lecture 11: carbon capture and utilization

71
| | André Bardow Energy & Process Systems Engineering ETH Zurich 10.05.2021 Lecture 11: Carbon Capture and Utilization CO 2 Capture and Storage (CCS) and the Industry of Carbon-Based Resources Lecture 11: Carbon Capture and Utilization 1

Upload: others

Post on 30-Apr-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 11: Carbon Capture and Utilization

||

André BardowEnergy & Process Systems EngineeringETH Zurich

10.05.2021

Lecture 11: Carbon Capture and UtilizationCO2 Capture and Storage (CCS) and the Industry of Carbon-Based Resources

Lecture 11: Carbon Capture and Utilization 1

Page 2: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

From molecules to sustainable life cycles

PROCESS

MOLECULE

THERMODYNAMICS

ECO SYSTEM

SUPPLY CHAINS

Anal

ysis

(Dire

ctPr

oble

m)

Design (Inverse Problem

)computer-aidedmolecular & design

automatedexperiments

conceptual process& systems design

Life cycleassessment

Power-to-Storage

Power-to-Chemicals

Power-to-Heat

Carbon capture,utilization & storage

2

https://epse.ethz.ch/

Energy and Process Systems Engineering

Page 3: Lecture 11: Carbon Capture and Utilization

||

Carbon Capture and Utilization (CCU)

CO2

Lecture 11: Carbon Capture and Utilization 310.05.2021

Page 4: Lecture 11: Carbon Capture and Utilization

||

CO2 utilization – Saving the Climate ?The Problem:

CO2-EmissionsThe Solution :

Captain CCU!

410.05.2021Lecture 11: Carbon Capture and Utilization

Page 5: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversionEnergy

CO2

Reactants

minerals

CO2-based products

510.05.2021Lecture 11: Carbon Capture and Utilization

Page 6: Lecture 11: Carbon Capture and Utilization

||

CO2 utilization: The solution or a waste of time?

CO2-utilizationis always good !

CO2-utilization always bad !

vs.

Lecture 11: Carbon Capture and Utilization 610.05.2021

Page 7: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021

At the end of this lecture, you will be able to …

• analyze the thermodynamics of carbon capture & utilization (CCU)

• distinguish services offered by CCU

• evaluate CCU pathways based on the functional unit

Lecture 11: Carbon Capture and Utilization 7

Page 8: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversionEnergy

CO2

Reactants

minerals

CO2-based products

810.05.2021Lecture 11: Carbon Capture and Utilization

Page 9: Lecture 11: Carbon Capture and Utilization

||

CO2 conversion - Stoichiometry

Carbon dioxide

WaterProductsReactor

910.05.2021Lecture 11: Carbon Capture and Utilization

Page 10: Lecture 11: Carbon Capture and Utilization

||

CO2 conversion - Stoichiometry

Carbon dioxide

Water

ProductsReactor

CO2 conversion starting from CO2 + water= inverted combustion

1010.05.2021Lecture 11: Carbon Capture and Utilization

Page 11: Lecture 11: Carbon Capture and Utilization

||

CO2 conversion: Minimal energy demand

Carbon dioxide

Waterisothermal-isobaric

Reactor

Products

Energy balance:

0 in out tH H Q P

Entropy balance

0 irrin out

QS S ST

reversible out inQ T S S

Lecture 11: Carbon Capture and Utilization 1110.05.2021

Page 12: Lecture 11: Carbon Capture and Utilization

||

CO2 conversion: Minimal energy demand

revt out out in inP H TS H TS

0 revin out out in tH H T S S P

revt out inP G G „Gibbs energy “

R R RG H T S

from last slide:

