laser processing laboratory · rubis, 694 nm au, ni and c pure h2o pure h2o pure h2o, nacl,...

25
FEL Workshop 8-10 March 2005 LASER PROCESSING LABORATORY Michel Meunier Canada Research Chair Department of Engineering Physics École Polytechnique de Montreal http://LPL.phys.polymtl.ca

Upload: others

Post on 30-Apr-2020

24 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

LASER PROCESSING LABORATORY

Michel MeunierCanada Research Chair

Department of Engineering PhysicsÉcole Polytechnique de Montreal

http://LPL.phys.polymtl.ca

Page 2: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

LPL’s Research activitiesMission:

Develop and model new laser material processes for: microelectronics, nanotechnologies, biotechnologies, photonics and MEMS

Laser-materials interaction:Theory and simulation of laser-materials interaction

Laser microengineering of materials :Laser trimming of microelectronics circuits (LTRIM process); Femtosecond laser micromachining.3D laser micromachining of photosensitive glasses3D laser fabrication of photonics components

Laser nanoengineering of materials:Laser fabrication of nanostructured thin films, nanoparticles and nanotubes. Applications to biosensing and nanobiophotonique

Personnel: ~201 Professor, 1 senior researcher, 3 research associates, 12 graduate students and 4 undergraduate students.

Page 3: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Colloidal metal nanoparticles synthesized by femtosecond laser

ablation in liquids

M. Meunier, A. V. Kabashin, J.-P. Sylvestre, S. Besner,

F. Winnik and E. SacherLaser Processing Laboratory,

École Polytechnique, Montréal, Canada

Page 4: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Content

ColloidsWhys laser ablation?Why femtosecond laser ablation?Mechanism of femtosecond laser ablation in liquids

and formation of nanoparticlesChemistry of gold nanoparticles in water, KCl, NaOH,

Cyclodextrin and DextranConclusionUse of FEL?

Page 5: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Colloidal Gold NanoparticlesAbsorption spectra: Surface plasmon resonance (520 nm)

Biosensing and pharmacology applicationsAntibodies are detected by a change of optical

characteristics of gold nanoparticles

Desired characteristics of nanoparticles:- Small (< 30 nm), with narrow size distribution- Availability of reactive chemical groups for further

attachment to biomolecules

Conventional chemical fabrication methodReduction of chloroauric acid (HAuCl4) with citrate in water

Control size by adding a stabilizing agent (thiol- (-SH) containing molecules.)

Disadvantages: Contamination (impurities; Cl on surface, …)

Page 6: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Why laser ablation of solids in liquids ?

Laser ablation in vacuum leads to highly energetic species and particles

Laser ablation in neutral gas (few Torrs) results in the cooling of speciesand formation of “cold” nanoclusters

Laser ablation in liquids:Rapid quench of hot species and formation of

cold nanoclustersDirect formation of colloidal solution

- Biosensor - Spin-on

Page 7: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

“Long” pulse laser ablation in liquidsIn distilled water:~5-200 nm particles with broad size distribution Reasons:- Ablation is mainly due to shock wave - Post-ablation: large quantity of ‘low’ but sufficient energetic particles thatcoalesce to form large particles

ns fsTransmitted energy (%) Few % 20-45

Mechanical energy (%) ~80% 15 %

In surfactants:Surfactant (sodium dodecyl sulfate or SDS) covers someablated particles, thus limiting coalescence (big particles) and aggregation.

Disadvantages: - SDS terminates gold surface makingit hardly useful for bioimmobilizations

- SDS is not biocompatible (denaturation of proteins)

Exemple: Nd:YAG laser (1064 nm, 532 nm) with SDS

5-10 nm Au particles (size dispersion - 5 nm)

Page 8: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Metal colloids in aqueous mediaAuthors Laser Materials Aqueous

mediaSize distributions Comments

Henglein(1993)

Rubis, 694 nm Au, Ni and C

Pure H2O

Pure H2O

Pure H2O, NaCl, phtalazinePure H2O, SDS, CTABSDS

Pure H2O

Pure H2O

Tsuji (2002), (2003)

- Nd:YAG, 1064, 532 and 355 nm (ns)- Ti:saphire, 800 nm, 120 fs

Ag Pure H2O, 5-160 nm for ns5-90 nm for fs

Size dispersion of particles is reduced using femtosecond laser

Pure H2O,

CDs

2-4 nm for Au Ablation of thin films (few nm)

Cotton (1993) Nd:YAG, 1064 nm Ag, Au, Pt, Pd and Cu

10-50 nm for Ag Sound during ablation

Stepanek(1997), (1998)

Nd:YAG, 1064 nm, 20ns and 40 ps

Ag 6-140 nm for ns6-80 nm for ps

Size reduction effect of Cl- and adsorbing molecules (pht)

Yeh (1998), (2002)

Nd:YAG, 1064 and 532 nm Ag 4-120 nm Size reduction effect of surfactants (2002)

Kondow(2000),(2001),(2002), (2003)

Nd:YAG, 1064 and 532 nm Au, Ag and Pt

5-50 nm Size reduction effect of surfactants

Shafeev(2001), (2002)

