keystoneness, centrality, and the structural ... · edgar fernando cagua | kate l. wootton | daniel...

12
Journal of Ecology. 2019;107:1779–1790. wileyonlinelibrary.com/journal/jec | 1779 © 2019 The Authors. Journal of Ecology © 2019 British Ecological Society Received: 19 July 2018 | Accepted: 22 January 2019 DOI: 10.1111/1365-2745.13147 RESEARCH ARTICLE Keystoneness, centrality, and the structural controllability of ecological networks Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand Correspondence Edgar Fernando Cagua Email: [email protected] Present Address Kate L. Wootton, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden Funding information Royal Society of New Zealand Te Apārangi; Education New Zealand; University of Canterbury; European Space Agency Handling Editor: Nicole Rafferty Abstract 1. An important dimension of a species' role is its ability to alter the state and main- tain the diversity of its community. Centrality metrics have often been used to identify these species, which are sometimes referred as “keystone” species. However, the relationship between centrality and keystoneness is largely phe- nomenological and based mostly on our intuition regarding what constitutes an important species. While centrality is useful when predicting which species' ex- tinctions could cause the largest change in a community, it says little about how these species could be used to attain or preserve a particular community state. 2. Here we introduce structural controllability, an approach that allows us to quan- tify the extent to which network topology can be harnessed to achieve a desired state. It also allows us to quantify a species' control capacity—its relative impor - tance—and identify the set of species that are critical in this context because they have the largest possible control capacity. We illustrate the application of struc- tural controllability with ten pairs of uninvaded and invaded plant‐pollinator communities. 3. We found that the controllability of a community is not dependent on its invasion status, but on the asymmetric nature of its mutual dependences. While central species were also likely to have a large control capacity, centrality fails to identify species that, despite being less connected, were critical in their communities. Interestingly, this set of critical species was mostly composed of plants and in- cluded every invasive species in our dataset. We also found that species with high control capacity, and in particular critical species, contribute the most to the sta- ble coexistence of their community. This result was true, even when controlling for the species' degree, abundance/interaction strength, and the relative depend- ence of their partners. 4. Synthesis. Structural controllability is strongly related to the stability of a network and measures the difficulty of managing an ecological community. It also identifies species that are critical to sustain biodiversity and to change or maintain the state of their community and are therefore likely to be very relevant for management and conservation.

Upload: others

Post on 27-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

Journal of Ecology. 2019;107:1779–1790. wileyonlinelibrary.com/journal/jec  | 1779© 2019 The Authors. Journal of Ecology © 2019 British Ecological Society

Received:19July2018  |  Accepted:22January2019DOI: 10.1111/1365-2745.13147

R E S E A R C H A R T I C L E

Keystoneness, centrality, and the structural controllability of ecological networks

Edgar Fernando Cagua  | Kate L. Wootton  | Daniel B. Stouffer

CentreforIntegrativeEcology,SchoolofBiologicalSciences,UniversityofCanterbury,Christchurch,NewZealand

CorrespondenceEdgarFernandoCaguaEmail:[email protected]

Present AddressKateL.Wootton,DepartmentofEcology,SwedishUniversityofAgriculturalSciences,Uppsala,Sweden

Funding informationRoyalSocietyofNewZealandTeApārangi;EducationNewZealand;UniversityofCanterbury;EuropeanSpaceAgency

HandlingEditor:NicoleRafferty

Abstract1. Animportantdimensionofaspecies'roleisitsabilitytoalterthestateandmain-tain thediversityof itscommunity.Centralitymetricshaveoftenbeenusedtoidentify these species, which are sometimes referred as “keystone” species.However, the relationship between centrality and keystoneness is largely phe-nomenologicalandbasedmostlyonour intuitionregardingwhatconstitutesanimportantspecies.Whilecentralityisusefulwhenpredictingwhichspecies'ex-tinctionscouldcausethelargestchangeinacommunity,itsayslittleabouthowthesespeciescouldbeusedtoattainorpreserveaparticularcommunitystate.

2. Hereweintroducestructuralcontrollability,anapproachthatallowsustoquan-tifytheextenttowhichnetworktopologycanbeharnessedtoachieveadesiredstate.Italsoallowsustoquantifyaspecies'controlcapacity—itsrelativeimpor-tance—andidentifythesetofspeciesthatarecriticalinthiscontextbecausetheyhavethelargestpossiblecontrolcapacity.Weillustratetheapplicationofstruc-tural controllability with ten pairs of uninvaded and invaded plant‐pollinatorcommunities.

3. Wefoundthatthecontrollabilityofacommunityisnotdependentonitsinvasionstatus,butontheasymmetricnatureof itsmutualdependences.Whilecentralspecieswerealsolikelytohavealargecontrolcapacity,centralityfailstoidentifyspecies that, despite being less connected, were critical in their communities.Interestingly, this setofcritical specieswasmostlycomposedofplantsand in-cludedeveryinvasivespeciesinourdataset.Wealsofoundthatspecieswithhighcontrolcapacity,andinparticularcriticalspecies,contributethemosttothesta-blecoexistenceoftheircommunity.Thisresultwastrue,evenwhencontrollingforthespecies'degree,abundance/interactionstrength,andtherelativedepend-enceoftheirpartners.

4. Synthesis.Structuralcontrollabilityisstronglyrelatedtothestabilityofanetworkandmeasuresthedifficultyofmanaginganecologicalcommunity.Italsoidentifiesspeciesthatarecriticaltosustainbiodiversityandtochangeormaintainthestateoftheircommunityandarethereforelikelytobeveryrelevantformanagementandconservation.

Page 2: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

1780  |    Journal of Ecology CAGUA et Al.

1  | INTRODUC TION

Amajorgoalinecologyistounderstandtherolesplayedbydiffer-ent species in thebioticenvironment.Withincommunityecology,a complex‐systems approachhas led to the development of a va-rietyofanalyticalandsimulationtoolswithwhichtocompareandcontrasttherolesofspeciesembeddedinanetworkofinteractions(Bascompte&Stouffer,2009;Coux,Rader,Bartomeus,&Tylianakis,2016; Guimerà & Amaral, 2005; Stouffer, Sales‐Pardo, Sirer, &Bascompte,2012).Aparticularlyrelevantdimensionofanyspecies'roleisitsabilitytoaltertheabundanceofotherspeciesandthestateofthecommunity—sincechangesofthisnaturecanhaveknock‐oneffects on ecosystem function, diversity, processes, and services(Thompsonetal.,2012;Tylianakis,Didham,Bascompte,&Wardle,2008;Tylianakis,Laliberté,Nielsen,&Bascompte,2010).Thisabilityissometimesreferredtoasaspecies'“keystoneness”(Mills&Doak,1993).

Asignificantproportionof thenetwork toolsusedtoestimatespecies' roles in this context rely on the calculation of a species'centrality—arelativerankingofitspositionalimportancethatorig-inally stems from social‐network research (Friedkin, 1991;MartínGonzález,Dalsgaard,&Olesen,2010).Generally speaking, centralspecies tend to be better connected and consequently are morelikelytoparticipateinthenetwork's“foodchains.”Becausespeciesthatparticipate inmorechainsaremore likely toaffect theabun-dances of other species, centrality metrics have often been usedtoidentifykeystonespeciesinthecommunity(Jordán,Benedek,&Podani,2007).Centralitymetricshavebeenshowntobeusefultoolstorankspeciesinregardtotheirpotentialtoaltertheabundancesof other species, in particular when estimating the probability ofsecondaryextinctionsthatmayfollowthelossofaspecies(Dunne,Williams, & Martinez, 2002; Kaiser‐Bunbury, Muff, Memmott,Müller,&Caflisch,2010).

Despite being conceptually intuitive, the relationship betweencentralityandaspecies'presumedimpactonthestateofthecom-munity is largelyphenomenological.Ontheonehand,substantivechangesinecosystemfunctioningcanalsooccurwithoutcompleteremovalofaspecies(Mouillot,Graham,Villéger,Mason,&Bellwood,2013).Ontheother,weareofteninterestedinaspecificstateofthecommunitythatmightbedesirabletoattain(orpreserve)becauseofitsbiodiversity,resilience,functioning,ortheecosystemservicesitprovides.Inthesecases,itmightbelessusefultounderstandwhichspeciesmay cause any change in the community. Instead,we arebetterservedbyunderstandinghowthestructureof thenetworkcan be harnessed to achieve the desired state andwhich speciesmayplay the largest role in this targetedprocess.Whenthestateofacommunityisunderpinnedbymorethanasinglespecies(often

thecase in real communities) andwemovebeyondsingle‐speciesremovals,wemightexpecttheaccuracyofcentralitytodiminish.Asa result, communityecologycouldarguablybenefit fromanalter-native,perhapsmoremechanistically‐grounded,approachtounder-standhowspeciesaffecteachother'sabundance.