> 0 = „energy supply needed“< 0 = „energy released“

1210.05.2021Lecture 11: Carbon Capture and Utilization

Page 13: Lecture 11: Carbon Capture and Utilization

||

CO2 conversion: ThermodynamicsReaction proceeds without energy supply ifGibbs Energy

reactants

products

10.05.2021Lecture 11: Carbon Capture and Utilization 13

Page 14: Lecture 11: Carbon Capture and Utilization

||

CO2 conversion: Thermodynamics

CO2+

CxHyOz

H2O

Gibbs energy

Molecule State / kJ/mol

O g 232

H g 203

C (Diamant) s 2,9

H2 g 0

O2 g 0

C (Graphit) s 0

NH3 g -16

CH4 g -51

CO g -137

CH3OH l -162

C2H5OH l -175

H2O g -229

H2O l -237

SO2 g -300

SO3 g -371

CO2 g -394H2SO4 l -690

0f G

Lecture 11: Carbon Capture and Utilization 1410.05.2021

Page 15: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

Minimal energy demand for CO2 conversionProduct

Methane CH4 801Acetlyene C2H2 1227Ethen C2H4 1314Ethane C2H6 1442Propane C3H8 2074Butane C4H10 2703Octane (l) C8H18 5219Ethanol (l) C2H6O 1301

CO2 conversion starting from CO2 + water= inverted combustion= intrinsically energy-demanding 15

Page 16: Lecture 11: Carbon Capture and Utilization

||

CO2 conversion – Supply ChainCarbon dioxide

Water

ProductsReactor

1610.05.2021

CaptureAir

Lecture 11: Carbon Capture and Utilization

Page 17: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

Minimal energy demand: CO2 conversion vs. CO2 capture

Product

Methane CH4 148 801 5.4Acetlyene C2H2 296 1227 4.1Ethen C2H4 296 1314 4.4Ethane C2H6 296 1442 4.9Propane C3H8 445 2074 4.7Butane C4H10 593 2703 4.6Octane (l) C8H18 1186 5219 4.4Ethanol (l) C2H6O 296 1301 4.4

CO2 conversion starting from CO2 + water= 4-5 times the minimal energy demand of direct air capture 17

Page 18: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021

At the end of this lecture, you will be able to …

analyze the thermodynamics of carbon capture & utilization (CCU)

• distinguish services offered by CCU

• evaluate CCU pathways based on the functional unit

Lecture 11: Carbon Capture and Utilization 18

Page 19: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

Good news for CCU : We do not care about thermodynamics

Oil39%

Gas21%

Electricity7%

Wood10%

District heating4%

Solar thermal0%

Heat pumps18%

Other1%

Residential Heating in CH (2017)

Data source: Bundesamt für Statistik

19

Page 20: Lecture 11: Carbon Capture and Utilization

||

The vision: A sustainable world

10.05.2021Lecture 11: Carbon Capture and Utilization 20

Page 21: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

https://www.dbb-nrw.de

https://www.bayika.de https://www.ingenieur.de

https://www.studium-ratgeber.de

A sustainable world is more than clean electricity

21

Page 22: Lecture 11: Carbon Capture and Utilization

||

https://www.dbb-nrw.de

https://www.bayika.de https://www.ingenieur.de

https://www.studium-ratgeber.de

CO2 utilization can contribute todefossilization of the material world

A sustainable world is more than clean electricityThe next challenge:

Defossilization of the material world

2210.05.2021Lecture 11: Carbon Capture and Utilization

Page 23: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversion: 1. Inverting combustionEnergy

Chemicals & fuels

O = C = O

+ H2O

2310.05.2021Lecture 11: Carbon Capture and Utilization

Page 24: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversion: 2. More efficient chemistryEnergy

Reactants

Chemicals & fuels

O = C = O

2410.05.2021Lecture 11: Carbon Capture and Utilization

Page 25: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversion: 3. MineralizationEnergy

minerals

O = C = O

2510.05.2021Lecture 11: Carbon Capture and Utilization

Page 26: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversionEnergy

Reactants

minerals

Chemicals & fuels

O = C = O

+ H2O

2610.05.2021Lecture 11: Carbon Capture and Utilization

Page 27: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversion: 1. MineralizationEnergy

minerals

O = C = O

(Mg/Ca)XOYSiz + CO2 α (Mg/Ca)CO3+ β SiO2

Heat

HesamOstovari

storage(& utilization)

utilization

2710.05.2021Lecture 11: Carbon Capture and Utilization

Page 28: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

https://doi.org/10.1039/D0SE00190B

28

Page 29: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

The carbon footprint of CO2 mineralization to cement substitutes

stor

age

utiliz

atio

n29

Page 30: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

The carbon footprint of CO2 mineralization to cement substitutes

stor

age

utiliz

atio

n

• CO2 mineralization combines storage + utilization• GHG savings possible – even today !• benefit from substitution of current materials• product development crucial

30

Page 31: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization 31

ETH Spinoff: Neustark

DemolishedConcrete

ConcretePlant

Liquid CO2

RecycledConcrete

CO2CO2

1

2

3

4

https://www.neustark.com/

Page 32: Lecture 11: Carbon Capture and Utilization

||

Status Quo:• Cement Market:

4.5 Gt/year

• CO2e emissions: 3.6 Gt CO2e/year

Miller, Vanderley Pacca, Horvath, (2018): Cement and Concrete Research 114, 115–124.

