layout

42
VLSI Engineering (EC31004) Spring 2010 1 EC31004: VLSI Engineering Notes Filename: VLSI_Eng_CMOS_Layout_<date>.doc Last updated: 15 Mar 2010 (working document) Content 1. Circuit layout .......................................................................................................................................................... 2 1.1. Layout and various design flows ...................................................................................................................... 2 1.1.1. FPGA based design .................................................................................................................................... 3 1.1.2. Gate array based design.............................................................................................................................. 7 1.1.3. Standard-cell based design ......................................................................................................................... 8 1.1.4. Full-custom based design ......................................................................................................................... 12 1.2. Full-custom layout techniques ........................................................................................................................ 13 1.2.1. Transistor using multiple fingers .............................................................................................................. 15 1.2.2. Stacking of multiple transistors ................................................................................................................ 18 1.2.3. Matching of transistors ............................................................................................................................. 18 1.3. CMOS Latch-up ............................................................................................................................................. 20 1.4. Stick diagrams ................................................................................................................................................ 28 1.5. Resistor layout ................................................................................................................................................ 33 1.5.1. Sheet resistance ........................................................................................................................................ 33 1.6. Capacitor layout .............................................................................................................................................. 38

Upload: chandrashekar

Post on 13-Nov-2015

16 views

Category:

Documents


1 download

DESCRIPTION

Layout

TRANSCRIPT

  • VLSI Engineering (EC31004) Spring 2010

    1

    EC31004: VLSI Engineering Notes Filename: VLSI_Eng_CMOS_Layout_.doc

    Last updated: 15 Mar 2010 (working document)

    Content

    1. Circuit layout ..........................................................................................................................................................2

    1.1. Layout and various design flows ......................................................................................................................2

    1.1.1. FPGA based design ....................................................................................................................................3

    1.1.2. Gate array based design..............................................................................................................................7

    1.1.3. Standard-cell based design .........................................................................................................................8

    1.1.4. Full-custom based design .........................................................................................................................12

    1.2. Full-custom layout techniques ........................................................................................................................13

    1.2.1. Transistor using multiple fingers..............................................................................................................15

    1.2.2. Stacking of multiple transistors ................................................................................................................18

    1.2.3. Matching of transistors.............................................................................................................................18

    1.3. CMOS Latch-up .............................................................................................................................................20

    1.4. Stick diagrams ................................................................................................................................................28

    1.5. Resistor layout ................................................................................................................................................33

    1.5.1. Sheet resistance ........................................................................................................................................33

    1.6. Capacitor layout..............................................................................................................................................38

  • VLSI Engineering (EC31004) Spring 2010

    2

    1. Circuit layout

    1.1. Layout and various design flows

    FPGA Gate array Standard-cell Full-custom

  • VLSI Engineering (EC31004) Spring 2010

    3

    1.1.1. FPGA based design

    Figure 1. FPGA based IC layout : two-dimensional array of CLBs

  • VLSI Engineering (EC31004) Spring 2010

    4

    Figure 2. FPGA based IC layout: switch matrix connecting the CLBs

  • VLSI Engineering (EC31004) Spring 2010

    5

    Figure 3. FPGA based IC layout: Internal of a CLB Xilinx XC4000 family example

  • VLSI Engineering (EC31004) Spring 2010

    6

    Figure 4. FPGA based IC layout: internal of a 16x2 single-port memory block Xilinx XC4000 family example

  • VLSI Engineering (EC31004) Spring 2010

    7

    1.1.2. Gate array based design

    First-phase: generic-mask for array of transistors Second-phase: circuit specific mask for transistor interconnects

    Figure 5. Gate-array based IC layout: Transistors in first-phase, circuit-specific metal-layers in second-phase

  • VLSI Engineering (EC31004) Spring 2010

    8

    1.1.3. Standard-cell based design

    Standard-cell library o Development resource and development time for full-custom

    Each library-cell has the following information: o Logic simulation model o Delay-time vs. load capacitance o Timing simulation model o Fault simulation model o Place-and-route data and mask-design data

