laurent ranno laboratoire louis néel,...

87
Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel) Ecole Franco-Roumaine Magnétisme des systèmes nanoscopiques et structures hybrides Brasov, septembre 2003 Spin tunnel and Spin Polarisation Laurent Ranno Laboratoire Louis Néel, Grenoble

Upload: others

Post on 12-Sep-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Ecole Franco-RoumaineMagnétisme des systèmes nanoscopiques et structures hybrides

Brasov, septembre 2003

Spin tunnel and Spin Polarisation

Laurent Ranno

Laboratoire Louis Néel, Grenoble

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Summary

I- Introduction to Tunnel Effect

II-Magnetic Tunnel Effect

III-Bias Voltage and Temp Dependence

IV-Spin Polarisation

V- Half Metals

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

I- Introduction to Tunnel Effect

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

∆EwE

E0

ψψψ ExVdx

d

m=+− )(

2 2

22�

Tunnel Effect has a Quantum Mechanics Origin

A classical electron with energy E<E0 cannot enter the barrier zoneHowever a quantum electron obeys theSchrödinger equation !

(1D model)

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

2

2

Emq

∆±=tiqr

be ωψ −=

Off the barrier

In the barrier

)( tkrie ωψ −=

ψψ Edx

d

m=−

2

22

2

ψψ )(2 02

2

EEdx

d

m−=− �

and 2

2

mEk ±=

00 <− EEand

and

Planewaves

Evanescent waves

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

nmq

electronfreem

eVE

2.01

1

=�=

=∆

2

2

Emq

∆±=

Tunnel barriersmust be very thin insulating layers Width = w < 10 nm

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

ψψψ ExVdx

d

m=+− )(

2 2

22�

∆E

w

x

V(x)

�=

±x

duuk

ex 0

)(

)(ψW. K. B. Approximation

ψψψ )())((2 2

22

2

xkExVm

dx

d =−=�

For a more general barrier shape

E

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

What is neglected ? �=

±x

duuk

ex 0

)(

)(ψ

)()()(

xxkdx

xd ψψ ±=

)()()()(

)()()(

)()(

2

2

2

xxkxdx

xdkdx

xdxkx

dx

xdk

dx

xd

ψψ

ψψψ

+±=

±±=

))((2

)(2

ExVm

xk −=�

The barrier potential should vary smoothly

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Wearedealing with transport. What about the current ?

To passacurrent,wemust apply abiasvoltageacross the barrier.

the barrier has a transmission coefficient T

eV

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Simmons

The probability to find the electron (energy E) on the other sideofthe barrier is :

�===

−−w

duEuVm

eEP 02

))((22

2)(

ψψψ

dtdVEPVnVdN xxxx�∞=0

)()(

Electrons coming from the left to the right

�� ∞

=0

//

03

2

)()(4

dEEfdEEPh

m

dt

dN E

xx

π

dtVx

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

∆E

w

EE0No bias voltage

Current 1 2 = Current 2 1

J(V=0)=0

1 2

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

w

E

BiasvoltageeV<<E0

eV

�� ∞

+−=−=0

//

03

221 )]()([)(

4)( dEeVEfEfdEEP

h

me

dt

dN

dt

dNeJ

E

xx

π

E0

002.10

1010 16.3 ESeS

VEJ −=

Linear J(V) at low bias

Simmons (1963) has calculated approximate recipes

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

w

E

Biasvoltage 0<eV<E0

eVE0

Simmons ’ parabolic fit

)( 3VVJ βα +=

)31( 2VdV

dJ βα +=

β contains the barrier height and the barrier width

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

dV

dJWhy ?