The potential for integrated CO2mineralization:

• 62% CO2e reduction= 2.3 Gt CO2e/year

• Energy demand: 4.37 GJ/ton CO2

3210.05.2021

Global cement production

Lecture 11: Carbon Capture and Utilization

Page 33: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversionEnergy

Reactants

minerals

Chemicals & fuels

O = C = O

+ H2O

3310.05.2021Lecture 11: Carbon Capture and Utilization

Page 34: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversion: 2. More efficient chemistryEnergy

Reactants

Chemicals & fuels

O = C = O

3410.05.2021Lecture 11: Carbon Capture and Utilization

Page 35: Lecture 11: Carbon Capture and Utilization

||

CO2-based polymers: Project “Dream Production“

Scrubbing and supply of CO2

Process development and conversion of CO2

Fundamental researchLife Cycle Assessment

Production and testing of polyurethanes with CO2

von der Assen, Bardow, Green Chem., 2014, 16, 3272

Niklas von der Assen

3510.05.2021Lecture 11: Carbon Capture and Utilization

Page 36: Lecture 11: Carbon Capture and Utilization

||

Chemical conversion of CO2: Dream Production

Energy

CO2

Epoxide

Polyols

Langanke et al., Green Chem.,2014,16,1865–1870

3610.05.2021

• CO2 replaces part of epoxides• better catalysis & reaction engineering

allows to produce the desired product properties

Lecture 11: Carbon Capture and Utilization

Page 37: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

Dream Production: Life-cycle assessment

conventional polyol

kg CO2-eq /

(1.00 kg polyol +0.36 kWh electricity)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CO2-based polyol

3.57

−0.47+0.08 3.03

Substitution ofraw materials

−0.15

CO2capture

3.5

Epoxides Epoxides

Epoxides

von der Assen, Bardow, Green Chem., 2014, 16, 3272

37

Page 38: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

Dream Production: Life-cycle assessment

conventional polyol

kg CO2-eq /

(1.00 kg polyol +0.36 kWh electricity)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CO2-based polyol

3.57

−0.47+0.08 3.03

Substitution ofraw materials

−0.15

CO2capture

3.5

Epoxides Epoxides

Epoxides

1 kg CO2 as feedstock can save

3 kg of CO2 emissions

von der Assen, Bardow, Green Chem., 2014, 16, 3272

38

Page 39: Lecture 11: Carbon Capture and Utilization

||

Conclusions from CO2-based polymers

CO2 can substitute fossil resourcesand thereby reduce GHG emissions today

CO2 avoided can exceed the amount of CO2 utilized

more CO2-based polymers are becoming available(e.g. elastomers, see Meys, Kätelhön, Bardow, Green Chem., 2019, 21, 3334)

3910.05.2021Lecture 11: Carbon Capture and Utilization

Page 40: Lecture 11: Carbon Capture and Utilization

||

Status Quo:• polyurethane market:

33 Mt /year

• CO2e emissions: 164 Mt / year

R Geyer, JR Jambeck, KL Law. Production, use, and fate of all plastics ever made. Sci. Adv., 2017Zheng, Suh, "Strategies to reduce the global carbon footprint of plastics." Nature Climate Change (2019)

The potential for CO2–based polyurethanes:

• 20% CO2e reduction= 33 Mt CO2e/year

4010.05.2021

Global polyurethane production

Lecture 11: Carbon Capture and Utilization

Page 41: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversionEnergy

Reactants

minerals

Chemicals & fuels

O = C = O

+ H2O

4110.05.2021Lecture 11: Carbon Capture and Utilization

Page 42: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversion: 3. Inverting combustionEnergy

Chemicals (& fuels)

O = C = O

+ H2O

4210.05.2021Lecture 11: Carbon Capture and Utilization

Page 43: Lecture 11: Carbon Capture and Utilization

||

CO2 Utilization in the Chemical Industry ArneKätelhön

RaoulMeys

Sarah Deutz

4310.05.2021https://www.petrochemistry.eu/about-petrochemistry/flowchart/ Lecture 11: Carbon Capture and Utilization

Page 44: Lecture 11: Carbon Capture and Utilization

||

CO2 Utilization in the Chemical Industry

What is the large-scale potential of CCU in the chemical industry ?