    System integration: o Rows of cells channel

  • VLSI Engineering (EC31004) Spring 2010

    9

    Figure 6. A standard-cell IC layout block-diagram

  • VLSI Engineering (EC31004) Spring 2010

    10

    Figure 7. A standard-cell IC layout with one global signal-bus

  • VLSI Engineering (EC31004) Spring 2010

    11

    Figure 8. Standard-cell IC layout showing channel routing without using over-the-cell routing

  • VLSI Engineering (EC31004) Spring 2010

    12

    1.1.4. Full-custom based design

    Layout starting from device level

    Figure 9. NMOS transistor layout in n-well process

    Figure 10. PMOS transistor layout in n-well process

  • VLSI Engineering (EC31004) Spring 2010

    13

    Figure 11. CMOS inverter layout in n-well process

    1.2. Full-custom layout techniques

  • VLSI Engineering (EC31004) Spring 2010

    14

    Figure 12. Various transistor custom layout scheme and the effect on drain-capacitance

  • VLSI Engineering (EC31004) Spring 2010

    15

    1.2.1. Transistor using multiple fingers

    Figure 13. Using multiple fingers of wide transistor

    Reduction in height for very wide transistors Reduction in distributed resistance along the poly-gate (from poly-gate to Metal-1 contact)

  • VLSI Engineering (EC31004) Spring 2010

    16

    Figure 14. Transistor layout examples: 1 finger vs. 2 finger vs. 3 finger

  • VLSI Engineering (EC31004) Spring 2010

    17

    Figure 15. Custom layout examples for 2-input NAND gate with and without fingers

  • VLSI Engineering (EC31004) Spring 2010

    18

    1.2.2. Stacking of multiple transistors

    Figure 16. Transistor layout: transistor stacking

    Reduction in size happening because of: o Common M2-drain and M1-source (M2-source or M1-drain) area o Removal of contacts from M2-drain and M1-source (or M2-source and M1-drain)

    1.2.3. Matching of transistors

    Multiple objectives of matching o Achieving the geometric ratio needed in electrical design o Minimizing the effect of spatial gradation of process parameters o Minimizing the effect of adjacent device (passive / active) structure

  • VLSI Engineering (EC31004) Spring 2010

    19

    Figure 17. Transistor layout matching: before layout optimization

    Figure 18. Transistor layout matching: after layout optimization

  • VLSI Engineering (EC31004) Spring 2010

    20

    Figure 19. Layout matching: (1) size matching, (2) gradient, (3) parasitic coupling

    1.3. CMOS Latch-up

    Parasitic shorting of VDD and GND In normal operation, the parasitic transistors are OFF Triggering through the undesired transient-current through VDD or GND

  • VLSI Engineering (EC31004) Spring 2010

    21

    Figure 20. CMOS inverter vertical cross-section showing parasitic transistor

  • VLSI Engineering (EC31004) Spring 2010

    22

    VDD

    GND

    RWELL

    RSUB

    Figure 21. CMOS inverter parasitic transistors: equivalent circuit for latch-up consideration

    Example: o Current surge from VDD voltage drop across RWELL VBE developed for the parasitic PNP transistor

    o The current in-turn drops across RSUB VBE developed for the parasitic NPN transistor

    o The current in-turn drops across RWELL and so on

  • VLSI Engineering (EC31004) Spring 2010

    23

    Current in the loop is self-sustained once it develops thyristor characteristics Layout guidelines: weaken the parasitic effect

    o Increase # of contacts for WELL and P-SUB (in the above example) reduce RSUB and RWELL o Use continuous strip of guard-band or guard-rail for substrate and well contact o Reduce physical spacing between PMOS and P-sub contact

    Reduce physical spacing between NMOS and N-well contact

    o Avoid resistive VDD and GND (e.g. do not use poly-Si or diffusion area; instead, use metal) o Place internal circuitry away from external pads o Consider latch-up possibility when SOURCE terminal of NMOS or PMOS are not at the same

    potential of p-substrate or N-well, respectively

  • VLSI Engineering (EC31004) Spring 2010

    24

  • VLSI Engineering (EC31004) Spring 2010

    25

    Figure 22. Transistor with multiple gates: internal area may not be covered by tub / substrate contacts