From the experimental point of view :

)cos()( 0 tvVtV ω+=

)()cos()())cos(()( 000 VdV

dJtvVJtvVJVJ ωω +=+=

Measuring the ω component of thesignal with a lock-in amplifiergives directly the differential conductance

Filter all theconstant voltageand non-ω noise

Using a voltage source : 0Vv <<

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Reduced effective w

E

Biasvoltage eV>E0

eVE0

J increases rapidly but in fact such a biasvoltage corresponds to theelectrical breakdown regime

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

VV

J dJ/dV

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

-0.24 -0.16 -0.08 0 0.08 0.16

-0.24

-0.16

-0.08

0

0.08

0.16

0.24

0.32

courbe I(V) à 2 K et 52 K

V (2 K)V (52 K)

V (Volt)

I-V non linear curves (ferromagnetic/insulator/ferromagnetic)

Thèse E. Favre-Nicolin (Grenoble 2003)

No temperature dependenceof tunnel effect (1st order)

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

II-Magnetic Tunnel Effect

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

In 1972 Gittleman et al. measured the resistance and MR of Ni grains in a SiO2 matrix

Gittleman et al. Phys. Rev. 5 (1972) 3609

50% Ni

Longitudinal MR is <0 contrary to the sign of the bulk Ni AMR ρ// > ρ perp

R > RM J M J

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

221

10 )()(),(m

mmTTHT

�� ⋅+= σσσ

Gittleman et al. 1972 :

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Development of film deposition techniquesTrilayer : better characterisation of electrodes and control of magnetisation

R changes by 14% at low temperature depending on the magnetic configuration

Fe

CoGe(10-15nm) +dry oxygen

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

11.8% at 300 K24% at 24 K

φ=1.9 eV and t=1.6 nm

V50%=200mV

200µm x 300 µm

And also Miyazaki, Tezuka JMMM 139 (1995) L231

1995

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

IBM 1997

Ferro (free)

Ferro (pinned)

Insulator

Magnetic Tunnel Junction

Same technical solutions as GMR structures to get 2 different coercive fieldsi.e. well defined parallel and antiparallel states.

Hard - Soft materials (Co - NiFe)Different shape anisotropies for both electrodesPinning to AF layer (MnFe) or Artificial AF layer (Co/Ru/Co)

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Jullière ’s model (1975)

Not magnetisation BUT Polarisation of electrodes is the parameter )()(

)()(

FF

FF

ENEN

ENENP

↓↑

↓↑

+−

=

)()()()( 210210 FFFF ENENGENENGG ↓↓↑↑↑↑ +=

)()()()( 210210 FFFF ENENGENENGG ↑↓↓↑↑↓ +=

2

)1( iii

PNN

+=↑ 2

)1( iii

PNN

−=↓

Assume : No spin-flip transition across the barrier at low voltage2 parallel channels (spin up and spin down)

Conductance is the sum of spin up and down conductancesConductance is proportional to the density of state (d.o.s.) 1 and d.o.s. 2

)()( 2 electrode i 1 electrode i 0i FspinFspinspin ENENGG =

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Jullière ’s model (M. Jullière, Phys. Lett. 54 A, 225 (1975))

210 NNGGG =+ ↑↑↑↓

2211022102210 PNPNGPNNGPNNGGG =−=− ↓↑↑↓↑↑

21PPGG

GG=

+−

↑↓↑↑

↑↓↑↑

21

21

1

2

PP

PP

G

GG

+=

↑↑

↑↓↑↑or

Does depend on PiDoesnot depend on the barrier (height, width) because of assumption about G0

i.e. no spin dependenceof transmission

21

21

1

2

PP

PP

R

RR

−−=

↑↑

↑↓↑↑

TMR ratio :

(pick your definition )

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

69.1% at 4.2 K

From Jullière ’s formula

PCoFe=50.7%similar to expected

CoFeTMR junction (Tohoku 2000)

Fe/a-Ge/Co (Jullière)Exp : TMR=14%Theor : PCo34% +PFe44%

TMR 26%

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Slonczewski ’s model (1989)

Barrier in themodel

m ↑Fk

↓↑↓F

k

exchEm

kE ±=

2

22�

Ferromagnetic electrodes

↓↑

↓↑

↓↑

↓↑

+−

+−

=FF

FF

FF

FF

kk

kk

kkq

kkqP

2

2

SolveSchrödinger for both channels, calculateconductances

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

↓↑

↓↑

↓↑

↓↑

+−

+−

=FF

FF

FF

FF

kk

kk

kkq

kkqP

2

2

)()(

)()(

FF

FF

ENEN

ENENP

↓↑

↓↑

+−

=

2

2

Emq

∆±=

High barrier

↓↑

↓↑

↓↑

↓↑

+−

=+−

⋅=FF

FF

FF

FF

kk

kk

kk

kk

q

qP

2

2

Free electrons kmk

mEm

EDOS ∝==2223

2)(ππ ��

Back to Jullière ’s formula

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Improved models :