Cu vapor laser, 511 nm, 20 ns

Ag, Au, Ti and Si

20-200 nm for Au and Ag

Partial oxidation of Ti and Si prepared in water

Compagnini(2002)

Nd:YAG, 532 nm Ag and Au 10-30 nm for Ag and Au

Kabashin JCPB, JAP (2003), SylvestreJACS (2004)

- Ti:saphire, 800 nm, 120 fs Au, Ag 3.5 ± 1nm for Au at small fluences2.5± 1 nm for Au in CDs at high fluence

Size of particles is dependant of laser fluence, CDs reduces particles size

Page 9: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Experimental setup

Femtosecond laser:110 fs FWHM, 800 nm, 1 kHz

Aqueous solutions:

1. Pure water

2. Cyclodextrins (α-CD, β-CD and γ-CD) (Biologically compatible glucose-containing compounds)

3. Molecules containing an amine group (-NH2)

Focused laser radiation

Material to beablated

Liquid environment

A.V. Kabashin, M. Meunier, C. Kingston and J. H.T. Luong « Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in Aqueous Solution of Cyclodextrins » J. Phys. Chem. B, 107, 4527-4531 (2003)

Page 10: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

fs laser ablation in water: fluence effects

F = 30 J/cm2

0 2 4 6 8 100

200

400

600

800

1000

Rel

ativ

e A

bund

ance

(arb

. uni

ts)

Particle Size (nm)

Ablation threshold:~5 J/cm23.5 ± 1 nm

Page 11: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

fs laser ablation in water: fluence effects

0 50 100 150 200 250 3000

200

400

600

800

1000

Rel

ativ

e ab

unda

nce

(arb

. uni

ts)

Particle size (nm)0 10 20 30 40 50 60 70 80 90 100

0

200

400

600

800

1000

Rel

ativ

e Ab

unda

nce

(arb

. uni

ts)

Particle Size (nm)

F = 1000 J/cm2 F = 160 J/cm2

- Diameter increases with fluence

- For intermediate fluences, size distributions can be fitted by two Gaussian functions

- Evidence for two different mechanisms of nanoparticle production

Page 12: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

fs laser ablation in water: fluence effects

200 400 600 800 1000

20

40

60

80

100

120

140

broad distribution

Narrow distributionMea

n P

artic

le S

ize

(nm

)

Fluence (J/cm2)

0 200 400 600 800 10000

20

40

60

80

100

broad distribution

narrow distribution

Siz

e D

ispe

rsio

n at

FW

HM

(nm

)

Fluence (J/cm2)

Mean particle size Size Dispersion

Two size distributions are present Two different mechanisms of particle formation

Kabashin and Meunier « Properties of femtosecond laser ablation in liquidenvironment and formation of gold nanoparticles» J. Appl. Phys., 94, 7941 (2003)

Page 13: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

200 J/cm2

30 J/cm2

- Molten layer - Optical breakdown of the water above the gold substrate leading to hot plasma generation and mechanical effect (cavitation bubble, shock wave) affecting the surface.

fs laser ablation in water: craters on gold after femtosecond ablation in water (5000 pulses)

Page 14: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Experimental setup

A sound is generated due to generation of shock wave and collapse of cavitation bubble

Optical breakdown of the liquid

Sound can be recorded by a microphone connected to a computer tobetter control the production of particles

target

liquid

laserradiation

Page 15: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Mass lossMass loss of gold substrate and sound intensity vs. position of focal plane relatively to the surface target

-1000 -500 0 500 1000 1500 2000 2500 3000-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Soun

d in

tens

ity (A

.U.)

Position of focal plane relative to the surface (microns)

-1000 -500 0 500 1000 1500 2000 2500 3000

0,0

0,1

0,2

0,3

0,4

0,5

0,6

Mas

s Lo

ss (m

g)

Mass loss is maximal when sound intensity is maximal

Indication for ablation mechanism related to optical breakdowneffects

0.35 mJ/pulse,

20 min, rotation of target

x

H2O

Au

Page 16: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Optical ExtinctionOptical extinction of Au colloids vs. position of focal plane relatively to the surface target

Focal positions away from the focal position generating maximal sound intensity results in less ablation and smaller particles

- Experimental conditions: 0.35 mJ/pulse, 5 min, rotation of target- Positions are relative to the point of maximal sound intensity

300 400 500 600 700 8000,01

0,1

1

2mm before

2mm after

1mm before

1mm after

Max sound

Extin

ctio

n (A

.U.)

Wavelenght (nm)

Page 17: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Effect of focusing positionOptical breakdown

Sound maximum and ablation due tooptical breakdown of water maximumLarge nanoparticles and broad plasmon peak

Energy density decreases and optical breakdown effects (ablation + sound) decreases and disappears. Direct photon ablation, smaller nanoparticle and finer plasmon peak

Optical breakdown is to far from surface: ablation efficiency decreases. Few nanoparticles and plasmon peak disappears.

