kepler geometry of iho elliptical orbits · kepler geometry of iho (isotropic harmonic oscillator)...

44
Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor plots Review of phasor “clock” geometry (From Lecture 7) Integrating IHO equations by phasor geometry Constructing 2D IHO orbits using Kepler anomaly plots Mean-anomaly and eccentric-anomaly geometry Calculus and vector geometry of IHO orbits A confusing introduction to Coriolis-centrifugal force geometry Some Kepler’s “laws” for central (isotropic) force F(r) Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r 2 /2 (Derived rigorously) Angular momentum invariance of Coulomb: F(r)=-GMm/r 2 with U(r)=-GMm·/r (Derived later) Total energy E=KE+PE invariance of IHO: F(r)=-k·r (Derived rigorously) Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r 2 (Derived later) Brief introduction to matrix quadratic form geometry Lecture 8 Revised 12.21.12 from 9.13.2012 1 Friday, December 21, 2012

Upload: others

Post on 11-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits(Ch. 9 and Ch. 11 of Unit 1)

Constructing 2D IHO orbits by phasor plotsReview of phasor “clock” geometry (From Lecture 7)Integrating IHO equations by phasor geometry

Constructing 2D IHO orbits using Kepler anomaly plotsMean-anomaly and eccentric-anomaly geometryCalculus and vector geometry of IHO orbitsA confusing introduction to Coriolis-centrifugal force geometry

Some Kepler’s “laws” for central (isotropic) force F(r)Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2 (Derived rigorously) Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r (Derived later)Total energy E=KE+PE invariance of IHO: F(r)=-k·r (Derived rigorously)Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2 (Derived later)

Brief introduction to matrix quadratic form geometry

Lecture 8 Revised 12.21.12 from 9.13.2012

1Friday, December 21, 2012

Page 2: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Constructing 2D IHO orbits by phasor plotsReview of phasor “clock” geometry (From Lecture 7)Integrating IHO equations by phasor geometry

2Friday, December 21, 2012

Page 3: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

0 12

3

4

5

6

78-7-6

-5

-4

-3

-2-1

01

2

3 4 5

6

78

-7-6

-5

-4-3

-2-1

(2,4)(3,5)(4,6)

(5,7)

(6,8)

(7,-7)

x-position

x-velocity vx/ω

position

x

velocity vx/ω

(a) 1-D Oscillator Phasor Plot

(b) 2-D Oscillator Phasor Plot

Phasor goes

clockwise

by angle ω t

ω t

(8,-6)(9,-5)

y-velocity

vy/ω

(x-Phase 45°

behind

the y-Phase)y-position

φ counter-clockwise

if y is behind x

clockwise

orbit

if x is behind y

(1,3) Left-

handed

Right-

handed

(0,2)

Fx

v0Fy

F=-r(a) (b)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

Unit 1Fig. 9.10

3Friday, December 21, 2012

Page 4: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

0 12

3

4

5

6

78-7-6

-5

-4

-3

-2-1

0123 4 5

67

8-7

-6-5-4-3-2-1

(0,4) (1,5)(2,6)(3,7)

(4,8)(5,9)

x-position

x-velocity vx/ω(a) Phasor Plots

for

2-D Oscillator

or

Two 1D Oscillators

(x-Phase 90° behind

the y-Phase)

a

b b

a

a

0 12

3

4

5

6

78-7-6

-5

-4

-3

-2-1

0123 4 5

67

8-7

-6-5-4-3-2-1

(0,0)(1,1)

(5,5)

(2,2)(3,3)

(4,4)

x-position

a

b b

a

a

y-position

y-velocity

vy/ω

x-velocity vx/ω

(b)

x-Phase 0° behind

the y-Phase

(In-phase case)

y-velocity

vy/ω

0 12345

678-7

-6-5-4-3-2-1

(0,4)(1,5)(2,6)(3,7)

b

y-position

b

Fig. 9.11

Unit 1Fig. 9.12

These are more generic exampleswith radius of x-phasor differing from that of the y-phasor.