Species' abundances—and consequently the state of the com-munity as a whole—are influenced both by the structure of theirinteractions and the dynamics of these interactions, includingthe mechanisms of self‐regulation (Lever, van Nes, Scheffer, &Bascompte,2014).However, community andpopulationdynamicscan be modelled in innumerable ways, and empirical support foroneversusanother isoftenstillambiguous(Holland,DeAngelis,&Bronstein,2002).Thealternativeapproachshould,therefore,ideallyacknowledgeecosystemdynamics,butwithoutbeingoverlydepen-dentontheparticularchoicesofhowtheyarecharacterised.Amongthevariouspossibilitiesstructural controllability,abranchofcontroltheory, appears to be a strong candidate (Isbell & Loreau, 2013).Controltheoryisawidely‐studiedbranchofengineeringusedtode-termineandsupervisethebehaviourofdynamicalsystems(Motter,2015).Itisinherentlydesignedtodealwithsystemfeedbacksanditsapplicationhasrecentlybeenexpandedtocomplexnetworks (Lin,1974;Liu&Barabási,2016).Consistentwithlong‐standingecologi-calquestions,advancesinstructuralcontrollabilityhaveestablishedaclearlinkbetweenthestructureofthenetworkandthewaynodesaffecteachother.Unlikecentralityindices,however,thislinkisnotbasedonapriori assumptionsbetweennetworkmetrics andkey-stonenessbutisinsteadbasedonwell‐establishedadvancesinbothdynamicalandcomplex‐systemstheory(Motter,2015).

At its fundamental level, structural controllability first deter-mineswhetherasystemiscontrollableornot;thatis,itasksifasys-temcouldeverbedriventoadesiredstatewithinafiniteamountoftime.Althoughthecontrollabilityofanetwork isawhole‐systemproperty,ithasrecentlybeenshownthataskingforthecontrolla-bilityofacomplex‐systemisequivalenttofindingaparticularsetofrelevantnodes:thesetwithwhichispossibletocontrolthestateofthewholenetwork(Liu&Barabási,2016).Importantly,thissetofnodesisnotalwaysuniqueforagivennetwork.Thisimpliesthatan examinationof the distinct sets provides ameans to connectnodeswiththeirgeneralabilitytomodifythesystemtowhichtheybelong.

Here,weapplymethodsfromstructuralcontrollabilitytoapar-ticularecologicalproblemandshowhowitcanbeusedtogenerateinsightintotheroleofspeciesinanecologicalnetwork.Specifically,weoutlinetheapproachusingasetoftenpairsofuninvadedandinvaded plant‐pollinator communities. We use invaded communi-tiesbecausethere isstrongempiricalevidenceshowingthat inva-sivespeciesplayanimportantroleshapingtheabundancesofother

K E Y W O R D S

controlcapacity,invasivespecies,managementinterventions,mutualism,networkcontroltheory,plantpopulationandcommunitydynamics,species'importance,structuralstability

Page 3: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

     |  1781Journal of EcologyCAGUA et Al.

species,somethingwhichisparticularlytrueinthesetennetworks(Bartomeus, Vilà, & Santamaría, 2008; Lopezaraiza‐Mikel, Hayes,Whalley,&Memmott,2007).Thischoicethusoffersusanopportu-nitytoexplicitlycontrastourtheoreticalobservationswithempiricalevidence.Moreover, empirical observations indicate that steeringthestateofsomecommunities—forexampleduringecosystemres-toration or invasive species removal—can be a very difficult task(Woodfordetal.,2016).Therefore,wefirstaskwhethertherearedifferences between the controllability of invaded and uninvadednetworks.Wethenexpandexistingmethodsfromcontroltheorytoeffectivelylinkthecontrollability(Table1)ofanetworkwiththeroleofitsconstituentspecies.Weask—fromacontrol‐theoreticperspec-tive—whethertherearekeydifferencesbetweenspeciesintheroletheyplayatdrivingthestateofthecommunityandexploretheeco-logicalfactorsrelatedtothesedifferences.Thisallowsustoidentifyspeciesthatmightbecriticalfornetworkcontrolandshowthattheyhavealargerthanexpectedimpactonthestablecoexistenceofthecommunity.Finally,wecomparetheproposedapproachtocurrentmethodsbasedonspecies'centralityandshowhowthesemethodsareindeedvaluablebutultimatelypaintalimitedpictureinregardtothe“keystoneness”ofaspecies.

2  | MATERIAL S AND METHODS

Weused tenpairedpollination communities to apply the control‐theoreticapproach.Eachcommunitypairwascomposedofacom-munity invaded by a plant and a community free of the invasivespecies.Fourpairscorrespondtonaturalorsemi‐naturalvegetationcommunities in the city of Bristol, UK (Lopezaraiza‐Mikel, Hayes,Whalley,&Memmott,2007).Thesecommunitiescomprised19–87species(mean55),andnon‐invadedplotswereobtainedbyexperi-mentallyremovingalltheflowersoftheinvasivespecies Impatiens grandulifera.TheothersixpairswereobtainedfromlowerdiversityMediterranean shrublands in Cap de Creus National Park, Spain(Bartomeusetal.,2008).Thesecommunitiescomprised30–57spe-cies (mean 38); in contrast to the above, uninvaded communitieswereobtainedfromplotsthathadnotyetbeencolonisedbyeitherof the invasive speciesCarpobrotus affine acinaciformis or Opuntia stricta.Thestructureofall thesecommunitieswasdefinedby thepollinatorvisitationfrequency,whichhasbeenshowntobeanap-propriatesurrogateforinterspecificeffectsinpollinationnetworks(Bascompte,Jordano,&Olesen,2006;Vázquez,Morris,&Jordano,2005).FulldetailsabouttheempiricalnetworkscanbefoundintheSupportingInformationSectionS1.

Thefirststep inapplyingmethodsofcontrol theory is tocon-struct a directed network that is able to provide an indication oftheextenttowhichspeciesaffecteachother'sabundance.Insomeecologicalnetworks,establishingthedirectionalitycanberelativelystraightforward, for examplewhen links represent biomass trans-ferorenergyflow(Isbell&Loreau,2013). Inpollinationnetworks,however, this directionality is lessobvious asboth species can, intheory,benefitfromtheinteraction.Weovercomethatobstaclebynotingthattheextenttowhichspeciesiaffectsspeciesjrelativetotheextenttowhichjaffectsicanbesummarisedbytheirinteractionasymmetry(Bascompteetal.,2006).Thisasymmetryisgivenby.

wherethedependenceofplantionpollinatorj,dij,isthepro-portion of the visits from pollinator j compared to all pollinatorvisitstoplant i.Previousresearchhasshownthatmutualistic in-teractionsareoftenhighlyasymmetricinnaturalcommunities;inotherwords, ifaplantspecies is largelydependentonapollina-torspecies,thatpollinatortendstodependratherweaklyontheplant (and vice versa).We therefore create a directed link fromspecies itospecies jwhendij−dji≥0toestablishthemostlikelydirectionofcontrolbetweenaspeciespair(Figure1a).Sometimes(2.4% of the observed interactions in our datasets) there is noobserved asymmetry between species pairs (dij = dji), and wecannot infer a dominant direction of control.When this occurs,we deem both species to be equally likely to affect each otherandleaveareciprocal interactionbetweenthem(a linkfrom itojandanotherfrom j to i).Bybasingthedirectionofthe linksonthe asymmetry of their dependence, we are able to generate anetwork that is consistentwith the dynamics of the community

a(i,j)=a(j,i)=dij−dji

max(

dij, dji)

TA B L E 1  Glossary

Networkcontrol

Anetworkissaidtobecontrollableifitispossibletosteeritfromaninitialtoanarbitraryfinalstatewithinfinitetime.

Controllability

Theintrinsicdifficultyofcontrollinganecologicalcommunity.Itismeasuredbytherelativesizeoftheminimumdriver‐nodeset,nD.Italsoindicatestheextenttowhichnetworkstructurecanbeharnessedfornetworkcontrol.

Minimumdriver‐nodeset

Oneofthesetsofspecieswhoseabundancesneedtobedirectlymanagedinordertoachievefullcontrolofthecommunity.Theminimumdriver‐nodesetscanbeobtainedbyfindingallmaximummatchingsinanetwork.

Maximummatching

Amatchingisasetoflinksthatdonotshareanycommonstartorendnodes;thelargestpossiblematchingiscalledamaximummatching.

Controlconfiguration

Oneofthespeciescombinationswithwhichispossibletoachievenetworkcontrol.Optimalcontrolconfigurationsaregivenbytheminimumdriver‐nodesets.

Controlcapacity

Therelativefrequencyϕwhichwithaspeciesispartoftheoptimalcontrolconfigurationsofanetwork.

Criticalspecies

Aspecieswithamaximalcontrolcapacityϕ = 1.

Superiornode

Aspeciesisasuperiornodeifitcaninternallyaffecttheabundanceofotherspeciesinthenetwork.Superiornodesmakeupthechainsthatpropagatethecontrolsignalsthroughthenetwork.

Page 4: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

1782  |    Journal of Ecology CAGUA et Al.

whilesatisfyingtherequirementsofstructuralcontrollability.Thisallowsus tocalculate thecontrollabilityof thenetworksand in-vestigatewhethertherearedifferencesbetweeninvadedandun-invadedcommunities.

2.1 | Controllability

Asystemissaidtobecontrollableifitispossibletosteeritfroman initial to an arbitrary final state within finite time (Kalman,1963). A simple version of such a system can be described bydx

dt= Ax + Bu (t),where thechangeof its stateover time

(

dx

dt

)

de-

pendsonitscurrentstatex(forexamplethespecies'abundances),anexternaltime‐varyinginputu(t)(thecontrolsignal),andtwoma-trices A and B, which encode information about the network

structure and how species respond to external inputs, respec-tively.Inclassiccontroltheory,determiningwhetherthissystemiscontrollable can be achieved by checking that its controllabilitymatrixR = [ B AB A2B … An−1B ]hasfullrank.Incomplexsystems,however,employingthisrankcondition,ornumericalap-proximationsofitisinfeasiblebecauseitishardtofullyparame-teriseA and B(eitherbecausetheweightofthelinkschangesovertime or because they are difficult tomeasure).Here,we use anapproach based on the structural controllability theorem (Lin,1974),whichassumesthatweareconfidentaboutwhichelementsofA and Bhaveeithernon‐zeroorzerovalues(thereisaninterac-tionornot),butthatwearelesssureabouttheprecisemagnitudeofthenon‐zerovalues.Usingthisstructuralapproach,wecanfindoutthecontrollabilityofasystemforeverynon‐zerorealisationoftheparameters.