Further away

Page 18: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

fs laser ablation in water:mechanisms of particle formation

A) “Low” fluence B) “High” fluence

Direct fs laser ablation Direct

fs laser ablation

1) First few picoseconds

No other ablation mechanism when optical breakdown of water is avoided.

3) Fractions of a millisecond later

2) Micro- millisecond range

Cavitationbubble

boundary

Collapse of the cavitation bubble

optical breakdown of water = hot plasma generation

Vapor

-Ablation related to plasma or mechanical effects or both ???

Hot plasma

Conclusion:fs laser radiation at low fluences is unique in obtaining fine nanoparticles size

Narrow size distribution with mean particle size between 3.5 and 12 nm

Broad size distribution with mean particle size 20 – 120 nm

Page 19: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Summary on mechanism• Two different mechanisms:

– «pure» laser ablation at «low» fluence: very fine small nanoparticles

– «optical breakdown» induced ablation at «high» fluence: large nanoparticles

• Few nm nanoparticles can be produced by fslaser ablation in WATER (impossible with ns lasers) (absence of any chemicals)

• Stability: For fine nanoparticles (5-7 nm) even after two years in water, no clustering is seen!

Page 20: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Chemistry of gold nanoparticlesNanoparticles fabricated in deionized water

(substrat HOPG)

0

+1 et Au+3)

92 90 88 86 84 820

10000

20000

30000

40000

50000

60000

70000

Au4f5/2

+3

Au4f5/2

+1

Au4f5/2

0

Au4f7/2

+3

Au4f7/2

0

Au4f7/2

+1

Inte

nsity

(A.U

.)

Binding energy (eV)

XPS Au4f

- Nanoparticles are basicallycomposed of Au

- Nanoparticles are partiallyoxidized (Au

Page 21: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Effect of OH- et Cl- ionsGold nanoparticles were produced under identical conditions

10 mM KClDeionized water NaOH pH 9.4

Size reduction when the ablation is performed in the presence of KCl and NaOH

Chemical interaction between Cl- and OH- with the gold surface

Page 22: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Effect of OH- et Cl- ionsZeta potentiel measurements: surface charge of nanoparticles

Methodology: Mobility of particles prepared in 10 mM of NaCl was measured, while an electric potential was applied

Conclusions

- Particle surface exchanges protons (H+) with aqueous medium

- OH groups are responsible for the negative charge of nanoparticles

Au-OH ↔ Au-O- + H+2 3 4 5 6 7 8 9 10 11 12

-50

-45

-40

-35

-30

-25

-20Faster Au nanoparticleagglomeration

Zeta

pot

entia

l (m

V)

pH

Acid basic

Page 23: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Effect of cyclodextrins

Chemistry: oligosaccharide cyclique containing 6, 7 et 8 alpha-D-glucoses forming a toroidal

Effect of α, β et γ-CD

J. Szejtli, Chem. Rev., 98, 1743 (1998)

0 5 10 15 200

200

400

600

800

1000

Rel

ativ

e A

bund

ance

(arb

. uni

ts)

Particle size (nm)

0.01 M β-CD 0.01M β-CD solution: 2.3 ± 1 nm

A.V. Kabashin, M. Meunier et.al,

J. Phys. Chem. B 107, 4527 (2003)

How do cyclodextrins react with gold?

Page 24: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

Conclusion• The size of nanoparticles can be controlled by changing conditions of ablation.

•Two different mechanisms: pure and optical breakdown ablation

• Fs laser ablation of Au in liquids:“Low” fluence in water: 3.5 ± 1 nm“High” fluence in water: > 20 nmIn Cyclodextrins 2.3 ± 1 nm

• The nanoparticles are mainly metallic, but their surface is partially oxidized

• It is possible to achieve interactions of gold nanoparticles during their formation in order to control the nanoparticle size and surface chemistry. Examples:

- Ions (OH- et Cl-)- Cyclodextrines- Dextran

• Fine QDs can be made

Page 25: LASER PROCESSING LABORATORY · Rubis, 694 nm Au, Ni and C Pure H2O Pure H2O Pure H2O, NaCl, phtalazine Pure H2O, SDS, CTAB SDS Pure H2O Pure H2O Tsuji (2002), (2003) - Nd:YAG, 1064,

FEL Workshop 8-10 March 2005

References (M. Meunier)First

authorTitle Journal

J.-P. Sylvestre

Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media

Phys. Chem. B. 108, 16864-16869 (2004)

J.-P. Sylvestre

Stabilization and Size Control of Gold Nanoparticles during Laser Ablation in Aqueous Cyclodextrins

J. Am.. Chem. Soc. 126, 7176-7177 (2004)

A. V. Kabashin

Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water

J. Appl. Phys. 94, 7941-7943, (2003)

A. V. Kabashin

Fabrication and Characterization of Gold Nanoparticles by FemtosecondLaser Ablation in Aqueous Solution of Cyclodextrins

J. Phys. Chem. B, 107, 4527-4531 (2003)

J-P. Sylvestre

Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution

Applied Physics A. 80, 753-758 (2005)

WEB site of LPL http:// lpl.phys.polymtl.ca/