Bratkovsky :Correction to Slonczewski’smodel (different effective mass in the barrier)

mb/m=0.4 for Fe/Al2O3

Ab initio band structure calculations :to get the band structure close to the interface

↓↑

↓↑

↓↑

↓↑

+−

⋅+⋅−

=FF

FF

FFb

FFb

kk

kk

kkmq

kkmqP

22

22

2

2

Emq b∆±=

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

III-Bias and Temp Dependence

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

TMR temperature dependence

Resistance Temperature dependence

Miyazaki group (Tohoku) APL 2000

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Temperature dependence of resistance

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

2

2

Emq

∆=

qweTonTransmissi 2−∝=

w

∆E

Temperature dependence of the barrier transmissionGoing from 0 Kelvin to 300 Kelvin

Wavevector in the barrier (evanescent wave)

onTransmissieConductanc ∝

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

2

2

Emq

∆=

qweTonTransmissi 2−∝=

E

Edwqdqwqwd

T

dT

∆∆−=⋅−=−= 2)2(

meVkTEeVE

nmwq

25d ,2

, 1 ,11

==∆=∆=Α=

−°

%5.12=∆=∆=∆R

R

G

G

T

T

w

∆E

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Temperature dependence of TMR

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Polarisation is related to magnetisation

)1)(()( 2/3TTMTM s α−=

)1)(()( 2/3TTPTP s α−=

Inelastic processes can appear

magnonee +� ↓↑

↓↑ �+ emagnone

Opens a spin-flip conductancechannelconductance increasesTMR decreases

Surfacemagnetisation is less robust to thermal fluctuations

No general results, dependson the studied system (Tc, surface state …)

Different contributionsmay rule this behaviour :

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Voltage dependence of TMR

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Jullière, Phys. Lett. 1975

50% MR at 3mV

TMR50%=3mV

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

TMR - bias voltage dependence50% decreaseTMR for 400mV

R - bias voltage dependence

Miyazaki group (Tohoku) APL 2000

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Inelastic processes can be activated

magnonee +� ↓↑

↓↑ �+ emagnoneOpens a spin-flip conductancechannel

TMR decreases with V

Thevoltagedecrease dependson experimental systems and years

At largebiasvoltages, hot electronsare introduced inthesecond electrode : 0.1 V = 1200 Kelvin

1975 : TMR50%=2 mV1995 : TMR50%=200 mV2000 : TMR50%=450 mV2003 : TMR50%>1000 mV

May bedue to non perfect samples, which improve with time

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Epitaxial NiFe electrode : 50 % decreaseof TMR at 750 mV

Yu et al. APL 2003

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Ding et al. (M.P.I. Halle) PRL 2003

Cobalt (0001)

Magnetic amorphous tip

Tunnel junction with « perfect barrier » : STM with ferromagnetic electrodes in vacuum

Voltagedependenceof TMR not related to magnon excitations or surfacemagnetisation but more likely to defects in the barrier

to be confirmed ...

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

A few words about

The insulating barrier

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Making the barrier

Aluminium Film (0.7-2 nm) + thermal oxidation in oxygen atmosphereor air

Aluminium Film + oxygen plasma

Deposition of Alumina (Al2O3) producesa lessdensebarrierwith poor electrical properties

Good recipe#1

Good recipe#2

Bad recipe#1

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

SR

1∝

Constant thickness barrier

Gallagher et al. JAP 1997

5 ordersof magnitude

100 nm

100 µm

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Electrical Breakdown

1 Volt across a 1 nm barrier is E = 1 GigaV/m

This is the order of magnitude of the electrical field necessary to ionise an atom

The barrier should be uniform- flat- 0 roughness- fully oxidised, homogeneously - no oxidation of the ferromagnetic metals

A 0.1 nm fluctuation means 100 mV decrease of the breakdown voltage

!

