le4

7
 Acosta, Timothy John S. 2007-16445 ES 201 Problem 1 Find the inverse Laplace transform of the function: F (s) =  s 2 + 3s + 1 s 6 + 4s 5 + 4s 4 + 4s 3 + 3s 2 =  s 2 + 3s + 1 s 2 (s 4 + 4s 3 + 4s 2 + 4s 1 + 3) =  s 2 + 3s + 1 s 2 (s + 1)(s 2 )(s + 3) =  s(s + 3) s 2 (s 2 + 1)(s + 1)(s + 3)  +  1 s 2 (s 2 + 1)(s + 1)(s + 3) =  1 s 2 (s 2 + 1)(s + 1)  +  1 s 2 (s 2 + 1)(s + 1)(s + 3) Double Convolution of rst term: F (s) =  1 s  H (s) =  1 s 2 + 1  G(s) =  1 s + 1 (1) f (t) = 1  H (t) = sint G(t) = e t (2) =   t 0 (1)(sin(t τ )dτ e t+τ dτ 2 =   t 0 (1 cost)e t+τ dτ 2 =  e t+τ   t 0 cosτe t+τ dτ u =  e t+τ dv =  cosτdτ du =  e t+τ v =  sinτ =  e t+τ sinτe t+τ [e t+τ +   e t+τ cosτdτ ] =  e t+τ +  1 2 (sinτ  +  cosτ )e t+τ  t 0 = [1 +  1 2 (sint + cost)] [e t +  1 2 e t ] Double Convolution of second term: F (s) =  1 s 2 (s 2 + 1)  H (s) =  1 s + 1  G(s) =  1 s + 3 f (t) = t sint H  (t) = e t G(t) = e 3t =  (τ  − sinτ )e t+τ dτ 1 e 3t+3τ dτ 2   τ e t+τ sinτe t+τ dτ u =  τ dv  =  e t+τ u =  sinτ dv  =  e t+τ dτ du =  dτ v  =  e t+τ du =  cosτ dτ v  =  e t+τ τ e t+τ e t+τ sinτe t+τ +   cosτe t+τ dτ 1

Upload: tim-acosta

Post on 01-Nov-2015

215 views

Category:

Documents


0 download

DESCRIPTION

4th Long Exam in ES 201

TRANSCRIPT

  • Acosta, Timothy John S.2007-16445

    ES 201

    Problem 1Find the inverse Laplace transform of the function:

    F (s) =s2 + 3s+ 1

    s6 + 4s5 + 4s4 + 4s3 + 3s2

    =s2 + 3s+ 1

    s2(s4 + 4s3 + 4s2 + 4s1 + 3)

    =s2 + 3s+ 1

    s2(s+ 1)(s2)(s+ 3)

    =s(s+ 3)

    s2(s2 + 1)(s+ 1)(s+ 3)+

    1

    s2(s2 + 1)(s+ 1)(s+ 3)

    =1

    s2(s2 + 1)(s+ 1)+

    1

    s2(s2 + 1)(s+ 1)(s+ 3)

    Double Convolution of first term:

    F (s) =1

    sH(s) =

    1

    s2 + 1G(s) =

    1

    s+ 1(1)

    f(t) = 1 H(t) = sint G(t) = et (2)

    =

    t0

    (1)(sin(t )det+d2

    =

    t0

    (1 cost)et+d2

    = et+ t0coset+d

    u = et+ dv = cosddu = et+ v = sin

    = et+ sinet+ [et+ +et+ cosd ]

    = et+ +1

    2(sin + cos)et+

    t0

    = [1 +1

    2(sint+ cost)] [et + 1

    2et]

    Double Convolution of second term:

    F (s) =1

    s2(s2 + 1)H(s) =

    1

    s+ 1G(s) =

    1

    s+ 3

    f(t) = t sint H(t) = et G(t) = e3t

    =

    ( sin)et+d1e3t+3d2et+ sinet+d

    u = dv = et+ u = sin dv = et+ddu = d v = et+ du = cosd v = et+

    et+ et+ sinet+ +coset+d

    1

  • Acosta, Timothy John S.2007-16445

    ES 201

    u = cos dv = et+

    du = sind v = et+

    et+ et+ sinet+ + [coset+ + sinet+d ]et+ et+ sin cos

    2et+

    t0

    = [t 1 (sint cost2

    ] [0 + 12

    ]

    = t0 [t

    3

    2 sint cost

    2]e3t+3d

    = t0 e

    3t+3 32e3t+3 1

    2sine3t+3 +

    1

    2cose3t+3d

    = A+B + C +D

    A =

    e3t+3d

    u = dv = e3t+3

    du = d v =e3t+3

    3

    A =1

    3e3t+3 1

    9e3t+3

    B =

    3

    2e3t+3d

    B =e3t+3

    2

    C =

    1

    2sine3t+3d

    u = sin dv = e3t+3

    du = cosd v =e3t+3

    3

    1

    3sine3t+3 1

    3

    cose3t+3d

    u = cos dv = e3t+3

    du = sind v = e3t+3

    3

    1

    3sine3t+3 1

    3[1

    3cose3t+3 +

    1

    3

    sine3t+3d ]

    simplifying: sine3t+3d =

    9

    8[e3t+3 (

    sin

    3 cos

    9)]

    C =1

    2(9

    8[e3t+3 (

    sin

    3 cos

    9)])

    C =9

    16[e3t+3 (

    sin

    3 cos

    9)]