WeareoftenabletoestimateA inecologicalnetworks,asthismatrixrepresentstheinteractionsbetweenspecies.Partofthecon-trolproblemthusresidesinestimatingasupportableestimationofB,whichrepresentsthelinksbetweenexternalinputsandspecies.Naively,anyecologicalcommunity(andanysystemforthatmatter)could be controlled ifwe control the state of every species inde-pendently,but suchanapproach is typically impractical.Here,weareinterestedinfindingaminimumdriver‐nodeset(effectivelyfind-ingB)withwhichtomakethesystemcontrollable.Thebrute‐forcesearchforthisminimumdriver‐nodesetiscomputationallyprohib-itive formost networks as it involves the evaluation of 2N differ-entcontrollabilitymatriceswhereNisthenumberofspeciesinthecommunity.Wethereforeinsteademployarecently‐developedap-proachthatshowsthatthecontrolproblemoffindingtheminimumdriver‐nodesetcanbemappedintoagraph‐theoreticproblem:max-imummatching(Liu&Barabási,2016;Liu,Slotine,&Barabási,2011).

Maximummatchingisawidelystudiedtopicingraphtheoryandiscommonlyusedinmultipleapplications,rangingfromdatingappsandwirelesscommunicationstoorgantransplantallocationandpeer‐to‐peerfilesharing.Amatching inanunweighteddirectedgraph isdefinedasasetoflinksthatdonotsharecommonstartorendnodes;thelargestpossiblematchingiscalledamaximummatching.Forex-ample, inanetworkcomposedof jobsandjobapplicants,amatch-ingisanypairingbetweenapplicantsandpositionsthatsatisfiesonebasicconstraint:anapplicantcanbeassignedtoatmostonepositionandviceversa.Consequently,amaximummatchingisanoptimalpair-ing,onethatmaximisesthenumberofapplicantswithjobsandthenumberofpositions filled.Admittedly, the linkbetweenmatchingsandstructuralcontrollabilitymayappearfarfromstraightforward.

Thislinkbecomesapparentafterexaminingthegraphicalinter-pretation of structural controllability: from a topological perspec-tive,anetworkisstructurallycontrollableiftherearenoinaccessiblenodes—that is, nodeswithout incoming links—or dilations—expan‐sions of the network (Figure 1b; Supporting Information SectionS2). The key is to note that these two fundamental conditions ofstructural controllability imply that there is aone‐to‐one relation-shipbetweensuperior and subordinatenodesjustliketheone‐to‐onerelationship between jobs and applicants (Figure 1b, bottom left).

F I G U R E 1  Thedirectionofcontrolandcontrollabilityconditions.(a)Toestablishthedirectionofcontrol,westartwithaweightedvisitationnetwork(ontheleft).Inthisnetwork,thewidthofthelinkscorrespondstothefrequencyofvisitationbetweenanimalsaiandplantspi,withwiderlinksindicatingmorevisits.Plantp1isvisitedexclusivelybya1butp1representsonlyasmallfractionofthefloralresourcesexploitedbya1.Therefore,thepopulationofp1ismorelikelytobeaffectedbya1thanviceversa.Werepresentthiswithadirectedlinkfroma1top1inthecontrolnetwork(ontheright).Thedirectionofcontrolbetweenallotherspeciespairscanbesimilarlydeterminedbyinspectingthedifferencebetweentheirrelativedependences.(b)Oncewehaveestablishedthedirectionsofcontrol,wecandeterminewhetherthenetworkiscontrollableornot.Anysystemdefinedbyadirectednetwork(withstatenodesxi;species'populationsinanecologicalcontext)andexternalcontrolinputs(nodesui,orangelinks)isstructurallycontrollableifitsatisfiestwoconditions:ithasnodilations(expansionsinthenetwork)andnoinaccessiblenodes.Thesystemonthetopleftisnotcontrollablebecausethereisadilationsincenodex2isbeingusedtocontroltwonodessimultaneously;inotherwords,therearefewersuperiors(x2)thansubordinates(x1 and x3).Thenetworkonthetoprightisnotcontrollablebecausenodex3isinaccessiblefortheonlyinputnodeu1inthesystem.Bothsystemscanbemadecontrollablebyaddinganextrainputnode(u2inbothbottomnetworks)[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Visitation network(a) Direction of control

p1 p2 p3

a1 a2

p1 p2 p3

a1 a2

Dilation(b) Inaccessible node

Not

cont

rolla

ble

Con

trol

labl

e

x1 x2 x3

u1

x1 x2 x3

u1

x1 x2 x3

u1 u2

x1 x2 x3

u1 u2

Control input

Page 5: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

     |  1783Journal of EcologyCAGUA et Al.

We thus use themaximum‐matching algorithm to find an optimalpairingofsuperior (those thatcancontrolanothernode)andsub-ordinatenodes(thosethatcanbecontrolledbyanothernode)inamanner consistent with the controllability conditions (SupportingInformationSectionS3.1).Giventheresult,wecanfurtherdecom-posethematchingintoasetofpathsthatrevealhowacontrolsignalcanflowacrossthelinksinanetworktoreacheverynodewithinit.Asrecentlyshown(Liuetal.,2011),theminimumdriver‐nodeset—thosetowhichanexternalcontrolinputshouldbeappliedtomakethe system controllable—corresponds exactly to the unmatched nodesinthenetwork(Figure2).

2.2 | Differences between invaded and uninvaded networks

Our first objective is to investigatewhether the controllability ofacommunity isassociatedwith invasionstatusornot.Findingoutexactlyhowdifficultitistocontrolanetworkdependsstronglyontheparticularitiesofthedesiredcontroltrajectory(i.e.thepathtothedesiredfinalstate)aswellasthedynamicalrelationshipbetweennodes. However, we are interested in understanding the control-lability of a network in amore general sense, such that it can beapplied evenwhen the precise control scenario is knownonly in-completely.Tothisend,wechoseanindicatorthatfollowsdirectly

fromour approach: the sizeof theminimumdriver‐node set. Thissimplemetricprovidesageneralindicationofhowdifficultcontrol-linganetworkmightbe,assystemsthatrequirealargenumberofexternalinputstobefullycontrolledareintuitivelymoredifficultorcostlytomanage.Forinstance,achievingfullcontrolina“network”inwhichspeciesdonotinteractatallisrelativelymoredifficultaswewouldrequireaninterventionforeverysinglespecies.Conversely,thestructureofalineartrophicchaincanbeharnessedtoachievefullcontrolusingjustoneinterventiontargetedatthetopspecies;asuitablecontrolsignalcouldthencascadethroughthetrophiclevelsandreachotherspeciesinthecommunity.Specifically,drawingfromthestructural‐controllabilityliterature,weusethesizeofthemini-mumdriver‐nodesetrelativetothetotalnumberofspeciesnD=

D

N

asameasureofthecontrollabilityofanetwork—theextenttowhichthenetworkstructurecanbeharnessedtocontrolthecommunity.ThelowernDthemorecontrollablethecommunity.Inanecologicalcontext,externalinputscanbethoughtofasmanagementinterven-tionsthatmodifytheabundanceofaparticularspecies.

After finding theminimumdriver‐node set in eachof our net-works,wewantedtotestwhetherinvasionstatusorotherpredictorsarecorrelatedtocontrollability.WedothisusingasetofgeneralisedlinearmodelswithGaussianerrorsandalogitlinkfunction.There-sponse variablewas the relative size of theminimumdriver‐nodesetnDofthetwentyempiricalnetworks(teninvadedandtenunin-vaded),andweincludedinvasionstatusasapredictor.Aspredictors,wealsoincludethenetworkconnectance,thenetworknestedness(NODF), thenumberofspecies (sinceonemightnaivelyexpecttosee a negative relationship between richness and controllability;Menge,1995),thenetworkasymmetry(anindicationofthebalancebetweenplantandpollinatordiversity),andtheinteractionstrengthasymmetry (the asymmetry on the dependences between trophiclevels;Blüthgen,Menzel,Hovestadt,Fiala,&Blüthgen,2007).Wecomparedmodels using theAkaike information criterion for smallsamplesizes(AICc).

In addition, we also explored whether real networks differ intheirarchitecturefromrandomonesinaconcertedwaythatcouldimpacttheseresults.Specifically,weusedtwonullmodelseachwith99randomisationspernetwork.Inthefirst,wefollowedVázquezetal.(2007)andmaintainedtheconnectanceofthenetworkbutran-domisedthevisitsacrossspeciessuchthattherelativeprobabilitiesofinteractionsweremaintained.Wethenre‐estimatedthedirectionofcontrolandthecorrespondingsizeof theminimumdriver‐nodeset,nD.Forthesecondnullmodel,weusedtheempiricaldirectednetwork described above and randomly shuffled the direction ofcontrolbetweenaspeciespairpriortore‐estimatingthesizeoftheminimumdriver‐nodeset.

