities (and pose different demands) on producers, users, and regulators.

• The path a technology follows through time is termed its technology trajectory. Many consistent patterns have been observed in

technology trajectories, helping us understand how technologies improve and are diffused.

Page 11: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-11

Types of Innovation• Product versus Process Innovation

Product innovations are embodied in the outputs of an organization – its goods or services.

Process innovations are innovations in the way an organization conducts its business, such as in techniques of producing or marketing goods or services.

Product innovations can enable process innovations and vice versa.

What is a product innovation for one organization might be a process innovation for another• E.g., UPS creates a new distribution service (product innovation)

that enables its customers to distribute their goods more widely or more easily (process innovation)

Page 12: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-12

Types of Innovation• Radical versus Incremental Innovation

The radicalness of an innovation is the degree to which it is new and different from previously existing products and processes.

Incremental innovations may involve only a minor change from (or adjustment to) existing practices.

The radicalness of an innovation is relative; it may change over time or with respect to different observers.• E.g., digital photography a more radical innovation for

Kodak than for Sony.

Page 13: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-13

Types of Innovation

• Competence-Enhancing versus Competence-Destroying Innovation Competence-enhancing innovations build on the firm’s

existing knowledge base• E.g., Intel’s Pentium 4 built on the technology for Pentium III.

Competence-destroying innovations renders a firm’s existing competencies obsolete.• E.g., electronic calculators rendered Keuffel & Esser’s slide rule

expertise obsolete.

Whether an innovation is competence enhancing or competence destroying depends on the perspective of a particular firm.

Page 14: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-14

Types of Innovation

• Architectural versus Component Innovation A component innovation (or modular innovation)

entails changes to one or more components of a product system without significantly affecting the overall design.• E.g., adding gel-filled material to a bicycle seat

An architectural innovation entails changing the overall design of the system or the way components interact.• E.g., transition from high-wheel bicycle to safety bicycle.

Most architectural innovations require changes in the underlying components also.

Page 15: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-15

Technology S-Curves

• Both the rate of a technology’s improvement, and its rate of diffusion to the market typically follow an s-shaped curve.

• S-curves in Technological ImprovementTechnology improves slowly at first because it is poorly understood.

Then accelerates as understanding increases.

Then tapers off as approaches limits.

Page 16: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-16

Technology S-Curves• Technologies do not always get to reach their limits

May be displaced by new, discontinuous technology.• A discontinuous technology fulfills a similar market need by means

of an entirely new knowledge base.– E.g., switch from carbon copying to photocopying, or vinyl records to

compact discs

• Technological discontinuity may initially have lower performance than incumbent technology.– E.g., first automobiles were much slower than horse-drawn carriages.

Firms may be reluctant to adopt new technology because performance improvement is initially slow and costly, and they may have significant investment in incumbent technology

Page 17: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-17

Technology S-Curves• S-Curves in Technology Diffusion

Adoption is initially slow because the technology is unfamiliar.

It accelerates as technology becomes better understood.

Eventually market is saturated and rate of new adoptions declines.

Technology diffusion tends to take far longer than information diffusion.• Technology may require acquiring complex knowledge or

experience.• Technology may require complementary resources to make it

valuable (e.g., cameras not valuable without film).

Page 18: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-18

Technology S-Curves• S-Curves as a Prescriptive Tool

Managers can use data on investment and performance of their own technologies or data on overall industry investment and technology performance to map s-curve.

While mapping the technology’s s-curve is useful for gaining a deeper understanding of its rate of improvement or limits, its use as a prescriptive tool is limited.• True limits of technology may be unknown• Shape of s-curve can be influenced by changes in the market,

component technologies, or complementary technologies.• Firms that follow s-curve model too closely could end up switching

technologies too soon or too late.

