land use, technology, and climate mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000...

23
Land Use, Technology, and Climate Mitigation Leon Clarke Representing the Integrated Modeling and Energy Group at the Joint Global Change Research Institute Green Economies Dialogue Brasilia April 16, 2012 The authors are grateful to the U.S. Department of Energy’s Integrated Assessment Research Program for long-term research support.

Upload: others

Post on 01-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

Land Use, Technology, and Climate Mitigation

Leon Clarke

Representing the Integrated Modeling and Energy Group at the Joint Global Change Research Institute

Green Economies Dialogue Brasilia

April 16, 2012

The authors are grateful to the U.S. Department of Energy’s Integrated Assessment Research Program for long-term research support.

Page 2: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

Introduction

My remarks will use the broad issue of long-term climate change

mitigation as a basis to illustrate broader themes.

I will rely heavily on “integrated assessment” modeling research we

have conducted at the Joint Global Change Research Institute

(JGCRI).

I will focus on:

Linkages between climate mitigation goals and land use

The role of technology in climate mitigation

Page 3: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

3

Acknowledgements

Thanks to the organizers of this meeting.

Thanks to the sponsors of the Global Energy Technology Strategy Program (GTSP) and the Integrated Modeling and Energy Program at JGCRI more generally for research support.

GTSP Sponsors – Phases 1,2, & 3

Page 4: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

4

Mitigation choices will have a large influence

on land use patterns R

efe

re

nc

e S

ce

na

rio

550 ppmv CO2-e Stabilization

Scenario When Terrestrial

Carbon is NOT Valued

550 ppmv CO2-e Stabilization

Scenario When ALL Carbon is

Valued

0%

20%

40%

60%

80%

100%

2005 2020 2035 2050 2065 2080 2095

Urban

Tundra

Desert

Forest

Pasture

Grass/Shrub

Biomass

Crops

Tundra

Desert

Forest

Pasture

Grass/Shrub

CropsBiomass

0%

20%

40%

60%

80%

100%

2005 2020 2035 2050 2065 2080 2095

Tundra

Desert

Forest

Pasture

Grass/Shrub

CropsBiomass

0%

20%

40%

60%

80%

100%

2005 2020 2035 2050 2065 2080 2095

Tundra

Desert

Forest

Pasture

Grass/Shrub

Crops

Biomass

Page 5: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

Mitigation choices will have a large

influence on land use patterns

-600

-500

-400

-300

-200

-100

0

100

200

300

400

No Policy 550 ppmv CO2-e(only Fossil Fuel and

Industry)

550 ppmv CO2-e(Universal Carbon

Policy)

GtC

O2

Cumulative Net Land Use Change Emissions 2005 through 2095

influence of treatment of land

in carbon policy

0

50

100

150

200

250

300

350

400

450

2005 2015 2025 2035 2045 2055 2065 2075 2085 2095

EJ/y

r

No Policy

550 ppmv CO2-e (Universal Carbon Price)

550 ppmv CO2-e (only Fossil Fuels and Industry)

Bioenergy Production

influence of treatment of land

in carbon policy

Page 6: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

What happens to cumulative

emissions as we protect forests?

-10

-5

0

5

10

15

20

25

30

35

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

GtC

Cumulative LUC Emissions (2005-2095)

Note: Positive means carbon is released into the

atmosphere, i.e., a reduction in carbon stock. Negative means carbon

accumulation, i.e., an increase in carbon stock.

Page 7: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

What happens to cumulative

emissions as we protect forests?

-10

-5

0

5

10

15

20

25

30

35

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

GtC

Cumulative LUC Emissions (2005-2095)

Page 8: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

What happens to cumulative

emissions as we protect forests?

-10

-5

0

5

10

15

20

25

30

35

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

GtC

Cumulative LUC Emissions (2005-2095)

Page 9: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

What happens to cumulative

emissions as we protect forests?

-10

-5

0

5

10

15

20

25

30

35

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

GtC

Cumulative LUC Emissions (2005-2095)

Page 10: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

Unless we protect more than 80% of

forests, total forest area declines.

38.5

39.0

39.5

40.0

40.5

41.0

41.5

42.0

42.5

43.0

43.5

2005 2015 2025 2035 2045 2055 2065 2075 2085 2095

millionkm

2

0% 10% 20% 30%

40% 50% 60% 70%

80% 90% 99%

Global Forest Area, Including Carbon Parks

Page 11: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

Climate change will interact with land use

and associated agricultural markets.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

2005 2020 2035 2050 2065 2080 2095

20

05

$/k

g

Reference, w/ Impacts

Reference, w/o Impacts

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

2005 2020 2035 2050 2065 2080 2095

20

05

$/k

g

550, w/ Impacts

550, w/o Impacts

Global wheat prices with and without climate change and climate change mitigation (No explicit land policy)