20 basic chemicals = 75% of CO2 emissions of chemical industry

ArneKätelhön

RaoulMeys

Sarah Deutz

4410.05.2021https://www.petrochemistry.eu/about-petrochemistry/flowchart/ Lecture 11: Carbon Capture and Utilization

Page 45: Lecture 11: Carbon Capture and Utilization

||

Methodology for determining CO2-Mitigation Potential

• Best Available Fossil Technologies• CO2-based production

(high- and low-TRL*) • Industrially validated database• 160 process with

engineering-level data

Mass & Energy Balances+ CO2 emissions

What is the large-scale potential of CCU in the chemical industry ?

20 basic chemicals = 75% of CO2 emissions of chemical industry

*TRL = Technology Readiness Level

Process Flowsheets

4510.05.2021Lecture 11: Carbon Capture and Utilization

Page 46: Lecture 11: Carbon Capture and Utilization

||

Methodology for determining CO2-Mitigation Potential

Superstructure modelwith 160 processes

s.t. Demand for 20 basic chemicals in 2030Given carbon footprint of electricity

min Greenhouse Gas emissions

4610.05.2021Lecture 11: Carbon Capture and Utilization

Page 47: Lecture 11: Carbon Capture and Utilization

||

Today: Fossil-based chemical industry

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019https://doi.org/10.1073/pnas.1821029116

4710.05.2021Lecture 11: Carbon Capture and Utilization

Page 48: Lecture 11: Carbon Capture and Utilization

||

CO2-based chemical industry

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

4810.05.2021Lecture 11: Carbon Capture and Utilization

Page 49: Lecture 11: Carbon Capture and Utilization

||

• mass flows x 2.9• need for massive water supply

CO2-based chemical industry

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

4910.05.2021Lecture 11: Carbon Capture and Utilization

Page 50: Lecture 11: Carbon Capture and Utilization

||

Life cycle: Fossil-based vs CO2-based chemical industry

5010.05.2021Lecture 11: Carbon Capture and Utilization

Page 51: Lecture 11: Carbon Capture and Utilization

||

Life cycle: Fossil-based vs CO2-based chemical industry

Chemically identical products identical use phase and end-of-life no benefit from temporary storage (!!!) benefit change in raw materials & production usually no change at end of life = possibility to add CCS