2.3 | Species' roles

Oursecondobjective is relatedtohowspeciesdiffer in theirabil-itytodrivethepopulationdynamicsofthecommunity.Weinturnexamine whether these differences are also reflected in the rolespeciesplayat supporting thestablecoexistenceofotherspecies

F I G U R E 2  Maximummatchingsandcontrolconfigurations.Indirectednetworks,amaximummatchingisthelargestpossiblesetoflinksthatdonotsharestartorendnodes(darkpurple).Maximummatchingsarenotnecessarilyunique;instead,eachofthemisrelatedtoapossibleminimumdriver‐nodesetinthenetwork(thenodestowhichanexternalcontrolinput,inorange,shouldbeappliedinordertoensurecontrollability).Thesizeoftheminimumdriver‐nodesetD correspondsexactlytothenumberofunmatchednodes(thenumberofnodesinthenetworkNminusthematchingsize).Toaccountfornetworksize,weusethesizeoftheminimumdriver‐nodesetrelativetothetotalnumberofnodesnD = D/Nasameasureoftheextenttowhichthenetworkstructurecanbeharnessedtocontrolthesystem[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Directed network Maximum matchings / Control configurations

N = 4 Matching size = 3 D = 1 nD = 0.25

N = 4 Matching size = 1 D = 3 nD = 0.75

N = 5 Matching size = 3 D = 2 nD = 0.40

Matched link Unmatched link Control inputMatched node Unmatched node

Page 6: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

1784  |    Journal of Ecology CAGUA et Al.

in the community. Ecologically, these differences are relevant be-cause resources anddata are limited, and therefore full control isinfeasible.Whilecalculatingthesizeoftheminimumdrive‐nodesetcanmeasurethecontrollabilityofanecologicalcommunity,itdoesnotprovideinformationabouttherolesthatparticularspeciesplay.

Toanswerthisquestion,weharnessthefacttheremaybemul-tiplemaximummatchings for a given network, and each of thesemaximummatchingsindicatesauniquecombinationofspecieswithwhichitispossibletocontrolthenetwork.Moreover,somespeciesbelong to thesecombinationsmoreoften thandoothers.Wecallthispropertyaspecies' “controlcapacity,”ϕ.Thehigheraspecies'controlcapacity,thegreaterthelikelihoodthatitwouldneedtobedirectlymanagedtochange(ormaintain)theecologicalstateoftheircommunity.Therefore,aspecies'controlcapacityprovidesanesti-mationofitsrelativeimportanceatdrivingthestateofthecommu-nity(Jia&Barabási,2013).

To calculate a species' control capacity ϕ, we must first enu-merate all possible maximum matchings (Supporting InformationSectionS3.2).Unfortunately,enumeratingallmaximummatchingsisextremelyexpensivefromacomputationalperspective—anetworkwithacoupledozenspecieshasseveralhundredmillionuniquemax-imummatchings. To solve this problem,we employ a recently‐de-velopedalgorithmthatrevealsthecontrolcorrelationsbetweenthenodesinthegraphwhilerequiringconsiderablylesscomputationalresources(Zhang,Lv,&Pu,2016).Usingthisalgorithm,weareabletoidentifyspeciesthatarepossiblecontrolinputs—thosethatbelongtotheminimumdriver‐nodesetinatleastoneofthepossiblecontrolconfigurations.Here,weextendthisalgorithmsuchthatitispossibletocalculateahighlyaccurateapproximationofthecontrolcapacityϕofeveryspecies inthenetwork (Supporting InformationSectionS3.3).Inthenetworksthatcontainedreciprocallinks(becausetherewasnoasymmetry inthedependencesofaspeciespair),weaver-agedaspecies'controlcapacityϕacrosseverypossible“non‐recip-rocal”versionofthenetwork(SupportingInformationSectionS3.4).

Wethenexaminedhowspecies‐levelpropertieswererelatedtocontrolcapacityusingasetofcandidategeneralisedlinearmodelswithbinomialerrorstructure.Thesemodelsincludedfivepredictorvariablesthatmirrorthenetwork‐levelpredictors.First,thespecies'contributiontonestedness,whichhasbeenproposedasakeyfea-turethatpromotesstabilityandrobustnessinmutualisticnetworks(Saavedra,Stouffer,Uzzi,&Bascompte,2011).Second,thespecies'strength(thesumofaspecies'visits),whichquantifiesthestrengthofaspecies'associationsandis indirectlyrelatedtoitsabundance(Poisot,Canard,Mouquet,&Hochberg,2012).Third,thedirectionofasymmetrywhichquantifiesthenetbalanceindependencies;thatis,itindicatesifaspeciesaffectsotherspeciesmorethanwhattheyaffectitornot(Vázquezetal.,2007).Fourth,thespecies'degreeinordertoaccountfortheintrinsiccentralityofaspecies.Finally,weincludeda categorical variable for the species' trophic level (plantorpollinator)andaninteractiontermbetweentrophiclevelandtheprevious four variables. To facilitate comparison between predic-tors, degree and visitation strength were log‐transformed and allfourcontinuousvariableswerescaledtohaveameanofzeroand

astandarddeviationofone. Inthesemodels,speciesfromallnet-workswereanalysedtogether.Weinitiallyincludedrandomeffectsto account for possible variation across communities. Specifically,wetestedstructuresthatallowedforarandominterceptforthenet-work,site,andthestudyitcomesfrom.However,wefoundthatinallcasestheamong‐groupvariancewaseffectivelyzero,andthereforewedidnotincludeanyrandomeffectinfurtheranalyses.Wethengeneratedallpossiblecandidatemodelsacrossthespaceofmodelswithall,some,andnoneofthepredictorvariables.Toidentifythemodelsthatwerebestsupportedbythedata,wefirstdeterminedthemostparsimoniousrandomstructureusingtheAICc.Therela-tive importanceofvariableswasthenassessedby lookingattheireffectsizesinthetop‐rankedmodelsandthecumulativeweightofthemodelsinwhichtheyarepresent.

Inaddition,wewantedtounderstandhowaspecies'controlca-pacityϕdescribedaboverelatestometricsofkeystonenessbasedoncentrality.Specifically, ineachnetwork,wecalculatedthespe-cies'degree,betweenness,closenesscentrality(MartínGonzálezetal.,2010),pagerank(McDonald‐Maddenetal.,2016),andEigencen-trality (Jordano,Bascompte,&Olesen, 2006).We then calculatedthespearmancorrelationcoefficientbetweencontrolcapacityandeachofthesecentralitymetrics.

Ouranalysisrevealedthatsomespecieshaveacontrolcapacityϕ=1.Thesespeciesarecriticaltocontrollingtheircommunitybe-causetheyarepartoftheminimumdriver‐nodesetineverycontrolscenario. Inotherwords, it is theoretically impossible todrive thestateofthecommunitytoadesiredstatewithoutdirectlymanag-ingtheabundanceofthesespecies.Wethusanticipatethatthesespecies have a disproportionally large impact on the communitydynamics.To test thishypothesis,we identified thesecritical spe-ciesineachofthenetworksandinvestigatedwhethertheyhavealargerthanaverage impactonthestablecoexistenceofspecies inthe community.Withinmutualistic networks, one usefulmeasureofstablecoexistenceiscalledstructuralstability(Rohr,Saavedra,&Bascompte,2014).Mathematically,thestructuralstabilityofanet-workrepresentsthesizeoftheparameterspace(i.e.,growthrates,carryingcapacities,etc.)underwhichallspeciescansustainpositiveabundances(Saavedra,Rohr,Olesen,&Bascompte,2016).Thecon-tribution of any given species i to stable coexistence can be esti-matedbycalculatingthestructuralstabilityofthecommunitywhenthefocalspeciesiisremoved.Toallowcomparisonacrosscommuni-ties,thestructuralstabilityvalueswerescaledwithineachnetworktohaveameanofzeroandastandarddeviationofone.Giventhesespecies‐specific estimatesof structural stability,we thenused a t testtocomparethecontributiontostablecoexistenceofcriticalandnon‐criticalspecies.MoredetailsaboutthecalculationofstructuralstabilitycanbefoundintheSupportingInformationSectionS4.

2.4 | Testing assumptions

Justlikethecentralitymetrics,theinformationobtainedbyapplyingstructural controllabilitydependson the abilityof thenetwork toaccuratelyrepresenttheecologicalcommunity.Wethustestedthe

Page 7: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

     |  1785Journal of EcologyCAGUA et Al.

sensitivityofourapproachtotwofundamentalassumptions.First,wetestedthatvisitationisanappropriateproxytoinferinterspecificeffectsbycomparingtheresultsobtainedusingvisitationtotwoal-ternativemetricsinaseparatedatasetthatlackedinvasivespecies(Ballantyne,Baldock,&Willmer,2015).Specifically,wealsocalcu-lated the controllability (the size of theminimumdriver node‐set)and the control capacityofnetworks constructedusingpollinatorefficiency(whichmeasuresthepollendepositionofaninteraction)andpollinator importance (whichaccountsforbothpollendeposi-tionandvisitationandhenceisregardedasamoreaccurateestima-tionofthepollinationservicereceivedbyplants;Ne'eman,Jürgens,Newstrom‐Lloyd,Potts,&Dafni,2010).SeeSupportingInformationSectionS5formoredetails.

Second,becauseinterspecificdependenciesthemselvesdependonthenetworktopologyandconsequentlyontheaccuratesamplingofinteractions,wetestedtherobustnessofstructuralcontrollabilitytotheuncertaintyinvolvedwiththesamplingofinteractions.Here,wecomparedtheresultsobtainedwhenusingthefullnetworkandwhenrandomlyremovinginteractionsfromtheweakestlinksinthenetwork. This effectively removed the rare interactions from thenetworks(moredetailsintheSupportingInformationSectionS6).