Page 12: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

12

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Non-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Non-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Non-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

IGSM MiniCAM

MERGE

Primary Energy from the CCSP Scenarios

(Reference Scenario)

From CCSP Product 2.1a: Scenarios of Emissions and Greenhouse Gas Concentrations

Page 13: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

13

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

IGSM MiniCAM

MERGE

Primary Energy from the CCSP Scenarios

( ≈ 750 ppmv CO2)

From CCSP Product 2.1a: Scenarios of Emissions and Greenhouse Gas Concentrations

Page 14: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

14

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

IGSM MiniCAM

MERGE

Primary Energy from the CCSP Scenarios

( ≈ 650 ppmv CO2)

From CCSP Product 2.1a: Scenarios of Emissions and Greenhouse Gas Concentrations

Page 15: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

15

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

IGSM MiniCAM

MERGE

Primary Energy from the CCSP Scenarios

( ≈ 550 ppmv CO2)

From CCSP Product 2.1a: Scenarios of Emissions and Greenhouse Gas Concentrations

Page 16: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

16

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

IGSM MiniCAM

MERGE

Primary Energy from the CCSP Scenarios

( ≈ 450 ppmv CO2)

From CCSP Product 2.1a: Scenarios of Emissions and Greenhouse Gas Concentrations

Page 17: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

17

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ

/yr

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

IGSM MiniCAM

MERGE

Primary Energy from the CCSP Scenarios

( ≈ 450 ppmv CO2)

From CCSP Product 2.1a: Scenarios of Emissions and Greenhouse Gas Concentrations

450 ppmv CO2 is roughly equivalent to 550 ppmv CO2-e in the long-term. At the IPCC’s most likely climate sensitivity (3o

C), this corresponds to a 3o C increase above preindustrial levels in the long-term.

Page 18: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

Hoffert, M. et al. (2002). challenged the notion that

“known technological options could achieve a broad

range of atmospheric CO2 stabilization levels, such

as 550 ppm, 450 ppm or below over the next 100

years or more”

18

There are differing views on the role of

technology in climate mitigation.

Pacala, S. and R. Socolow. (2004) indicate that

Humanity can solve the carbon and climate problem

in the first half of this century simply by scaling up

what we already know how to do.”

Hoffert, M., et al. (2002), Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet. Science 298(1):981-987.

Pacala, S. and R. Socolow. (2004), Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science 305:968-972

Page 19: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

An important role of technology is to

reduce the costs of mitigation

0

50

100

150

200

250

2005 2020 2035 2050

billio

n $

(2

00

5$

, ME

R)

450 ppmv Global Mitigation Policy: Global Mitigation Costs

Most

pessimistic

technology

assumptions

Most

advanced

technology

assumptions

Recent research has explored the unique role of bioenergy coupled with CO2 capture and storage in enabling very low stabilization levels

Improvements to the cost,

performance and availability

of renewable energy, end use

efficiency, nuclear energy, and

carbon dioxide capture and

storage

Page 20: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

Cumulative Emissions from

2005-2095

No crop productivity growth

after 2005:

290 GtCO2

FAO assumptions through

2050 and 0.25%/yr crop

productivity growth

afterwards:

140 GtCO2

High convergence through

2050 and 0.25%/yr crop

productivity growth

afterwards:

-37 PgC

The difference is 36 ppmv

CO2 by 2095

20

Technology for climate change is not only

important in the energy sector.

-3

-2

-1

0

1

2

3

4

5

6

7

8

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

GtC

O2

/yr

Low Ag Productivity Growth

Reference Ag Productivity Growth

High Ag Productivity Growth

Page 21: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

Technology alone is not enough to stabilize greenhouse gas concentrations

Range over 384 technology scenarios WITHOUT any

explicit climate policy

21

0

100

200

300

400

500

600

700

800

2005 2020 2035 2050 2065 2080 2095

PP

M C

O2

Pre-industrial CO2 Concentration

Range 384 Technology

Scenarios

0

5

10

15

20

25

2005 2020 2035 2050 2065 2080 2095

Pg

C/y

ea

r

Range 384 Technology

Scenarios

Page 22: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

Climate change mitigation is tightly linked to land use patterns.

Global trade makes land use “leakage” as or more challenging than

industrial sector “leakage”.

Meeting climate stabilization goals will require a dramatic

transformation of the energy system.

A primary role of technological change in climate mitigation is to

reduce costs.

Agricultural technological change is a key lever in climate mitigation.

Addressing land use in the context of climate is different than

addressing fossil and industrial emissions

Final Thoughts

Page 23: Land Use, Technology, and Climate Mitigation · 12 0 200 400 600 800 1,000 1,200 1,400 1,600 2000 2020 2040 2060 2080 2100 r Non-Biomass Renewables Nuclear Commercial Biomass Coal:

Questions