Page 19: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-19

Technology S-Curves

• S-curves of diffusion are in part a function of s-curves in technology improvement Learning curve leads to price drops, which accelerate

diffusion

Page 20: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-20

Diffusion of Innovation and Adopter Categories Everett M. Rogers created a typology of adopters:

Innovators are the first 2.5% of individuals to adopt an innovation. They are adventurous, comfortable with a high degree of complexity and uncertainty, and typically have access to substantial financial resources.  Early Adopters are the next 13.5% to adopt the innovation. They are well integrated into their social system, and have great potential for opinion leadership. Other potential adopters look to early adopters for information and advice, thus early adopters make excellent "missionaries" for new products or processes.  Early Majority are the next 34%. They adopt innovations slightly before the average member of a social system. They are typically not opinion leaders, but they interact frequently with their peers. Late Majority are the next 34%. They approach innovation with a skeptical air, and may not adopt the innovation until they feel pressure from their peers. They may have scarce resources.Laggards are the last 16%. They base their decisions primarily on past experience and possess almost no opinion leadership. They are highly skeptical of innovations and innovators, and must feel certain that a new innovation will not fail prior to adopting it.

Research Brief

Page 21: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-21

Research BriefDiffusion of Innovation and Adopter Categories

Page 22: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-22

Theory In Action

Technology Trajectories and “Segment Zero” Technologies often improve faster than customer requirements

demand This enables low-end technologies to eventually meet the

needs of the mass market. Thus, if the low-end market is neglected, it can become a

breeding ground for powerful competitors.

Page 23: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

SEGMENT ZERO

Market Size of Segment

Per

form

ance

Par

amet

er

Segment Zero (NOT SERVED BY INDUSTRY)

Segments served by industry

Page 24: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

11 - 24

Trajectories of Technology Improvement and Customer Requirements

Time

High-End Market

Low-end Market

Mass Market

Technology Trajectory

Per

form

ance

Par

amet

er

Page 25: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

11 - 25

Low-End Technology Trajectory Intersects Mass-Market Requirements

Time

High-End Market

Low-end Market

Mass Market

High-End Technology Trajectory

Per

form

ance

Par

amet

er

Low-End Technology Trajectory

Page 26: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-26

Technology Cycles

• Technological change tends to be cyclical: Each new s-curve ushers in an initial period of

turbulence, followed by rapid improvement, then diminishing returns, and ultimately is displaced by a new technological discontinuity.

Utterback and Abernathy characterized the technology cycle into two phases:• The fluid phase (when there is considerable uncertainty about the

technology and its market; firms experiment with different product designs in this phase)

• After a dominant design emerges, the specific phase begins (when firms focus on incremental improvements to the design and manufacturing efficiency).

Page 27: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-27

Technology Cycles Anderson and Tushman also found that technological

change proceeded cyclically.• Each discontinuity inaugurates a period of turbulence and uncertainty

(era of ferment) until a dominant design is selected, ushering in an era of incremental change.

Page 28: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

3-28

Technology Cycles

Anderson and Tushman found that:• A dominant design always rose to command the majority of

market share unless the next discontinuity arrived too early.• The dominant design was never in the same form as the original

discontinuity, but was also not on the leading edge of technology. It bundled the features that would meet the needs of the majority of the market.

During the era of incremental change, firms often cease to invest in learning about alternative designs and instead focus on developing competencies related to the dominant design.

This explains in part why incumbent firms may have difficulty recognizing and reacting to a discontinuous technology.

Page 29: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-29

Evolutionary Patterns of Development

• A process that begins with basic scientific discoveries and ends with commercial products that are adopted by a wide range of customers

Page 30: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-30

Evolution of technology

New technology

invented

Product introduced to market

Technology evolves and performance improves

Better products

adopted by more

peopleRefine the technology and develop new generations of products

Page 31: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-31

Drivers of technological evolution

• Paradigms where researchers seek answers based on prior knowledge

• Social, economic, and political forces

• Technology trajectories - paths of improvement of a technology on some performance dimension

• Paradigm shifts necessary to create new opportunities

Page 32: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-32

Radical and Incremental Technological Change

• Most technological innovation is incremental, and involves small improvements to existing technologies

• Some technological innovation is radical, and involves fundamentally new ways of solving a problem