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Ta2O5 -1023 HfO2 -1144Nb2O5 -949 ZrO2 -1100

CeO2 -1088Y2O3 -952 TiO2 -944

Gd2O3 -909 SiO2 -910Nd2O3 -903 NbO2 -796La2O3 -896 CrO2 -598Al2O3 -837 MnO2 -520V2O3 -609

Cr2O3 -570 MgO -601Ga2O3 -544 NbO -405Mn2O3 -479 MnO -385Fe2O3 -412 ZnO -350

FeO -272Mn3O4 -462 NiO -238Fe3O4 -372 CoO -237Co3O4 -297 CuO -157

SiO -99

Ga2O -178Cu2O -84

Formation enthalpy ∆H (298K)kJ/mol metallic atom

Al-O bond is stronger than3d metal -O bonds

Better oxides exist : HfO2, , Rare earth-O

But kinetics : (Al passivated « automatically » 1 nm thick),

local state : (amorphous, nanocrystallised,

crystallised) when RT deposition

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Crystallised barrier Amorphous barrier

Smith et al. JAP,83 ,5154 (1998)

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Role of annealing a tunnel junction

Sousa et al. (Lisbon)

Barrier (Simmons’ fit)

after anneal : thickness :0.87 to 0.77 nm widebarrier height :1.8 eV to 2.5 eV

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

RBS measurement of Al and O distributions

Sousa et al. APL 98

O from the CoFe electrodes goes back to Al2O3

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Miyazaki group (Tohoku) APL 2000

Ta (5 nm)/Ni79Fe21 (3 nm)/

Cu (20 nm)/Ni79Fe21(3 nm)/

Ir22Mn78(10nm)/Co75Fe25(4 nm)/

Al (0.8 nm)-oxide/Co75Fe25(4 nm)/

Ni79Fe21(20 nm)/Ta (5nm)

Free layer

Pinned layer

Best present TMR junctions : 50% Room temperature(non exotic materials)

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

IV-Spin polarisation

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

We have been using values for P.

Wheredo they come from ?

How to measure them ?

)()(

)()(

FF

FF

ENEN

ENENP

↓↑

↓↑

+−

=

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Density of States Band structure calculations (spin resolved)

Moroni et al. PRB56 (1997)15629

[100][000] [000] [000] [000][110] [111] [100] [111][210] [110]

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Nickel integrated density of states

Polarisation at Fermi level should beNEGATIVE

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Be careful (M. B. Stearns JMMM,5 ,167 (1977))

2

2

2*

k

Em

∂∂

= �

Bandsdo not have the same effective mass at EF

Electrons at Fermi level have different mobilities

d-like electronsare more localised (narrow bands)s-like electrons are less localised (wide bands)

and more mobile

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

[100][000] [000] [000] [000][110] [111] [100] [111][210] [110]

s-liked-like

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Be careful (M. B. Stearns JMMM,5 ,167 (1977))

2

2

2*

k

Em

∂∂

= �

Bandsdo not have the same effective mass at EF

Electrons at Fermi level have different mobilities

d-like electronsare more localised (narrow bands)s-like electrons are less localised (wide bands)

and more mobile

Ferromagnetism comes from the3d bands but transport comes from s-electrons. s electrons are not supposed to be polarised !

Difficult to predict thepolarisation of conduction electrons

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Ferromagnetic / insulating / superconducting junctionsM. I. T. speciality (Tedrow/Meservey)

�∞ +−∝0

21

2)]()()[()( dEeVEfEfENENMJ

qweM 22 −∝

N(E) non magnetic metal

constant)( ∝EN

When it is difficult to predict, let us measure !

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

�∞ +−∝0

21 )]()()[()( dEeVEfEfENENJ

∆<= E if 0)(EN

∆>∆−

= E if E

)(22E

EN

N(E) in a superconductor

∆−∆ E

N(E)

f(E)

f(E+eV)

E

E

EF

f(E)-f(E+eV)E

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

�∞ +−∝0

supermetal )]()()[()( dEeVEfEfENENJ

∆/eV

J

∆/eV

dV

dJ

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

V

dV

dJ

If a magnetic field is applied BBEBE Bµ±== )0()(

If 50% electrons spin up, 50% electrons spin down

V

dV

dJ

V

dV

dJ

µB/eIf not 50%-50% ….