5110.05.2021

Carbon storagepossible

O = C = O

Lecture 11: Carbon Capture and Utilization

Page 52: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization 52

Carbon-reducing vs. carbon-neutral vs. carbon-negative

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

100

75

50

25

0

-25

-50

-75

-100

-125

-150

-175

-200

today

future

h CO

2, re

mov

al in

%

fossil-based CH4

CDR - DAC waste heat

CDR - DAC heat pump

carbon-negative

carbon-reducing

carbon-increasing

carbon-neutral

CO 2-ba

sed C

H 4

Clim

ate

chan

ge fr

om c

radl

e-to

-gra

vein

kg

CO

2e /

kg C

O2 c

aptu

red

Climate change in kg CO2e / kWhelectricity

Win

dIc

elan

d Nor

way

Swed

enFr

ance

Glo

bal 2

050

Phot

ovol

taic

Switz

erla

ndFi

nlan

d

Can

ada

Den

mar

kG

loba

l 20

30

Aust

ria

Slov

enia

Uni

ted

King

dom

Italy

Ger

man

y

Deutz, Bardow, Nature Energy, 2021

Carbon-negative

Carbon-reducing

Carbon-increasing

impact of electricity

Sarah Deutz

Page 53: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization 53

Carbon-reducing vs. carbon-neutral vs. carbon-negative

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

100

75

50

25

0

-25

-50

-75

-100

-125

-150

-175

-200

today

future

h CO

2, re

mov

al in

%

fossil-based CH4

CDR - DAC waste heat

CDR - DAC heat pump

carbon-negative

carbon-reducing

carbon-increasing

carbon-neutral

CO 2-ba

sed C

H 4

Clim

ate

chan

ge fr

om c

radl

e-to

-gra

vein

kg

CO

2e /

kg C

O2 c

aptu

red

Climate change in kg CO2e / kWhelectricity

Win

dIc

elan

d Nor

way

Swed

enFr

ance

Glo

bal 2

050

Phot

ovol

taic

Switz

erla

ndFi

nlan

d

Can

ada

Den

mar

kG

loba

l 20

30

Aust

ria

Slov

enia

Uni

ted

King

dom

Italy

Ger

man

y

Deutz, Bardow, Nature Energy, 2021

Carbon-negative

Carbon-reducing

Carbon-increasing

impact of electricity

• Analysis of the full life cycle is important to achieve negative emissions• CO2 utilization can increase GHG emissions • CO2 utilization can decrease GHG emissions

Sarah Deutz

Page 54: Lecture 11: Carbon Capture and Utilization

||

CO2-Mitigation Potential of CCU in the Chemical Industry

• CCU can lead to carbon-neutral

chemical industry

• GHG savings require

low-carbon electricity

additional electricity

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

5410.05.2021Lecture 11: Carbon Capture and Utilization

Page 55: Lecture 11: Carbon Capture and Utilization

||

Electricity need for CCU in the Chemical Industry

Cur

rent

glob

al e

lect

ricity

• GHG savings require a lot of

low-carbon electricity

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

5510.05.2021Lecture 11: Carbon Capture and Utilization

Page 56: Lecture 11: Carbon Capture and Utilization

||

Thermodynamics of CO2 conversionEnergy

Reactants

minerals

Chemicals & fuels

O = C = O

+ H2O

• CO2 utilization can provide many services • CO2 utilization can reduce GHG emissions

5610.05.2021Lecture 11: Carbon Capture and Utilization

Page 57: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021

At the end of this lecture, you will be able to …

analyze the thermodynamics of carbon capture & utilization (CCU)

distinguish services offered by CCU

• evaluate CCU pathways based on the functional unit

Lecture 11: Carbon Capture and Utilization 57

Page 58: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

The functional unit

58

Page 59: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021Lecture 11: Carbon Capture and Utilization

The functional unit – definition (ISO 14040)

“A system may have a number of possible functionsand the one(s) selected for a study depend(s) on the goal and scope of the LCA.

The functional unit defines the quantification of the identified functions (performance characteristics) of the product. The primary purpose of a functional unit is to provide a reference to which the inputs and outputs are related. This reference is necessary to ensure comparability of LCA results. Comparability of LCA results is particularly critical when different systems are being assessed, to ensure that such comparisons are made on a common basis.”

59

Page 60: Lecture 11: Carbon Capture and Utilization

||

Electricity need for CCU in the Chemical Industry

Cur

rent

glob

al e

lect

ricity

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

Goal & Scope:

use renewable energyto most reduce GHG emissions

Goal & Scope:

produce all chemicalswith minimal environmental impacts

6010.05.2021Lecture 11: Carbon Capture and Utilization

Page 61: Lecture 11: Carbon Capture and Utilization

||

Power-to-CCU or Power-to-Something else? Renewable energies = limited resource

Sternberg, Bardow, Energy Environ. Sci., 2015, 8, 389

Which Power-to-X routeuses electricity best?

AndréSternberg

6110.05.2021Lecture 11: Carbon Capture and Utilization

Page 62: Lecture 11: Carbon Capture and Utilization

||

P2X-EfficiencyWhich Power-to-X route uses electricity best?

P2X-Efficiency = ୖୣୢ୳ୡ୲୧୭୬ ୭ ୰ୣୣ୬୦୭୳ୱୣ ୟୱ (ୋୌୋ) ୣ୫୧ୱୱ୧୭୬ୱ୮ୣ୰ ୦ ୣ୪ୣୡ୲୰୧ୡ୧୲୷ ୳ୱୣୢ

GHGP2X GHGfossil

GHGReduction = GHGfossil − GHGP2X

1 MWh

electricityConventional

processproductPower-to-X (P2X)process

Sternberg and Bardow, Energy Environ. Sci., 2015,8, 389-400.