3  | RESULTS

3.1 | Controllability

Thesizeoftheminimumdriver‐nodesetrelativetothenumberofspeciesineachnetworknDrangedbetweennD = 0.58 and nD = 0.88 (median0.74).

3.2 | Differences between invaded and uninvaded networks

Wefoundthattherelativesizeoftheminimumdriver‐nodesetofin-vadedcommunitieswasnotsignificantlydifferentfromthatofcom-munitiesthathavenotbeeninvaded(Figure3a).Incontrast,therewasalargenegativerelationshipbetweennDandthenetworkasymmetry

(Figure3b).Furthermore,therewerealsonegative,albeitweaker,rela-tionshipsbetweennDandconnectance,nestednessandspeciesrich-ness(TableS3).Therelativesizeoftheminimumdriver‐nodesetnDofempiricalnetworksdidnotdifferfromthatofanullmodelthatroughlypreserved the degree distribution and fully preserved the networkconnectance(p=0.66;Figure3c).However,empiricalnetworkshadalargernDthannullmodelsthatpreservedtheinteractionsbutshuffledthedirectionofcontroloftheempiricalnetwork(p = 2.4 × 10−7).

3.3 | Species' roles

Speciesvariedwidelyintheircontrolcapacity(Figure4).Pollinatorshad, inaverage, largercontrolcapacitiesthanplants.Thatsaid,al-most nopollinatorwas critical for network control, (where a spe-ciesiscriticalforcontrolifithascontrolcapacityϕ=1).Plantshadamultimodaldistributionofcontrol capacitywithmaximaatbothextremesofthedistribution(Figure4a).Intriguingly,everyinvasivespecieswascritical fornetworkcontrol ineachof theircommuni-ties.Thespecies‐levelmodels identifiedapositiverelationshipbe-tweencontrolcapacityϕandaspecies'contributiontonestedness,visitationstrength,andtheasymmetryofitsdependences(Table2;Figure5;TableS4).Comparatively,species'degreewasonlyweaklyassociatedwith control capacity (Table S5). In fact, many specieswith a lowdegree, especially pollinators, exhibited a large controlcapacityintheircommunities(FigureS10a).

Species'controlcapacityϕwasonlyweaklycorrelatedwithcom-monly‐usedcentralitymetrics.TheSpearmancorrelationbetweentheserangedbetween−0.14(withbetweeness‐centrality)and0.42(withEigen‐centrality),seeFigureS11a.Thecorrelationcoefficientwithdegreewas−0.13,howevermostspecieswithhighdegreealsotendedtoattainahighcontrolcapacity(FigureS10a).

Finally,wefoundthatcriticalspecieshaveaparticularlylargeim-pactonspeciescoexistencewhencomparedtonon‐criticalspecies.Indeed,thestructuralstabilityofthenetworkswherecriticalspe-cieswereremovedwasconsiderablylowerthanthosewherenon‐critical species were removed (p = 2 × 10−15; Figure 6; SupportingInformationS4).

F I G U R E 3  Driversofnetworkcontrollability.(a)Probabilitydensityoftherelativesizeoftheminimumdriver‐nodesetnDintheinvaded(light)anduninvaded(dark)empiricalnetworks.(b)Relationshipbetweentheasymmetryplant/pollinatorrichnessandnD.(c)Probabilitydensityofthedifferencebetweentherelativesizeoftheminimumdriver‐nodesetofrandomnetworksandthatofempiricalnetworks.Werandomisedeitherthespeciesvisitationpatterns(lightline)orrandomisedthedirectionofcontrolbetweenaspeciespair(darkline).Theverticaldashedlinesin(a)and(c)indicatethemedianvaluesofthedistributions

2

4

6

0.6 0.7 0.8nD

Pro

babi

lity

dens

ity InvadedUninvaded

(a)

0.65

0.67

0.69

0.71

−0.8 −0.7 −0.6 −0.5 −0.4

Network asymmetry

n D

(b)

0

5

10

−0.2 −0.1 0.0 0.1∆nD

Pro

babi

lity

dens

ity InteractionsDirections

(c)

Page 8: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

1786  |    Journal of Ecology CAGUA et Al.

3.4 | Testing assumptions

Wefoundthatusingvisitationasaproxyforthestrengthofspecies'interactions leads to similar results than those obtainedusing pol-linatorimportance(regardedasanaccuratemeasureofthepollina-tionservicetoplants;SupportingInformationSectionS5;Ne'eman,Jürgens,Newstrom‐Lloyd,Potts,&Dafni,2010).Importantly,wealsofoundthatstructuralstabilityisrobusttoincompletesamplingofin-teractions.Indeed,wefoundstrongagreementbetweenresultsob-tainedusingthecompleteempiricalnetworksandthoseobtainedbyrandomlyremovingtheweakestinteractions(SupportingInformationSectionS6).Despiteremovingrareinteractionsandspecies,therela-tivesizeof theminimumdriver‐nodeset, thesuperiorspecies,andtherelativerankingsofcontrolcapacityweregenerallymaintained.Ofparticularnote,wefoundthatcriticalspeciesinthefullnetworkwerealsocriticalinthevastmajorityofrarefiednetworks.

4  | DISCUSSION

Ourmaingoalwastounderstandtherolethatspeciesplayinbothmodifyingtheabundanceofthespeciestheyinteractwithandthestateofthecommunityasawhole.Toachievethatgoalweapplied

structural controllability,afieldatthe intersectionbetweencontroland complex theory that allowed us to obtain two key pieces ofinformation: the controllability of a network and a species' control capacity (Table 1).We found that the controllability of a networkdoesnotdependonitsinvasionstatusandthatthespeciesthatarecriticaltoalteringthestateofthecommunityarealsotheonesthatmostsustainthestablecoexistenceofspeciesintheircommunities.

Ourresultsindicatethatfullycontrollingecologicalnetworksmightcurrentlybeoutofreachforallbutthesmallestcommuni-ties (Motter, 2015). Indeed, themedian sizeof the relativemin-imumdriver‐node set inourdatasetwasnD =0.74, ahighvaluewhen compared to other complex systems in which controlla-bility has been investigated (the lowernD themore controllablethe community). For instance, only gene regulation networksappear to achieve similar levels of controllabilitywhilemost so-cial, power transmission, Internet, neuronal, and evenmetabolicnetworks seem to be “easier” to control (0.1<nD<0.35) (Liu etal.,2011).Structural controllabilityprovides solid theoretical ra-tionaleforthemanydifficultiesencounteredinthemanagementand restoration of natural communities (Woodford et al., 2016).Nevertheless, structural controllabilitymight be helpful at iden-tifyingcommunities inwhichchanges in theecological statearemorelikelytooccur.

TA B L E 2  Selectiontableofthebinomialgeneralisedlinearmodelsofspecies'controlcapacity,ϕ.Onlymodelswithaweightlargerorequalto0.01areshown

Model terms

df ΔAICc Weightint. k l a n s k:l l:a l:n l:s

−1.20 + 0.80 0.15 0.29 + + 7 0.00 0.48

−1.19 + 0.76 0.13 0.35 + + + 8 1.52 0.22

−1.26 −1.24 + 1.44 0.39 1.07 + + + 9 4.09 0.06

−1.37 −0.66 + 1.03 1.06 + + + 8 4.39 0.05

−1.27 −1.15 + 1.37 0.33 1.07 + + + + 10 4.92 0.04

−1.37 −0.10 + 0.90 0.43 + + 7 6.36 0.02

−1.25 −0.28 + 1.24 0.40 + + 7 6.47 0.02

−1.24 −0.62 + 1.29 0.38 0.40 + + 8 6.50 0.02

−1.39 0.30 + 0.83 + + 6 6.72 0.02

−1.28 −0.17 + 1.16 0.32 + + + 8 7.03 0.01

−1.26 −0.53 + 1.23 0.32 0.39 + + + 9 7.42 0.01

−1.02 + 0.69 0.30 0.31 + 6 7.48 0.01

Note.Terms:intercept(int),degree(k),trophiclevel(l),asymmetry(a),contributiontonestedness(n),visitationstrength(s).

F I G U R E 4  Probabilitydensityofthecontrolcapacityϕof(a)plantsand(b)pollinatorsacrossallnetworks.Thecontrolcapacityofallinvasivespeciesisϕ=1andisdepictedwithsolidcircles[Colourfigurecanbeviewedatwileyonlinelibrary.com]

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00Control capacity (φ)

Pro

babi

lity

dens

ity(a) Control capacity of plants

0.00 0.25 0.50 0.75 1.00Control capacity (φ)

(b) Control capacity of pollinators

Page 9: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

     |  1787Journal of EcologyCAGUA et Al.

Thedifferencesbetweenthecontrollabilityacrossnetworksarelikely to arise fromdifferences in their structure rather than theirinvasionstatus.Specifically,whencontrollingfornetworkstructure,wefoundnodifferencebetweenthecontrollabilityofinvadedanduninvaded networks. Instead controllability is almost completelyconstrainedbythepatternsofspeciesrichnessateachtrophicguildandtheirdegreedistributions (Blüthgen,Menzel,Hovestadt,Fiala,&Blüthgen,2007;Melián&Bascompte,2002).Thesetwofactorsare particularly relevant because they govern the asymmetric na-ture ofmutual dependences,which themselves provide the foun-dationofstructureandstabilityinmutualisticnetworks(Astegiano,Massol,Vidal,Cheptou,&Guimarães,2015;Bascompteetal.,2006;Memmott,Waser,&Price,2004).

