lecture 10: small signal device parameters - · pdf filelecture 10: small signal device...

20
Lecture 10: Small Signal Device Parameters 2016-02-09 1 Lecture 9, High Speed Devices 2016

Upload: ngonhu

Post on 30-Mar-2018

218 views

Category:

Documents


3 download

TRANSCRIPT

Lecture 10: Small Signal Device Parameters

2016-02-09 1Lecture 9, High Speed Devices 2016

Lecture 12: Ballistic FETs

2016-02-09 2Lecture 9, High Speed Devices 2016

Liu: 220-222, 239-242

Large Signal / Small Signal

2016-02-09 3Lecture 9, High Speed Devices 2016

vcb

Vcb

vbe

VBE

ie+IE ic+IC

cbbeCcb

VCB

be

VBE

CBBEcCC

cbbeEcb

VCB

be

VBE

CBBEeEE

vyvyIvV

fv

V

fVVfiIi

vyvyIvV

fv

V

fVVfiIi

BECB

BECB

222122

2

121111

1

,

,

The electrical signal is often small.

Divide the total voltage/currentinto a large (DC) and small (AC) signal. We are mainly interested in the small signal part.

Bias Current Signal Current

We can make a Taylor expansion around the bias voltage.Non-linear constant bias current voltage and linear AC varying signal current/voltage.