Page 33: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-33

Technology S-Curves

• Graphical representations of the development of a new technology

• Compare some measure of performance with some measure of effort

• The relationship between effort and performance is typically S-shaped: Initially performance improvements per unit of effort

are small Once key drivers of performance are identified rapid

improvement follows Diminishing returns as physical limits reached

Page 34: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-34

The technology S-curve for Intel’s semiconductors

Page 35: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-35

Technological improvements along an S-curve

• Tend to be incremental, building on prior developments, and taking place within an existing paradigm

• Usually done by established firms: they have existing technical, market, and

organizational capabilities they have an existing customer base they have access to internal cash flow to

invest

Page 36: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-36

Shifting S-Curves

• Happens when an existing technology reaches the point of diminishing returns

• A new technology is often developed to challenge the existing technology

• Initially, the new technology is usually inferior to existing technology on key dimensions

• But the new technology has greater potential for performance improvement

Page 37: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-37

Shifting S-curve example

Page 38: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-38

Who Shifts the S-Curve?

• Usually new entrants because: Incumbents have no incentive to introduce the new

technology Incumbents have investments in existing technology Products based on the new technology cannibalize

incumbents’ sales Managers at incumbent firms do not see the new

technology as a threat Incumbent firms can improve the performance of their

old technologies Incumbent firms face organizational obstacles to

changing their core technologies

Page 39: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-39

Using Technology S-Curves as a Management Tool

• Incumbents can predict when to invest in a radical new technology

• Limitations: the inability to identify when to switch technologies the failure to incorporate all of the factors that matter

to the decision to switch the need for adopters of the new technology to focus

on niche markets before tackling the mainstream of the market

the existence of alternative ways respond to the introduction of new technology

Page 40: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-40

The Abernathy-Utterback Model

• Technology evolves through periods of incremental innovation, interrupted by periods of radical innovation

• The development of a radical innovation leads to a fluid phase, during which time many firms enter and compete on the basis of different product designs

• Eventually, the firms in the industry converge on a dominant design, which results in the specific phase, during which time only incremental innovation occurs

• After a while, the cycle repeats itself

Page 41: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-41

The Nature of Innovation and Competition

• Product innovation: when technological innovation involves the creation of new goods and services sold to customers

• Process innovation: when technological innovation involves problem solving that improves the method of creating or delivering a product or service

• Fluid phase dominated by product innovation• Specific phase dominated by process innovation

Page 42: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-42

The Timing of Product and Process Innovation

Page 43: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-43

Firms in an industry

• New firms perform best in the fluid phase: They are better than established firms at

product innovation Less important that they are worse at efficient

production based on scale economies

• During the specific phase, a shakeout typically occurs, with approximately half of the firms exiting the industry; those firms least able to fit their operations to the dominant design tend to exit

Page 44: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-44

Limitations to the Model

• Holds best in assembled manufacturing in which consumers have homogenous consumer tastes

• Holds less well in non-assembled manufacturing, and manufactured products based on non-assembled components

• Does not hold in services

Page 45: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-45

Modifications to the Abernathy and Utterback Model

• Barras’ reverse product cycle theory

• Tushman’s model of competence destroying and competence enhancing innovation

• Christensen’s model of value networks and disruptive innovation

• Henderson and Clark’s model of architectural innovation

Page 46: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

STATIC MODELS (continues)

Model Key features Value added

Abernathy-Clark Unbundled technological and market Explains why incumbents may knowledge. Do well at radical technological Highlights the importance of market innovations. capabilities.

Henderson-Clark Unbundled technological knowledge Explains why incumbents into component and architectural. Fail at what appears to be Defines innovation as: incremental if incremental innovations. both architectural and component These are actually

knowledge are enhanced; architectural if architectural innovations. component knowledge is enhanced but architectural knowledge is destroyed.

Page 47: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Abernathy-Clark - Role of Technological

and Market Capabilities

Regular Revolutionary

Niche Architectural

Preserved

Destroyed

Preserved DestroyedX Axis: Technical Capabilities

Y A

xis:

Mar

ket C

apab

ilitie

s

Page 48: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-48

Reverse Product Cycle Theory

• Model for service industries

• Stage 1: Adopt a technology from a goods industry to make services more efficient

• Stage 2: Use the technology to make the service more effective

• Stage 3: Use the technology to create new services (radical change)

Page 49: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-49

Competence-Enhancing and Competence-Destroying Innovation

• Radical new technology does not always undermine the capabilities of incumbent firms

• It is competence-enhancing if it makes use of existing knowledge, skills, abilities structure, design, production processes and plant and equipment

• It is competence-destroying if it undermines existing skills, structures, etc.