Accordingly, our results suggest that structural controllability iscloselyrelatedtothepersistenceofanecologicalcommunitybasedontwolinesofevidence.First,wefoundacomparativelysmallbutthought‐provoking negative relationship between the controllabil-ity of a network and its nestedness. Previous studies indicate thatnestednesspromotesspeciescoexistenceandconfersrobustnesstoextinction(Bastollaetal.,2009;Memmottetal.,2004)evenattheex-penseofthedynamicstabilityofthemutualisticcommunity(Saavedraetal.,2016).Theseobservationsareinagreementwithourresults,aswewouldexpectthedynamicstability(theabilitytoreturntoequi-libriumafteraperturbationinspeciesabundances)ofacommunitytobecorrelatedtothedifficultytocontrol it.Second,species'controlcapacitywasstronglycorrelatedtotheircontributiontonestednessandcriticalspecieshadthelargestimpacttothestablecoexistenceofspeciesintheircommunities.Therefore,speciesthatplayakeyroleatdeterminingthestateofthecommunitymightalsobemorekeyto“maintaintheorganizationanddiversityoftheirecologicalcommuni-ties,”oneofthehallmarksofkeystonespecies(Mills&Doak,1993).

Whencontrolling for a species' visitation strength (the sumofa species' visits),which is indirectlyaproxyof itsabundance, andthenetbalanceofitsdependencies,wefoundthatcontrolcapacitycouldnotbeeasilypredictedbyspecies'degreeorothermetricsofcentrality. For instance, some specieswith a lowdegree achievedthemaximumcontrolcapacityandwerecriticalforcontrolintheircommunities.Atfirstglance,ourfindingschallengenumerousstud-iesthathighlighttherolethatcentralspeciesplayinthedynamicsoftheircommunitiesandtheirutilityatpredictingspeciesextinctions(Jordan,2009).However,furtherinspectionshowsthatourresultsdonotcontradictthesefindings;mostspecieswitha largedegreealsohavealargecontrolcapacityandallofthemwereclassifiedassuperior nodeswhich corroborates the utility of classic centralitymetrics.Puttingtheseobservationstogether,ourresultsthereforetakepreviousfindingsonestepfurtherandsuggestthatcentralitymightpaintanincompletepictureoftherelevanceofspecies.

Other conceptual differences between structural controllabilityandcentralitymetricsprovidethreekeyinsightsintotheconservationof ecological networks. First, structural controllability emphasizesthattheeffectaspecieshasonotherspeciesisnotindependentof

F I G U R E 5  Partial‐residualplotsfortheindependentvariables:(a)contributiontonestedness,(b)visitationstrength,(c)asymmetryofdependences,and(d)degree.Partial‐residualplotsshowtherelationshipbetweencontrolcapacityandeachoftheindependentvariableswhileacccountingforallotherremainingvariables.PlotedvaluescorrepondtothepredictionsoftheweightedaverageofthemodelsshowninTable2[Colourfigurecanbeviewedatwileyonlinelibrary.com]

−10

0

10

20

−2.5 0.0 2.5 5.0

Contribution to nestedness

Parti

al re

sidu

als Plants

Pollinators

(a)

1 10 100Visitation strength

PlantsPollinators

(b)

−1.0 −0.5 0.0 0.5 1.0Dependence asymmetry

PlantsPollinators

(c)

1 10Degree

PlantsPollinators

(d)

F I G U R E 6  Probabilitydensityofthestructuralstabilityofthecommunitiesafterasinglefocalspeciesisremoved.Mathematically,thestructuralstabilityofanetworkrepresentsthesizeoftheparameterspace(i.e.,growthrates,carryingcapacities,etc.)underwhichallspeciescansustainpositiveabundances.Thestructuralstabilityofcommunitiesinwhichcriticalspecieshavebeenremoved(darkerline)isconsiderablysmallerthanthatofcommunitiesinwhichnon‐criticalspecieshavebeenremoved.Thisindicatesthatcriticalspeciescontributemoretothestablecoexistenceoftheircommunities.Toallowcomparisonacrosscommunities,thestructuralstabilityvalueswerescaledwithineachnetworktohaveameanofzeroandastandarddeviationofone.Here,weassumevaluesofthemutualistictrade‐offandmeaninterspecificcompetitionofδ = 0 and ρ=0.01respectively(Saavedraetal.,2016).However,thechoiceoftheseparametersdoesnotaffecttheresults(SupportingInformationS4)

0.0

0.2

0.4

0.6

−5.0 −2.5 0.0Scaled structural stability

Pro

babi

lity

dens

ity

Critical species (φ = 1)Redundant (φ < 1)

Page 10: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

1788  |    Journal of Ecology CAGUA et Al.

theeffectsthattheotherspecieshaveinthecommunity.Therankingsprovidedbycentralitymetricsandotherheuristicsfailtoaccountforthecollectiveinfluenceofseveralspeciesatonce.Second,itdemon-stratesthattoensurethepersistenceofacommunityitisoftennec-essarytoconsidertheabundancesofmorethanasinglespecies,evenwhenfullcontrolisinfeasibleorundesired(forexample90%ofourcommunitiescontainedmorethanonecriticalspecies).Third,struc-turalcontrollabilityexplicitlyacknowledgestheexistenceofmultiplemanagementstrategiesandsomewillbebetterthanothersdepend-ingonthecontext.Approachestoprioritisespeciesforconservationandreintroductionbasedontraitsorcentralityarestillusefulandarelikelytooverlapwithspecies'controlcapacity(Devoto,Bailey,Craze,&Memmott, 2012; Pires,Marquitti, &Guimarães, 2017). Steppingback,ourresultsalsoprovidesupporttotheideathatmanagementdecisionsshouldnotbebasedonasingletechniquebutindicatethatfocusingonecosystemprocessesand interactionsmaybemoreef-fectivethantraditionalranking‐basedapproaches(Harvey,Gounand,Ward,&Altermatt,2017).Asmuchpotentialasanymetricormetricstosummarisespecies'importancemightappeartohave,it'sclearthatwealsoneedmoreempiricalstudiesindifferenttypesofnetworksinordertobuildintuitionandgroundtruththeirusefulness.

Ourchoiceofstudyinginvaded/uninvadednetworkswasbasedonadesiretocontrasttheextensiveempiricalevidenceoftheroleof invasiveplantswithourtheoretical results.Wefoundthat inva-siveplantswerealwayscriticalfornetworkcontrolandassuchourresultswereinlinewithourexpectations.Invasiveplantshavebeenpreviouslyfoundtoexacerbatetheasymmetriesintheircommunities(Aizen,Morales,&Morales,2008;Bartomeusetal.,2008;Henriksson,Wardle,Trygg,Diehl,&Englund,2016)andtoattainhighcentralityintheircommunities(Palacio,Valderrama‐Ardila,&Kattan,2016;Vilaetal.,2009).Wefound,however,thatitisnotthatinvasiveplantshavesomedifferentmechanismforinfluencingthecommunitycomparedtotheirnativecounterparts(Emer,Memmott,Vaughan,Montoya,&Tylianakis,2016;Stouffer,Cirtwill,&Bascompte,2014).Bothnativespeciesandinvasiveplantstendedtoattainahighcontrolcapacityiftheywereimportanttonetworkpersistence,wereabundant,anddependedlittleonotherspecies.Furthermore,ourobservationthatchangesintheabundanceofinvasiveplants(andpresumablyallcrit-icalspecies)arecrucialtomodifythestateofthecommunityagreeswithrecentevidenceshowingthatecosystemrestorationfocusedontheeradicationofinvasiveplantscanhavetransformativedesirableeffectsinplant‐pollinatorcommunities(Kaiser‐Bunburyetal.,2017).However,ourresultsalsosuggest thatremovalsmustbeexercisedwithcaution.Notonlyitishardtopredictthedirectioninwhichthesystemwill change, butwe also show that critical species can un-derpinthecoexistenceofspeciesandthereforesomecommunitiesmay be acutely vulnerable to their eradication (Albrecht, Padron,Bartomeus,&Traveset,2014;Travesetetal.,2013).

Structural controllability assumes that the networks can be ap-proximatedusing linear functional responses (Liu&Barabási,2016).Theramificationsofthisassumptionimplythat,whilestructuralcon-trollability isuseful to identifyspecies thatarerelevant fornetworkcontrol,itcannotbeusedtodesigntheexactinterventionsthatshould

beappliedtothesespeciesinordertoachieveadesiredstate.Inanidealscenario,wewouldcompletelyincorporatethespecies'dynam-ics intothecontrollabilityanalysis(Cornelius,Kath,&Motter,2013);therealityisthatsuchinformationisrarelyavailableinmostecologicalscenarios. Incontrast,structuralcontrollabilityonlyrequiresaquan-titativeapproximationof thenetwork's interactionstogainvaluableinsightfromthecommunity.Furthermore,whiletherelationshipbe-tween centrality and keystoneness is based on an intuitive under-standingofwhatakeystonespeciesis,theassumptionsofstructuralcontrollabilityareexplicitandtheestimationofaspecies'importancearisesfromamechanisticunderstandingofthepopulationdynamicsbetweenspecies.Byaccountingfornetworkdynamics(evenifinasim-pleway),structuralstabilityincorporatesmoreecologicalrealism,es-peciallyintheextremescenarioinwhichthestructureofinteractionswithinthecommunityonlymarginallyaffectsthecommunity'sstate.