2 port – y-parameters

2016-02-09 4Lecture 9, High Speed Devices 2016

cb

VCB

be

VBE

CBBEcCC

cb

VCB

be

VBE

CBBEeEE

vV

fv

V

fVVfiIi

vV

fv

V

fVVfiIi

BECB

BECB

112

111

,

,

2

1

2221

1211

2

1

v

v

yy

yy

i

i

v1 v2

i1 i2+

-

+

-

2-port

01

111

2

vv

iy

02

112

1

vv

iy

i1 i2

v1

+

-

v2

+

-

E C

B

2

1

2

1

2221

1211

2

1

1

2221

1211

v

v

i

i

zz

zz

i

i

yy

yyCan transform to different parameter sets

Y,z,ABCD,h,g

2016-02-09 5Lecture 9, High Speed Devices 2016

2

1

2221

1211

2

1

v

v

yy

yy

i

i

2

1

2221

1211

2

1

i

i

zz

zz

v

v

2

2

1

1

i

v

DC

BA

i

v

2

1

2221

1211

2

1

v

i

hh

hh

i

v

2

1

2221

1211

2

1

i

v

gg

gg

v

i

ABCD/ cascade/ a-parameters Hybrid parameters

Inverse hybrid parameters

Admittance Impedance

1

1

2221

1211

2

2

i

v

bb

bb

i

v

b-parameters

Conversion between parameter sets

2016-02-09 6Lecture 9, High Speed Devices 2016

From Electric Circuits, J. W. Nilsson and S.A. Riedel

Shunt/Series addition

2016-02-09 7Lecture 9, High Speed Devices 2016

v1 v2

+

-

+

-

ya

yb

Shunt

- -

za

v1

i1i2

+ +

zb

Series

v1 v2

i1 i2+

-

+

-

yc

𝑦𝑐 = 𝑦𝑎 + 𝑦𝑏 𝑧𝑐 = 𝑧𝑎 + 𝑧𝑏

v1 v2

i1 i2+

-

+

-

zc

v2

Cascade, Serier/Parallel additions

2016-02-09 8Lecture 9, High Speed Devices 2016

v1 v2

+

-

+

-

ABCDa ABCDb

Cascade

- -

ha

v1

i1i2

+ +

hb

Series/parallel

v1 v2

i1 i2+

-

+

-

ABCDc

𝐴𝐵𝐶𝐷𝑐 = 𝐴𝐵𝐶𝐷𝑎 + 𝐴𝐵𝐶𝐷𝑏ℎ𝑐 = ℎ𝑎 + ℎ𝑏

v1 v2

i1 i2+

-

+

-

hc

v2

g-parameters parallel/series: gc=ga+gb

DC y-parameters models

2016-02-09 9Lecture 9, High Speed Devices 2016

𝑖𝑔𝑖𝑑

=0 0𝑔𝑚 𝑔𝑑

𝑣𝑔𝑠𝑣𝑑𝑠

=𝑦𝑔𝑔 𝑦𝑔𝑑𝑦𝑑𝑔 𝑦𝑑𝑑

𝑣𝑔𝑠𝑣𝑑𝑠

𝑖𝑏𝑖𝑐

=

𝐼𝑐𝛽𝑉𝑡

0

𝐼𝐶𝑉𝑡

0

𝑣𝑏𝑒𝑣𝑐𝑒

=𝑦𝑏𝑏 𝑦𝑏𝑐𝑦𝑐𝑏 𝑦𝑐𝑐

𝑣𝑏𝑒𝑣𝑐𝑒

vbe

vgs

vce

vds

ib

ig

ic

id

vsg vdg

is idIf we know the y-parameters for one configuration we can calculate the y-parameters for a different configuration!

Indefinite Admittance Matrix

2016-02-09 10Lecture 9, High Speed Devices 2016

c

b

e

cb

bcbbbe

eb

c

b

e

v

v

v

y

yyy

y

i

i

i

ccce

ecee

yy

yy

vb

ie ic

ib

If ve=vc=vb=v : how large is ie ib and ic?

Why is yce+ycb+yec=0

vcve

If ve=v and vb=vc=0 : how large is ie+ib+ic?

Why is yee+ybe+yce=0All rows and columns have to sum up to zero!

1 3

2

CE: ybb,ybc,ycb,ycc

CB: yee,yec,ycc,yce

CS/CC/CG – CS/CD/CG configurations

2016-02-09 11Lecture 9, High Speed Devices 2016

Same for FETsbut with:

C DE SB G

From Radio Electronics, L. Sundström, G. Jönsson and H. Börjesson

Y-parameters for common gate transistor

2016-02-09 12Lecture 9, High Speed Devices 2016

vsg vdg

is id𝑖𝑠𝑖𝑑

=𝑔𝑚 + 𝑔𝑑 −𝑔𝑑

−(𝑔𝑚 + 𝑔𝐷) 𝑔𝑑

𝑣𝑠𝑔𝑣𝑑𝑔

=𝑦𝑠𝑠 𝑦𝑠𝑑𝑦𝑑𝑠 𝑦𝑑𝑑

𝑣𝑠𝑔𝑣𝑑𝑔

Hybrid pmodel : Circuit Representation

2016-02-09 13Lecture 9, High Speed Devices 2016

y11y22y21v1y12v2

y11+y12 y22+y12(y21-y12)v1

Circuit representation of y-parameters

Hybrid p representation pf y-parameters. Valid if there is a common terminal.

One current source less. y12

usually have a direct physical interpretation.

y11y22y21v1y12v2

A transistor (three terminal device) always have a common terminal

-y12

Time Harmonic Signals - jw

2016-02-09 14Lecture 9, High Speed Devices 2016

vcb

Vcb

vbe

VBE

ie+IE ic+IC Use complex notation for small signal voltages. If input terms are sinusodial, the output will also be sinusodial –amplitude & phase shift.

w

w

w

w

j

cbcb

j

bebe

j

cbcb

j

bebe

eii

eii

evv

evv

~

~

~

~

cb

be

Vcb

C

Vbe

C

Vcb

E

Vbe

E

cb

be

ccce

ecee

c

e

v

v

v

i

v

i

v

i

v

i

v

v

yy

yy

i

i

CBCB

BECB

~

~

~

~

~

~

Goal is to identify the different y-parameters from fundamental transistor physics

22 complex matrix

Amplitude & phase

Complex small signal parameters

2016-02-09 15Lecture 9, High Speed Devices 2016

𝑖𝑔𝑖𝑑

=𝑗𝜔𝐶𝑔𝑔 −𝑗𝜔𝐶𝑑𝑔

𝑔𝑚 − 𝑗𝜔𝐶𝑑𝑔 𝑔𝑑 + 𝑗𝜔𝐶𝑑𝑑

𝑣𝑔𝑠𝑣𝑑𝑠

=𝑦𝑔𝑔 𝑦𝑔𝑑𝑦𝑑𝑔 𝑦𝑑𝑑

𝑣𝑔𝑠𝑣𝑑𝑠

We will determine that the y-parameters can be written as real an imaginary parts, with the imaginary parts corresponding to capacitive elements.

• Where gm, Cgg, Cdg originates from the physics of the transistor.

• The different parameters thus depend of w, VGS, VDS and the geometry of the transistors.