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

M.I.T group JAP 1979

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Meservey et al; J.A.P. 50 (1979)

FeCoNiGd

+44%+34%+11%+4%

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Andreev reflexion : metal / superconductor clean interface

Soulen et al. J.A.P. 85 (1999)

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Nb gap

I(V)dI/dV

Normal metal : 1 electron arrives, 2 electrons enter

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Nb gap

I(V)dI/dV

No conductance at small bias

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

0102030405060708090

100

NiFe Co Ni Fe

NiMnS

bLaS

rMnO

CrO2

Spi

n P

olar

isat

ion

(%) Tunneling

Andreev

Soulen et al. 1999But it only works at 1 Kelvin !Andreev Reflexion doesnot give the sign of P

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Material Surface (UHV conditions)

Photon hν Photoemitted electronEnergy+spin analysis

Photon penetration length = 0.5 nmVery clean surface, UHV prepared surface

UV

To analyse theconduction electrons : spin resolved photoemission

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Jonker et al. PRL57 (1986)

Example : Epitaxial Fe on Ag

Spin-resolved photoemission

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Park et al. PRL 81 (1998)

Phot

oem

issi

onsi

gnal

La0.7Sr0.3MnO3 film

Photon hν = 40eV40K

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Polarisation at 0K for Ni, Co and Fe is known

Its temperature dependence is still unclear

Surface polarisation still amystery

(enough to keep you busy after Brasov school)

What about the other magnetic metals?

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

V-Half Metallic Ferromagnets

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

D(E)

E

↓↑ >ss

λλ

d

d

s s

Ferromagnetic band structure

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Half metallic ferromagnets

D(E)

E

d

d

s s

Fully spin polarised conduction band

No s-band at Fermi levelLarge band splitting

Gap = not usual metals = less metallic than metals

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Predicted HMF

1984 : ab initio calculcations (De Groot et al.)

NiMnSb (Tc=720 K), PtMnSb (Tc=575 K)

CrO2

La0.7Sr0.3MnO3

Fe3O4

FexCo1–xS2 ………….

magnetic semiconductors ?

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Compound Curie temperature Magnetisation µoMs Crystallographic structureLa0.7Sr0.3MnO3 350 K 0.74 T 3.7 µB/Mn PerovskiteNiMnSb 728 K 0.89 T 4 µB/Mn Semi HeuslerCrO2 396 K 0.81T 2 µB/Cr RutileFe3O4 860 K 0.63 T 4 µB/F.U. Inverse SpinelPtMnSb 572 K 0.9 T 4 µB/Mn Semi HeuslerSr2FeMoO6 415 K 0.73 T 4 µB/F.U. Double perovskite

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Spin-polarized band structure of La0:7Sr0:3MnO3. The majority bands are shown assolid lines, and the minority as dashed lines

Livesay et al. J. Phys.: Condens. Matter 11 (1999) L279–L285

Predicted Half metallic character of La0.7Sr0.3MnO3

Zero Kpicture

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

EF

∆δ

E

D (E)

D (E)

E(q)

q

E=Dq2

δ

Stonercontinuum

Spin waves

Electronic excitations in a HMF

Still exist at T>0

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

HMF are avery interesting class of materials

Useful to study HMF state

Are they really 100% polarised ?Up to Tc ?Is thesurfacepolarised ?

Useful to study other materials

Source of d-like electronsHighly spin polarised source

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Inverse TMR Cobalt : positive P (previous studies)LaSrMnO : positive P (no down bands)

and negativeTMR !

DeTeresa et al. PRL 82(1999)

d electrons tunnel

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Conclusions :

Tunnel is old but TMR is quitearecent field

Spin-dependent transport propertiesare not fully understood

HMF is still amystery

A lot of material science is necessary to control thestructures

Only a few materials and structures have been controled

Bringing together magnetism and electronics isa fruitful playground ...

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Improved structures : resonant junctions

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Ivo SturmManouk Rijpstra

Spin Tunnel Course Brasov sept. 2003 Laurent Ranno (Lab. Louis Néel)

Bowen et al. APL 2001

Epitaxial junctions