5  | CONCLUSIONS

Herewe show that structural controllability can be applied in anecological setting togain insight into thestabilityofacommunityandtherolethatspeciesplayinmodifyingtheabundanceofotherspeciesandultimatelythestateofthecommunity.Thesecharacter-isticsmake structural stability an ideal framework toevaluate theeffectsof invasionsandothertypesofperturbations. Importantly,structuralcontrollabilitycanbeusedtoidentifycriticalspeciesinthecommunitythatpromotebiodiversityandunderpinthestablecoex-istenceof species in their community.Collectively, critical specieshavetheabilitytostrongly influencethestateoftheircommunityandthereforearelikelytobehighlyrelevantforecosystemmanage-mentandconservation.Whileuseful,centralitymetrics—whichhaveoftenbeenusedasaproxyforkeystoneness—failtoidentifysomeofthesespecies,highlightingtheir limitationswhenwefullyembracethenotionthatecologicalcommunitiesaredynamicalsystems.Paine(1969)showednearly50yearsagothatasinglespeciescansome-timesfillthisroleonitsown.Structuralcontrollabilitysuggeststhatthissituationmightbetheexceptionratherthantherule.Weseeourstudyasastartingpointtostudythecontrollabilityofecologicalandsocio‐ecologicalsystemswheremanyexcitingquestionslieahead.

ACKNOWLEDG EMENTS

The authors thank JaneMemmott and co‐authors, and everyonethat hasmade their data available to us, Takeuki Uno for the in-sightprovidedtofindthesetofallmaximummatchingalgorithms,and Jason Tylianakis, Bernat Bramon Mora, Guadalupe Peralta,Rogini Runghen,MichelleMarraffini,MarkHerse,Warwick Allen,MatthewHutchinson,andMariliaGaiarsaforfeedbackandvaluablediscussions. E.F.C. acknowledges the support from theUniversityofCanterburyDoctoral Scholarship, theUniversity ofCanterburyMeadow Mushrooms Postgraduate Scholarship, a New ZealandInternationalDoctoralResearchScholarship,andatravelgrantfromtheEuropeanSpaceAgency.D.B.S.acknowledgesthesupportofa

Page 11: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

     |  1789Journal of EcologyCAGUA et Al.

Marsden Fast‐Start grant and a Rutherford Discovery Fellowship,administeredbytheRoyalSocietyTeofNewZealandeAparangi.

AUTHORS' CONTRIBUTIONS

D.B.S.conceivedtheidea;allauthorscontributedtothedevelopmentofthetheoreticalframework;E.F.C.performedallanalysis;E.F.C.andD.B.S.wrotethemanuscript.Allauthorscontributedtoitsrevision.

DATA ACCE SSIBILIT Y

All data used in this manuscript have already been published byLopezaraiza‐MikelHayesWhalley andMemmott (2007), BartomeusVilàandSantamaría(2008),andBallantyneBaldockandWillmer(2015).Thereadershouldrefertotheoriginalsourcestoaccessthedata.

ORCID

Edgar Fernando Cagua https://orcid.org/0000‐0001‐5867‐3687

Kate L. Wootton https://orcid.org/0000‐0002‐9033‐8210

Daniel B. Stouffer https://orcid.org/0000‐0001‐9436‐9674

R E FE R E N C E S

Aizen,M.A.,Morales,C.L.,&Morales,J.M.(2008).Invasivemutualistserode native pollination webs. PLoS Biology, 6(2), e31. https://doi.org/10.1371/journal.pbio.0060031

Albrecht, M., Padron, B., Bartomeus, I., & Traveset, A. (2014).Consequences of plant invasions on compartmentalization andspecies' roles inplant‐pollinatornetworks.Proceedings of the Royal Society B: Biological Sciences, 281(1788), 20140773. https://doi.org/10.1098/rspb.2014.0773

Astegiano, J.,Massol,F.,Vidal,M.M.,Cheptou,P.‐O.,&Guimarães,P.R. (2015). The robustness of plant‐pollinator assemblages: Linkingplantinteractionpatternsandsensitivitytopollinatorloss.PLoS ONE,10(2),e0117243.https://doi.org/10.1371/journal.pone.0117243

Ballantyne,G.,Baldock,K.C.R.,&Willmer,P.G. (2015).Constructingmore informative plant‐pollinator networks: Visitation and pollendepositionnetworksinaheathlandplantcommunity.Proceedings of the Royal Society B: Biological Sciences,282(1814),20151130.https://doi.org/10.1098/rspb.2015.1130

Bartomeus, I.,Vilà,M.,&Santamaría,L. (2008).Contrastingeffectsofinvasiveplantsinplant‐pollinatornetworks.Oecologia,155(4),761–770.https://doi.org/10.1007/s00442‐007‐0946‐1

Bascompte, J., Jordano,P.,&Olesen, J.M. (2006).Asymmetriccoevo-lutionary networks facilitate biodiversity maintenance. Science,312(5772),431–433.https://doi.org/10.1126/science.1123412

Bascompte,J.,&Stouffer,D.B.(2009).Theassemblyanddisassemblyofecologicalnetworks.Philosophical Transactions of the Royal Society B: Biological Sciences,364(1524), 1781–1787. https://doi.org/10.1098/rstb.2008.0226

Bastolla,U., Fortuna,M.A., Pascual‐García, A., Ferrera,A., Luque, B.,& Bascompte, J. (2009). The architecture of mutualistic networksminimizescompetitionandincreasesbiodiversity.Nature,458(7241),1018–1020.https://doi.org/10.1038/nature07950

Blüthgen,N.,Menzel,F.,Hovestadt,T.,Fiala,B.,&Blüthgen,N.(2007).Specialization, constraints, and conflicting interests in mutualisticnetworks.Current Biology,17(4),341–346.https://doi.org/10.1016/j.cub.2006.12.039

Cornelius,S.P.,Kath,W.L.,&Motter,A.E. (2013).Realisticcontrolofnetwork dynamics. Nature Communications, 4, 1942. https://doi.org/10.1038/ncomms2939

Coux,C.,Rader,R.,Bartomeus,I.,&Tylianakis,J.M.(2016).Linkingspe-cies functional roles to their network roles. Ecology Letters, 19(7),762–770.https://doi.org/10.1111/ele.12612

Devoto,M.,Bailey,S.,Craze,P.,&Memmott,J. (2012).Understandingand planning ecological restoration of plant‐pollinator networks:Understandingnetworkrestoration.Ecology Letters,15(4),319–328.https://doi.org/10.1111/j.1461‐0248.2012.01740.x

Dunne, J.A.,Williams,R. J.,&Martinez,N.D. (2002).Networkstruc-ture and biodiversity loss in food webs: Robustness increaseswith connectance. Ecology Letters, 5(4), 558–567. https://doi.org/10.1046/j.1461‐0248.2002.00354.x

Emer,C.,Memmott, J.,Vaughan, I.P.,Montoya,D.,&Tylianakis, J.M.(2016).Speciesrolesinplant‐pollinatorcommunitiesareconservedacrossnativeandalienranges.Diversity and Distributions,22(8),841–852.https://doi.org/10.1111/ddi.12458

Friedkin, N. E. (1991). Theoretical foundations for centrality mea-sures.American Journal of Sociology,96(6), 1478–1504. https://doi.org/10.1086/229694

Guimerà, R., & Amaral, L. A. N. (2005). Cartography of complexnetworks: Modules and universal roles. Journal of Statistical Mechanics: Theory and Experiment, 2005(02), P02001. https://doi.org/10.1088/1742‐5468/2005/02/P02001

Harvey, E., Gounand, I., Ward, C. L., & Altermatt, F. (2017). Bridgingecologyandconservation:Fromecologicalnetworkstoecosystemfunction. Journal of Applied Ecology, 54(2), 371–379. https://doi.org/10.1111/1365‐2664.12769

Henriksson,A.,Wardle,D.A.,Trygg,J.,Diehl,S.,&Englund,G.(2016).Strong invaders are strong defenders – Implications for the re-sistance of invaded communities. Ecology Letters, 19(4), 487–494.https://doi.org/10.1111/ele.12586

Holland, J. N., DeAngelis, D. L., & Bronstein, J. L. (2002). Populationdynamics and mutualism: Functional responses of benefits andcosts. The American Naturalist, 159(3), 231–244. https://doi.org/10.1086/338510

Isbell, F., & Loreau, M. (2013). Human impacts on minimum subsetsof species critical for maintaining ecosystem structure. Basic and Applied Ecology, 14(8), 623–629. https://doi.org/10.1016/j.baae.2013.09.001

Jia,T.,&Barabási,A.‐L.(2013).Controlcapacityandarandomsamplingmethod in exploring controllability of complex networks.Scientific Reports,3(1),2354.https://doi.org/10.1038/srep02354

Jordan, F. (2009). Keystone species and food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1524),1733–1741.https://doi.org/10.1098/rstb.2008.0335

Jordán, F., Benedek, Z., & Podani, J. (2007). Quantifying positionalimportance in food webs: A comparison of centrality indices.Ecological Modelling, 205(1–2), 270–275. https://doi.org/10.1016/j.ecolmodel.2007.02.032

Jordano,P.,Bascompte,J.,&Olesen,J.M. (2006).Theecologicalcon-sequencesofcomplextopologyandnestedstructureinpollinationwebs. In N.M.Waser, & J. Ollerton (Eds.),Plant‐pollinator interac‐tions: From specialization to generalization(pp.173–199).Chicago,IL:UniversityofChicagoPress.