• Established firms are able to transition to a radical technology when that technology is competence-enhancing but fail to do so when it is competence-destroying

Page 50: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-50

Architectural Innovation

• A modular innovation is one that changes the components from which the innovation is created, but not the linkages between those components

• An architectural innovation is one that changes the linkages between the components, but leaves the components themselves intact

Page 51: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-51

Henderson and Clark’s Taxonomy of Innovations

Page 52: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-52

Why incumbent firms fail in the face of Architectural Innovation

1. Often lack the right external linkages to gather information about a new technology architecture emerging in an industry

2. Often lack the capacity to recognize the value of information about architectural innovation that is presented to them

3. Often have difficulty making use of information because adopting an architectural innovation typically requires a company to restructure

Page 53: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

©2009 Prentice Hall2-53

Disruptive Technology and Value Networks

• For new firms: target a new or underserved segment of the market with a disruptive innovation

• For incumbent firms: make sure core technology conforms to the features of the dominant design because deviation from the dominant design will make it harder for you to satisfy customers once that design has emerged

• As an incumbent firm, develop a new company to exploit the disruptive technology, rather than ignoring it, or trying to develop the technology within the confines of your existing organization

Page 54: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

WHO INNOVATES?

Model Key features Value added

Schumpeter I Entrepreneurs are most likely Attempt to predict who is

to innovate. most likely to innovate.

Schumpeter II Large firms with some degree of Suggests the type of firm monopoly power are the most likely is what matters. to innovate.

Page 55: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Static Models

• Incremental vs radical innovation• Abernathy-Clark• Henderson-Clark• Innovation Value-added Chain• Strategic Leadership• Familiarity Matrix• Quality and Quantity of New Knowledge• Appropriability and Complementary Assets• Local Environment• Strategic Choice

Page 56: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Incremental vs. radical innovation

• Organizational view of classifying innovations• Innovation is radical if the technological knowledge

required to exploit it is very different than existing knowledge (existing knowledge becomes obsolete)

• Radical innovations are competence destroying• Innovation is incremental if the knowledge required to

exploit it builds on existing knowledge (competence enhancing)

Page 57: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

STATIC MODELS (continues) Model Key features Value added

Incremental -- Strategic incentive to invest: defines The type of innovationRadical dichotomy innovation as incremental if it leaves determines the type of firm existing products competitive; radical that innovates. Incumbents if it renders existing products non- are more likely to exploit competitive. incremental innovation, Organizational capabilities: defines the whereas new entrants are innovation as incremental if capabilities more likely to exploit radical required to exploit it build on existing ones; innovations. radical if capabilities required are very different from existing ones. Focus on technological component of innovation; bundles technological and market knowledge; bundles component and architectural knowledge.

Page 58: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Strategic Incentive to Invest View

• In this view the type of innovation (radical vs. incremental) determines what type of firm is likely to invest to be first to exploit the innovation.

• A short coming is that this model assumes that firms have recognized the potential of the innovation and, in terms of radical innovation, only the fear of cannibalization prevents them from exploiting it.

Page 59: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Organizational Capabilities

• Incumbents have two problems with radical innovations: since change is competence destroying they may not

have the capabilities to exploit it existing capabilities may not only be useless, they

may actually be a handicap, if culture and processes of the old technology are firmly entrenched

Page 60: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

STATIC MODELS (continues.)

Model Key features Value-added

Innovation value-added Extends emphasis to the whole Explains why incumbents maychain innovation value added system of fail at incremental innovations suppliers, customers and and why they may succeed at complementary innovators. radical innovation. The competence of a firm’s

ecosystem matters too,

Strategic leadership Explores the role of top management Explains why some and argues that whether or not a firm incumbents are the first to

adopts an innovation is a function of embrace radical innovations. top management’s dominant logic.