  • VLSI Engineering (EC31004) Spring 2010

    26

    Figure 23. Hard-tie for tub (well) / substrate contacts

  • VLSI Engineering (EC31004) Spring 2010

    27

    Figure 24. Soft-tie for tub (well) / substrate contacts

  • VLSI Engineering (EC31004) Spring 2010

    28

    1.4. Stick diagrams

    Figure 25. inverter schematic and corresponding stick-diagram and its actual layout (standard-cell approach)

  • VLSI Engineering (EC31004) Spring 2010

    29

    Figure 26. inverter schematic and corresponding stick-diagram using fingered transistors (standard-cell approach)

  • VLSI Engineering (EC31004) Spring 2010

    30

    Figure 27. inverter layout using fingered transistors (standard-cell approach) and the equivalent circuit

  • VLSI Engineering (EC31004) Spring 2010

    31

    Figure 28. CMOS NOR gate layout : stick-diagram and actual layout (standard-cell approach)

  • VLSI Engineering (EC31004) Spring 2010

    32

    Figure 29. CMOS NAND2 gate layout : stick-diagram and actual layout (standard-cell approach)

  • VLSI Engineering (EC31004) Spring 2010

    33

    1.5. Resistor layout

    1.5.1. Sheet resistance

    Resistance per-square Let, conductor length = L, conductor width = W, conductor thickness = t, resistivity of material =

    R = RS (L / W),

    where, sheet resistance, RS = ( / t) Resistance = (Sheet resistance) * (Length-to-width ratio)

    Figure 30. sheet resistance

    Example [in ohm / square]: o Metal1-Metal2 : 0.05 to 0.10 o Top-metal : 0.03 to 0.05

  • VLSI Engineering (EC31004) Spring 2010

    34

    o Poly-Si : 15 to 30 o Poly-Si with silicide (e.g. TiSi2) : 4 to 5 o Diffusion (n+, p+) : 50 to 150 o n-well / p-well : 1K to 2K

    Figure 31. resistor: unit-cell and large resistor using multiple unit-cells

  • VLSI Engineering (EC31004) Spring 2010

    35

    Figure 32. resistor: use of guard-rings to reduce noise injection from substrate

  • VLSI Engineering (EC31004) Spring 2010

    36

    Figure 33. resistor: matching of two resistors

  • VLSI Engineering (EC31004) Spring 2010

    37

    Figure 34. resistor matching: interdigitated or interlacing approach

    Figure 35. resistor matching: common-centroid approach

  • VLSI Engineering (EC31004) Spring 2010

    38

    1.6. Capacitor layout

    Figure 36. capacitor: poly-poly cap example

  • VLSI Engineering (EC31004) Spring 2010

    39

    Figure 37. capacitor: area-capacitance and fringing capacitance

    Area-capacitance and Fringe-capacitance Area-capacitance per unit-area and fringe-capacitance per unit-length between the layers (e.g. Metal1 to

    Metal2) are given for any particular process

  • VLSI Engineering (EC31004) Spring 2010

    40

    Figure 38. capacitor: poly-poly cap using multiple fingers

  • VLSI Engineering (EC31004) Spring 2010

    41

    Figure 39. capacitor: poly-poly cap using unit-cell: close to circular shape (sharp corners avoided)

    Typical capacitance values for thin-oxide / gate-oxide of thickness (xOX) 100 angstrom = 864 x 10-18 F / um2 Typical capacitance values (0.25 um process) for adjacent layers -- examples:

    Typ. area-capacitance (10-18 F / um2) Typ. fringe-capacitance (10-18 F / um)

    Metal1 poly-Si 57 54

    Metal2 Metal1 36 45

    Metal3 Metal2 41 49

    Metal4 Metal3 35 45

  • VLSI Engineering (EC31004) Spring 2010

    42

    Metal5 Metal4 38 52

    Typical capacitance values (0.25 um process) for different layers -- examples: Typ. area-capacitance (10-18 F / um2) Typ. fringe-capacitance (10-18 F / um)

    Metal3 Metal1 15 27

    Metal4 Metal2 15 27

    Metal4 Metal1 8.9 18

    Metal5 Metal3 14 27

    Metal5 Metal2 9.1 19

    Metal5 Metal1 6.6 14