    2

  • Acosta, Timothy John S.2007-16445

    ES 201

    D =

    cos

    2e3t+3d

    u = cos dv = e3t+3

    du = sind v = e3t+3

    3

    cos

    3e3t+3 +

    1

    3

    sine3t+3d

    u = sin dv = e3t+3

    du = cosd v =e3t+3

    3

    simplifying: cose3t+3d =

    9

    10[e3t+3 (

    sin

    9+cos

    3)]

    D =1

    2[

    9

    10(cos

    3+sin

    9)e3t+3 ]

    Adding all parts:A + B + C + D

    = e3t+3 e3t+3

    9 e

    3t+3

    2 9e

    3t+3

    16(sin

    3 cos

    9) +

    9e3t+3

    20(sin

    9+cos

    3)

    t0

    =t

    3 1

    9 1

    2 9

    16(sin

    3 cos

    9) +

    9

    20(cos

    3+sin

    9) [0 e

    3t

    9 e

    3t

    2 9e

    3t

    16(19

    )] +9

    20(e3t)

    1

    3]

    =t

    3 11

    8+

    17

    80cost 11

    80sint+

    287

    720e3t

    3

  • Acosta, Timothy John S.2007-16445

    ES 201

    Problem 2Find the solution to the differential equation given below. The initial conditions are x(0) = 0 ,x(0) = 0

    d2x

    dt2+ 4x = (t 2)e84t

    d2x

    dt2+ 4x = e8(t 2)e4t

    s2X sx(0) x(0) + 4x = e8[ 1(s+ 4)2

    2s+ 4

    ]

    X(s2 + 4) = e8[1 2(s+ 4)

    (s+ 4)2]

    X = e8 2s+ 7(s+ 4)2(s2 + 4)

    Using Partial Fractions:

    2s+ 7

    (s+ 4)2(s2 + 4)=

    A

    s+ 4+

    B

    s+ 4)2+Cs+D

    s2 + 4

    A+ C = 0

    4A+B + 8C +D = 0

    4A+ 16C + 8D = 2

    16A+ 4B + 16D = 7

    A =2

    25, B =

    120, C =

    220, D =

    37

    100

    Substituting...

    X = e8[ 225

    1

    (s+ 4) 1

    20

    1

    (s+ 4)2 2

    25

    s

    (s2 + 4)+

    37

    100

    1

    (s2 + 4)]

    x(t) = e8[ 225e4t 1

    20e4t 2

    25cos2t+

    37

    200sin2t]

    4

  • Acosta, Timothy John S.2007-16445

    ES 201

    Problem 3Derive the temperature profile for the 1D Conduction along the length of the rod using Laplacetransformation.

    u

    t= 4

    2u

    x2

    sU u(x, 0) = 42u

    x2

    sU 20 = 42u

    x2

    dl2U

    dx2 s

    4U = 5

    We have a 2nd order non-homogenous differential equation. We will have a complementary andparticular soln:

    U(x, s) = Uc(x, s) + Up(x, s)

    Solving for the particular solution using Method of Undetermined Coefficients:

    Up(x, s) = A

    U p (x, s) = 0

    0 s4A = 5

    A =20

    s

    Now we solve for the complementary solution:

    dl2U

    dx2 s

    4U = 0

    This gives us the characteristic equation:

    m2 s4

    = 0

    m = s

    4

    Uc(x, s) = C1e

    s

    4x

    + C2es

    4x

    U(x, s) = C1e

    s

    4x

    + C2es

    4x

    +20

    s

    Boundary Conditions:

    u(0, t) = 20

    xu(0, t) = 0

    u(1, t) = 100

    xU(0, s) = 0

    U(1, s) =100

    s

    After transforming the boundary conditions, we use U(0, s) = 0

    xU(0, s) = C1

    s

    4e

    s4(0) + C2

    s

    4e

    s4(0) + 0

    0 = C1

    s

    4 C2

    s

    4

    C1 = C2

    5

  • Acosta, Timothy John S.2007-16445

    ES 201

    Next we use U(1, s) =100

    sto solve for the constant

    U(x, s) = C1(e

    s

    4x

    + es

    4x

    ) +20

    s

    U(1, s) = C1(e

    s

    4(1)

    + es

    4(1)

    ) +20

    s

    100

    s= C1(e

    s

    4(1)

    + es

    4(1)

    ) +20

    s

    C1 =80

    s

    1

    e

    s4 + e

    s4

    U(x, s) =80

    s[e

    s4x + e

    s4x

    e

    s4 + e

    s4

    ] +20

    s

    note that we can write this in power series form:

    1

    1 + u=n=0

    (1)nun for|u| < 1

    [e

    s4(1x) + e

    s4(1+x)]

    n=0

    (1)ne2n

    s4

    n=0

    (1)n[e

    s4(2n+1)(1x) + e

    s4(2n+1)(1+x)]

    Substituting...

    U(x, s) =20

    s+

    80

    s

    n=0

    (1)n[e

    s4(2n+1)(1x) + e

    s4(2n+1)(1+x)]

    note to perform the inverse Laplace transformation we need the error function given below:

    erf(t) =2pi

    t0eu

    2du

    erfc(t) =2pi

    t

    eu2du

    erfc(t) = 1 erf(t)L [erfc(

    k

    2t)](s) =

    1

    seks

    Therefore the solution is:

    u(x, t) = 20 + 80n=0

    (1)n(erfc

    [(2n+ 1) x

    2

    4t

    ]+ erfc

    [(2n+ 1) + x

    2

    4t

    ])

    6