lecture 12 plane waves in conductor, poynting theorem, and power transmission

21
27/02/51 Lecture 12 Plane Waves in Conductor, Poynting Theorem, and Power Transmission ENE 325 Electromagnetic Fields and Waves

Upload: adelaide-richter

Post on 01-Jan-2016

61 views

Category:

Documents


2 download

DESCRIPTION

ENE 325 Electromagnetic Fields and Waves. Lecture 12 Plane Waves in Conductor, Poynting Theorem, and Power Transmission. Review (1). Wave equations Time-Harmonics equations where. Review (2). where This  term is called propagation constant or we can write  = +j - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Lecture 12 Plane Waves in Conductor, Poynting Theorem, and Power Transmission

ENE 325Electromagnetic Fields and Waves

Page 2: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Review (1) Wave equations

Time-Harmonics equations

where

22

2

������������������������������������������ E EE

t t2

22

������������������������������������������ H HH

t t

2 2 0 ����������������������������

s sE E

2 2 0 ����������������������������

s sH H

( ) j j

Page 3: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Review (2)

where

This term is called propagation constant or we can write

= +j

where = attenuation constant (Np/m) = phase constant (rad/m)

( ).j j

Page 4: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Review (3) The instantaneous forms of the solutions

The phasor forms of the solutions

0 0cos( ) cos( )

��������������z z

x xE E e t z a E e t z a

0 0cos( ) cos( )z z

y yH H e t z a H e t z a ��������������

0 0

z j z z j zs x xE E e e a E e e a

��������������

0 0

z j z z j zs y yH H e e a H e e a

��������������

incident wave reflected wave

Page 5: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Attenuation constant Attenuation constant determines the penetration of the

wave into a medium

Attenuation constant are different for different applications

The penetration depth or skin depth, is the distance z that causes to reduce to

z = -1

z = -1/ = -.

E��������������

10E e

Page 6: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Good conductor

1 1

f

At high operation frequency, skin depth decreases

A magnetic material is not suitable for signal carrier

A high conductivity material has low skin depth

Page 7: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Currents in conductor

To understand a concept of sheet resistance

1L LR

A wt

1 LR

t w Rsheet () Lw

1sheetR

t sheet resistance

from

At high frequency, it will be adapted to skin effect resistance

Page 8: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Currents in conductor

0

0

zx x

zx x

E E e

J E e

Therefore the current that flows through the slab at t is

;xI J dS ds dydz

Page 9: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Currents in conductor

;xI J dS ds dydz

00 0

wz

xz y

I E e dydz

0

0

zxw E e

0 .xI w E A

From

Jx or current density decreases as the slab gets thicker

Page 10: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Currents in conductor

0xV E L

0

0

1xskin

x

E LV L LR R

I w E w w

For distance L in x-direction

For finite thickness,

R is called skin resistanceRskin is called skin-effect resistance

0 00 0

(1 )t w

z tx x

z y

I E e dydz w E e

/

1

(1 )skin tRe

Page 11: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Currents in conductor

Current is confined within a skin depth of the coaxial cable.

Page 12: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Ex1 A steel pipe is constructed of a material for which r = 180 and = 4106 S/m. The two radii are 5 and 7 mm, and the length is 75 m. If the total current I(t) carried by the pipe is 8cost A, where = 1200 rad/s, find:

a) skin depth

b) skin resistance

Page 13: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

c) dc resistance

Page 14: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

The Poynting theorem and power transmission

2 21 1( )

2 2E H d S J E dV E dV H dV

t t

����������������������������������������������������������������������

Poynting theorem

Total power leavingthe surface

Joule’s lawfor instantaneouspower dissipated per volume (dissi-pated by heat)

Rate of change of energy storedIn the fields

2W/mS E H ������������������������������������������

Instantaneous poynting vector

Page 15: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Example of Poynting theorem in DC case

2 21 1( )

2 2E H d S J E dV E dV H dV

t t

����������������������������������������������������������������������

Rate of change of energy storedIn the fields = 0

Page 16: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Example of Poynting theorem in DC case

2 z

IJ a

a

��������������

By using Ohm’s law,

From

2 z

J IE a

a ��������������

��������������

2 2

2 20 0 0( )

a LId d dz

a

2 22

1 LI I R

a

Page 17: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Example of Poynting theorem in DC case

E H d S������������������������������������������

From Ampère’s circuital law,

Verify with

H dl I����������������������������

2 aH I ��������������

2

IH a

a

��������������

Page 18: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Example of Poynting theorem in DC case

2

2 32

IS d S a d dz

a

����������������������������

2

2 2 32 2z

I I IS E H a a a

aa a

������������������������������������������

2 222

2 3 20 02

LI a I Ld dz I R

a a

Total power

W

Page 19: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Uniform plane wave (UPW) power transmission Time-averaged power density

1Re( )

2avgP E H

������������������������������������������

amount of power avgP P d S����������������������������

for lossless case, 00

12

j z j zxavg x yx

EP E e a e a

��������������

201

2x

avg zE

P a ��������������

W

W/m2

Page 20: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Uniform plane wave (UPW) power transmission

0

z j z jxxE E e e e a

��������������

intrinsic impedance for lossy medium nje

0

1 1 z j z jz xxH a E a E e e e a

����������������������������

0 njz j z jxy

Ee e e e a

for lossy medium, we can write

Page 21: Lecture 12  Plane Waves in Conductor, Poynting Theorem, and Power Transmission

27/02/51

Uniform plane wave (UPW) power transmission

2

201Re

2jzx

zE

e e a

from1

Re( )2

avgP E H

������������������������������������������

2

201cos

2zx

zE

e a

W/m2

Question: Have you ever wondered why aluminum foil is not allowed inthe microwave oven?