Intrinsic (quasi static) y-parameters for a FET.

Current Gain – h21

2016-02-09 16Lecture 9, High Speed Devices 2016

v1 v2

i1 i2+

-

+

-

2-port

Maximum current gainv2 is short circuited

ℎ21 =𝑖2𝑖1𝑣2=0

ℎ21 =𝑖2𝑖2𝑣2=0

=𝑦21𝑦11

𝑖1 = 𝑦11𝑣1 𝑖2 = 𝑦21𝑣1 Apply a test voltage to the in-port:

The current gain typicially decreases with frequencyℎ21 = 1 corresponds to the transition

frequency , 𝒇𝑻.

Power Gain I – Transducer Gain

2016-02-10 17Lecture 9, High Speed Devices 2016

2-port yL

Pav,s

PL Power available from source: Pav,s

Power delivered at load: PL

𝐺𝑇 =𝑃𝐿𝑃𝑎𝑣,𝑠

Transducer Gain

PL

To maximize the transducer gain we must correctly select the source and load impedances!

ySPin

𝐺𝑇 =4𝑅𝑒 𝑦𝐿 𝑅𝑒 𝑦𝑠 𝑦21

2

𝑦𝑠 + 𝑦11 𝑦𝐿 + 𝑦22 − 𝑦12𝑦212

Pav,L

Power gain can be seen as a two step process: • Power is delivered from the source to the input of the transistor• Power is delivered from the output of the transistor to the load

Power Gain II

2016-02-09 18Lecture 9, High Speed Devices 2016

[y] yL

yin

yS

𝑦𝑖𝑛 = 𝑦11 −𝑦12𝑦21𝑦𝐿 + 𝑦22

Device input impedance as seen from the source

[y] yL

yout

yS

𝑦𝑜𝑢𝑡 = 𝑦22 −𝑦12𝑦21𝑦𝑠 + 𝑦22

Device input impedance as seen from the load

Maximum power transfer requires that both the source and the load are conjugated matched

𝑦𝑠∗ = 𝑦𝑖𝑛 𝑦𝐿

∗ = 𝑦𝑜𝑢𝑡

Maximum Gain – Available and Stable

2016-02-09 19Lecture 9, High Speed Devices 2016

𝐺𝑇,𝑚𝑎𝑥 =𝑦21𝑦12

𝐾 − 𝐾2 − 1 𝐾 =2𝑅𝑒 𝑦11 𝑅𝑒 𝑦22 − 𝑅𝑒 𝑦12𝑦21

𝑦12𝑦21> 1

If K>1: The transistor is unconditionally stable

𝐺𝑇,𝑚𝑎𝑥 =𝑦21𝑦12

𝐾 − 𝐾2 − 1 = 𝑀𝐴𝐺

This is the Maximum Available Gain

If K<1: For maximum gain, the transistor is unstable. By adding shunt resistances to y11

and y22 we can make K=1. The maximum gain is then

𝐺𝑇,𝑚𝑎𝑥 =𝑦21𝑦12

This is the Maximum Stable Gain

This corresponds to yin/yout

being negative for optimal ys/yL.

Need two functions to describe GT,max(w). Not used for extrapolation.

K: Rollet Stability factor

The power gain typically decreases with frequency.

𝐺𝑇,𝑚𝑎𝑥 = 1 corresponds to the

maximum oscillation frequency , 𝑓𝑚𝑎𝑥.

Unilateral Gain

2016-02-09 20Lecture 9, High Speed Devices 2016

v1 v2

+

-

+

-

𝐾 =2𝑅𝑒 𝑦11 𝑅𝑒 𝑦22 − 𝑅𝑒 𝑦12𝑦21

𝑦12𝑦21> 1

• A non-zero y12 can cause a device to be unstable.

• We can always eliminate y12 through a passive, lossless feedback network.

• The maximum transducer gain of this network is called Mason’s unilateral gain, U.

𝑈 =𝑦21 − 𝑦12

2

4 𝑅𝑒 𝑦11 𝑅𝑒 𝑦22 − 𝑅𝑒 𝑦12 𝑅𝑒 𝑦21

Example: y12 caused by a capacitor can be cancelled by a inductor (at one frequency) This gives one equation valid for all values of y.

• 𝑈 = 1 also gives fmax

• This is the same as from MSG/MAG.

• U is the same for CC/CG/CS stages.