6210.05.2021Lecture 11: Carbon Capture and Utilization

Page 63: Lecture 11: Carbon Capture and Utilization

||

Power-to-Chemicals vs Power-to-X

• GHG savings require a lot of

low-carbon electricity

• Declining efficiency

• Power-to-Chemicals often less efficient

than Power-to-Heatand Power-to-Mobility

• but there are high efficiency opportunities

Sternberg, Bardow, Energy Environ. Sci., 2015, 8, 389Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

6310.05.2021Lecture 11: Carbon Capture and Utilization

Page 64: Lecture 11: Carbon Capture and Utilization

||

Power-to-Chemicals vs Power-to-Cement

• GHG savings require a lot of

low-carbon electricity

• Declining efficiency

• Power-to-Chemicals often less efficient

than Power-to-Heatand Power-to-Mobility

• but there are high efficiency opportunities

Sternberg, Bardow, Energy Environ. Sci., 2015, 8, 389

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

6410.05.2021Lecture 11: Carbon Capture and Utilization

Page 65: Lecture 11: Carbon Capture and Utilization

||

• Power-to-Chemicals from CO2 and H2O

intrinsicallyless efficient

than Power-to-CCS

Power-to-Chemicals vs Power-to-CCS

6510.05.2021Lecture 11: Carbon Capture and Utilization

Page 66: Lecture 11: Carbon Capture and Utilization

||

https://www.dbb-nrw.de

https://www.bayika.de https://www.ingenieur.de

https://www.studium-ratgeber.de

Cement sector• Giga-ton potential• Challenge:

The right productfor market uptake

Chemicals• High value opportunities

for economicsand the environment

• Large-scale chemicalsintrinsically inefficient

… BUT:

Steel sector

CO2‘s contribution to defossilization of the material world ?

6610.05.2021Lecture 11: Carbon Capture and Utilization

Page 67: Lecture 11: Carbon Capture and Utilization

||

... is more than clean electricity

... is more than CO2-neutral

The vision: A sustainable world

6710.05.2021Lecture 11: Carbon Capture and Utilization

Page 68: Lecture 11: Carbon Capture and Utilization

||

CO2-based fuels OME1: NOx & soot trade-off

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100 100:0

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100 35:65 100:0

Deutz, Bongartz, Heuser, Kätelhön, Schulze Langenhorst, Omari, Walters, Klankermayer, Leitner, Mitsos, Pischinger, Bardow, Energy Environ. Sci., 2018, 11, 331

6810.05.2021

Sarah Deutz

Lecture 11: Carbon Capture and Utilization

Page 69: Lecture 11: Carbon Capture and Utilization

||

CO2-based fuels OME1: NOx & soot trade-off

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100 100:0

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100 35:65 100:0

Chemically differing fuel overcomes NOx & soot trade-off

Deutz, Bongartz, Heuser, Kätelhön, Schulze Langenhorst, Omari, Walters, Klankermayer, Leitner, Mitsos, Pischinger, Bardow, Energy Environ. Sci., 2018, 11, 331

6910.05.2021

Sarah Deutz

Lecture 11: Carbon Capture and Utilization

Page 70: Lecture 11: Carbon Capture and Utilization

||

The vision: A sustainable worldA sustainable world needs:1. clean electricity 2. a lot of clean electrictiy3. seriously, an awful lot of clean electricity

• Invest clean electricity where most efficient

• CO2 use is often not first choice to solve climate changebut CO2 provides a sustainable carbon feedstock with potential climate benefits:

Identify markets for products from CO2 mineralization Identify CO2-based chemicals with high benefits Exploit benefits of CO2-utilization beyond climate change Explore synergies with biomass & other carbon cycles

7010.05.2021Lecture 11: Carbon Capture and Utilization

Page 71: Lecture 11: Carbon Capture and Utilization

|| 10.05.2021

At the end of this lecture, you will be able to …

analyze the thermodynamics of carbon capture & utilization (CCU)

distinguish services offered by CCU

evaluate CCU pathways based on the functional unit

Lecture 11: Carbon Capture and Utilization 71