Kaiser‐Bunbury,C.N.,Mougal,J.,Whittington,A.E.,Valentin,T.,Gabriel,R., Olesen, J. M., & Blüthgen, N. (2017). Ecosystem restorationstrengthens pollination network resilience and function. Nature,542(7640),223–227.https://doi.org/10.1038/nature21071

Kaiser‐Bunbury,C.N.,Muff,S.,Memmott, J.,Müller,C.B.,&Caflisch,A. (2010). The robustness of pollination networks to the loss ofspecies and interactions: A quantitative approach incorporatingpollinator behaviour. Ecology Letters, 13(4), 442–452. https://doi.org/10.1111/j.1461‐0248.2009.01437.x

Page 12: Keystoneness, centrality, and the structural ... · Edgar Fernando Cagua | Kate L. Wootton | Daniel B. Stouffer Centre for Integrative Ecology, School of Biological Sciences, University

1790  |    Journal of Ecology CAGUA et Al.

Kalman,R.E.(1963).Mathematicaldescriptionoflineardynamicalsys-tems. Journal of the Society for Industrial and Applied Mathematics Series A Control,1(2),152–192.https://doi.org/10.1137/0301010

Lever,J.J.,vanNes,E.H.,Scheffer,M.,&Bascompte,J.(2014).Thesud-dencollapseofpollinatorcommunities.Ecology Letters,17(3),350–359.https://doi.org/10.1111/ele.12236

Lin,C.T.(1974).Structuralcontrollability.IEEE Transactions on Automatic Control,19(3),201–208.https://doi.org/10.1109/TAC.1974.1100557

Liu,Y.‐Y.,&Barabási,A.‐L.(2016).Controlprinciplesofcomplexsystems.Reviews of Modern Physics,88(3),035006.https://doi.org/10.1103/RevModPhys.88.035006

Liu,Y.‐Y.,Slotine,J.‐J.,&Barabási,A.‐L.(2011).Controllabilityofcomplexnetworks. Nature, 473(7346), 167–173. https://doi.org/10.1038/nature10011

Lopezaraiza‐Mikel,M.E.,Hayes,R.B.,Whalley,M.R.,&Memmott, J.(2007).TheimpactofanalienplantonanativeplantPollinatornet-work: An experimental approach. Ecology Letters, 10(7), 539–550.https://doi.org/10.1111/j.1461‐0248.2007.01055.x

MartínGonzález,A.M.,Dalsgaard,B.,&Olesen,J.M.(2010).Centralitymeasuresandtheimportanceofgeneralistspeciesinpollinationnet-works.Ecological Complexity,7(1),36–43.https://doi.org/10.1016/j.ecocom.2009.03.008

McDonald‐Madden, E., Sabbadin, R., Game, E. T., Baxter, P. W. J.,Chadès, I., & Possingham,H. P. (2016). Using food‐web theory toconserveecosystems.Nature Communications,7,10245.https://doi.org/10.1038/ncomms10245

Melián,C.J.,&Bascompte,J.(2002).Complexnetworks:Twowaystoberobust?:Complexnetworks:Twowaystoberobust?Ecology Letters,5(6),705–708.https://doi.org/10.1046/j.1461‐0248.2002.00386.x

Memmott,J.,Waser,N.M.,&Price,M.V.(2004).Toleranceofpollinationnetworks tospeciesextinctions.Proceedings of the Royal Society B: Biological Sciences,271(1557),2605–2611.https://doi.org/10.1098/rspb.2004.2909

Menge,B.A.(1995). Indirecteffectsinmarinerockyintertidal interac-tion webs: Patterns and importance. Ecological Monographs, 65(1),21–74.https://doi.org/10.2307/2937158

Mills,L.S.,&Doak,D.F.(1993).Thekeystone‐speciesconceptinecol-ogy and conservation. BioScience, 43(4), 219–224. https://doi.org/10.2307/1312122

Motter,A.E.(2015).Networkcontrology.Chaos,25,097621.https://doi.org/10.1063/1.4931570

Mouillot,D.,Graham,N.A.,Villéger,S.,Mason,N.W.,&Bellwood,D.R.(2013).Afunctionalapproachrevealscommunityresponsestodis-turbances.Trends in Ecology & Evolution,28(3),167–177.https://doi.org/10.1016/j.tree.2012.10.004

Ne'eman, G., Jürgens, A., Newstrom‐Lloyd, L., Potts, S. G., & Dafni,A. (2010). A framework for comparing pollinator performance:Effectivenessandefficiency.Biological Reviews,85,435–451.https://doi.org/10.1111/j.1469‐185X.2009.00108.x

Paine,R.T.(1969).Anoteontrophiccomplexityandcommunitystability.The American Naturalist,103(929),91–93.https://doi.org/10.1086/282586

Palacio,R.D.,Valderrama‐Ardila,C.,&Kattan,G.H.(2016).Generalistspecies have a central role in a highly diverse plant‐frugivore net-work.Biotropica,48(3),349–355.https://doi.org/10.1111/btp.12290

Pires,M.M.,Marquitti,F.M.,&Guimarães,P.R.(2017).Thefriendshipparadoxinspecies‐richecologicalnetworks:Implicationsforconser-vationandmonitoring.Biological Conservation,209,245–252.https://doi.org/10.1016/j.biocon.2017.02.026

Poisot,T.,Canard,E.,Mouquet,N.,&Hochberg,M.E. (2012).Acom-parative studyofecological specializationestimators:Species‐Level Specialization. Methods in Ecology and Evolution, 3(3), 537–544.https://doi.org/10.1111/j.2041‐210X.2011.00174.x

Rohr,R.P.,Saavedra,S.,&Bascompte,J.(2014).Onthestructuralsta-bilityofmutualisticsystems.Science,345(6195),1253497–1253497.https://doi.org/10.1126/science.1253497

Saavedra,S.,Rohr,R.P.,Olesen,J.M.,&Bascompte,J. (2016).Nestedspeciesinteractionspromotefeasibilityoverstabilityduringtheas-semblyofapollinatorcommunity.Ecology and Evolution,6(4),997–1007.https://doi.org/10.1002/ece3.1930

Saavedra,S.,Stouffer,D.B.,Uzzi,B.,&Bascompte,J.(2011).Strongcon-tributorstonetworkpersistencearethemostvulnerabletoextinction.Nature,478(7368),233–235.https://doi.org/10.1038/nature10433

Stouffer,D.B.,Cirtwill,A.R.,&Bascompte,J.(2014).Howexoticplantsintegrateintopollinationnetworks.Journal of Ecology,102(6),1442–1450.https://doi.org/10.1111/1365‐2745.12310

Stouffer, D. B., Sales‐Pardo, M., Sirer, M. I., & Bascompte, J. (2012).Evolutionary conservation of species' roles in foodwebs. Science,335(6075),1489–1492.https://doi.org/10.1126/science.1216556

Thompson,R.M.,Brose,U.,Dunne,J.A.,Hall,R.O.,Hladyz,S.,Kitching,R.L.,…Tylianakis, J.M. (2012).Foodwebs:Reconciling the struc-tureandfunctionofbiodiversity.Trends in Ecology & Evolution,27(12),689–697.https://doi.org/10.1016/j.tree.2012.08.005

Traveset, A., Heleno, R., Chamorro, S., Vargas, P., McMullen, C. K.,Castro‐Urgal,R.,…Olesen,J.M.(2013).Invadersofpollinationnet-works in theGalapagos Islands: Emergence of novel communities.Proceedings of the Royal Society B: Biological Sciences, 280(1758),20123040.https://doi.org/10.1098/rspb.2012.3040

Tylianakis,J.M.,Didham,R.K.,Bascompte,J.,&Wardle,D.A.(2008).Globalchangeandspeciesinteractionsinterrestrialecosystems.Ecology Letters,11(12),1351–1363.https://doi.org/10.1111/j.1461‐0248.2008.01250.x

Tylianakis, J. M., Laliberté, E., Nielsen, A., & Bascompte, J. (2010).Conservationofspeciesinteractionnetworks.Biological Conservation,143(10),2270–2279.https://doi.org/10.1016/j.biocon.2009.12.004

Vázquez,D.P.,Melián,C.J.,Williams,N.M.,Blüthgen,N.,Krasnov,B.R.,&Poulin,R.(2007).Speciesabundanceandasymmetricinteractionstrength inecologicalnetworks.Oikos,116(7),1120–1127.https://doi.org/10.1111/j.2007.0030‐1299.15828.x

Vázquez,D.P.,Morris,W.F.,&Jordano,P.(2005).Interactionfrequencyas a surrogate for the total effect of animalmutualists on plants:Total effect of animal mutualists on plants. Ecology Letters, 8(10),1088–1094.https://doi.org/10.1111/j.1461‐0248.2005.00810.x

Vila,M.,Bartomeus,I.,Dietzsch,A.C.,Petanidou,T.,Steffan‐Dewenter,I.,Stout,J.C.,&Tscheulin,T.(2009).Invasiveplantintegrationintonative plant‐pollinator networks across Europe. Proceedings of the Royal Society B: Biological Sciences,276(1674), 3887–3893. https://doi.org/10.1098/rspb.2009.1076

Woodford,D.J.,Richardson,D.M.,MacIsaac,H.J.,Mandrak,N.E.,vanWilgen,B.W.,Wilson,J.R.U.,&Weyl,O.L.F.(2016).Confrontingthewickedproblemofmanagingbiological invasions.NeoBiota,31,63–86.https://doi.org/10.3897/neobiota.31.10038

Zhang,X.,Lv,T.,&Pu,Y. (2016). Inputgraph:Thehiddengeometry incontrolling complex networks.Scientific Reports,6(1), Article num-ber:38209.https://doi.org/10.1038/srep38209

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:CaguaEF,WoottonKL,StoufferDB.Keystoneness,centrality,andthestructuralcontrollabilityofecologicalnetworks.J Ecol. 2019;107:1779–1790. https://doi.org/10.1111/1365‐2745.13147