Familiarity matrix Suggests that success in adopting an It is how a firm adopts an innovation is a function of the adoption innovation that determines mechanism used. its success or failure.

Page 61: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

SupportActivities

Primary Activities

Technological DevelopmentTechnological Development

Human Resource ManagementHuman Resource Management

Firm InfrastructureFirm Infrastructure

ProcurementProcurement

Inb

oun

d

Inb

oun

d

Log

isti

csL

ogis

tics

Op

erat

ion

sO

per

atio

ns

Ou

tbou

nd

Ou

tbou

nd

Log

isti

csL

ogis

tics

Mar

ket

ing

Mar

ket

ing

& S

ales

& S

ales

Ser

vice

Ser

vice

MARG

IN

MARG

IN

MARGIN

MARGIN

Value Chain AnalysisValue Chain AnalysisIdentifying Resources and Capabilities That Can Add Value

Page 62: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

SupportActivities

Primary Activities

Technological DevelopmentTechnological Development

Human Resource ManagementHuman Resource Management

Firm InfrastructureFirm Infrastructure

ProcurementProcurement

Inb

oun

d

Inb

oun

d

Log

isti

csL

ogis

tics

Op

erat

ion

sO

per

atio

ns

Ou

tbou

nd

Ou

tbou

nd

Log

isti

csL

ogis

tics

Mar

ket

ing

Mar

ket

ing

& S

ales

& S

ales

Ser

vice

Ser

vice

MARG

IN

MARG

IN

Inbound Inbound LogisticsLogistics

OperationsOperationsOutboundOutboundLogisticsLogistics

ServiceService

Marketing Marketing & Sales& Sales

Technological DevelopmentTechnological Development

Human Resource ManagementHuman Resource Management

ProcurementProcurement

MARGIN

MARGIN

Firms often purchase a portionportion of their value-creating activities from specialty external suppliers who can perform these functions more efficientlymore efficiently

OutsourcingOutsourcingStrategic Choice to Purchase Some Activities From Outside Suppliers

Page 63: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Supplier Value Chain Firm Value Chain Channel Value Chain

Upstream Value

Perform valuable activities that complement the firm’s activities

Buyer Value Chain

Each firm must eventually find a way to become a part of some buyer’s value chain

Ultimate basis for differentiation is the ability to play a role in a buyer’s value chain

This creates VALUE!!

Value chains vary for firms in an industry, reflecting each firm’s unique qualities:

• History• Strategy• Success at Implementation

Value Chains are part of a Total Value SystemValue Chains are part of a Total Value System

Page 64: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

INNOVATION VALUE-ADDED

Radical

Incremental

Type ofinnovation

Supplier Manufacturer Customers Complimentaryinnovators

Electric carDSK Keyboard

Cray 3

Page 65: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

Familiarity Matrix

New and Unfamiliar

Existing

Mar

ket

Unfamiliarity requires outside resources

New but Familiar

New and Unfamiliar

New but Familiar

Existing

Technology

Page 66: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

STATIC MODELS (continues)

Model Key features Value added

Quality and quantity It is not just how new the new Explains why superior of new knowledge knowledge is, but also how much technologies do not always of that new knowledge there is and win. its nature.

Appropriateness and It takes more than technological Explains why inventors are notcomplementary assets capabilities to exploit an innovation; always the ones who profit from the appropriateness regime of the an innovation. innovation and complementary assets are also important.

Local environment A firm’s innovativeness is a function A firm’s environment matters. of its local environment.

Strategic choice A firm’s strategic choices are what Strategy matters. determine whether it exploits an innovation and not so much competence destruction or a lack of incentive to invest in the innovation.

Page 67: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

TEECE MODEL

Difficult to make money

Holder of complimentary assets

Inventor Inventor or party with bargaining power

High

Low

Available orunimportant

Tightly held and important

Complimentary Assets

Imit

abil

ity

Page 68: Lecture 2 Fundamentals of Technological Change ©2009 Prentice Hall 2-1

11 - 68

Time (Effort)

Per

form

ance

par

amet

er

Science Push

Physical Limit

Market Pull