4Friday, December 21, 2012

Page 5: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

x

y

121

2

3

4

56

7

8

9

10

121

2

3

4

56

7

8

9

10

11

00°°--1155°°--3300°°--4455°°++1155°°++3300°°

++4455°°

--6600°°

++6600°°

--7755°°

++7755°°

--9900°°

++9900°°

--110055°°

++110055°°

--112200°°

++112200°°

--113355°°

++113355°°

--115500°°

++115500°°

--116655°°

++116655°°

118800°°

118800°°++227700°° ++224400°°++330000°°336600°° ++221100°°++333300°°

vx /ω

vy /ω

Δαy-x

xphasor

yphasor

x-yspace

x

y

xvx

y

v y

++334455°°--334455°°

...after time advances by 180°:(αx=120°-180°=-60°,αy= +135°-180°=-45°)

r(180°)

Ellipsometry Contact Plotsvs.

Relative phase Δα=αx-αyΔα=−15°

(Right-polarized anti-clockwise case)

...after time advances by 180°:(αx=120°-180°=-60°,αy= +135°-180°=-45°)

Initial phase (αx=120°,αy=+135°)

vxv y

vx-vyspace

v(180°)-45°

-60°

5Friday, December 21, 2012

Page 6: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Constructing 2D IHO orbits by phasor plotsReview of phasor “clock” geometry (From Lecture 7)Integrating IHO equations by phasor geometry

6Friday, December 21, 2012

Page 7: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

121

2

3

4

56

7

8

9

10

11

121

2

3

4

56

7

8

9

10

11

x

y

x

y

vx/ω

vy/ω

vx/ω

vy/ω

Initial position: r(0)=(7.0 3.0)

Inital velocity: v(0)=(-8.0 5.0)

7Friday, December 21, 2012

Page 8: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

121

2

3

4

56

7

8

9

10

11

121

2

3

4

56

7

8

9

10

11

x

y

x

y

vx/ω

vy/ω

vx/ω

vy/ω

Initial position: r(0)=(7.0 3.0)

Inital velocity: v(0)=(-8.0 6.0)

8Friday, December 21, 2012

Page 9: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

121

2

3

4

56

7

8

9

10

11

121

2

3

4

56

7

8

9

10

11

x

y

x

y

vx/ω

vy/ω

vx/ω

vy/ω

Initial position: r(0)=(7.0 3.0)

Inital velocity: v(0)=(-8.0 6.0)

9Friday, December 21, 2012

Page 10: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

121

2

3

4

56

7

8

9

10

11

121

2

3

4

56

7

8

9

10

11

x

y

x

y

vx/ω

vy/ω

vx/ω

vy/ω

Initial position: r(0)=(7.0 3.0)

Inital velocity: v(0)=(-8.0 6.0)

10Friday, December 21, 2012

Page 11: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

121

2

3

4

56

7

8

9

10

11

121

2

3

4

56

7

8

9

10

11

x

y

x

y

vx/ω

vy/ω

vx/ω

vy/ω

Initial position: r(0)=(7.0 3.0)

Inital velocity: v(0)=(-8.0 6.0)

11Friday, December 21, 2012

Page 12: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

121

2

3

4

56

7

8

9

10

11

121

2

3

4

56

7

8

9

10

11

x

y

x

y

vx/ω

vy/ω

vx/ω

vy/ω

Initial position: r(0)=(7.0 3.0)

Inital velocity: v(0)=(-8.0 6.0)

12Friday, December 21, 2012

Page 13: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

121

2

3

4

56

7

8

9

10

11

121

2

3

4

56

7

8

9

10

11

x

y

x

y

vx/ω

vy/ω

vx/ω

vy/ω

Initial position: r(0)=(7.0 3.0)

Inital velocity: v(0)=(-8.0 6.0)

13Friday, December 21, 2012

Page 14: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

121

2

3

4

56

7

8

9

10

11

121

2

3

4

56

7

8

9

10

11

x

y

x

y

vx/ω

vy/ω

vx/ω

vy/ω

Initial position: r(0)=(7.0 3.0)

Inital velocity: v(0)=(-8.0 6.0)

14Friday, December 21, 2012

Page 15: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

121

2

3

4

56

7

8

9

10

11

121

2

3

4

56

7

8

9

10

11

x

y

x

y

vx/ω

vy/ω

vx/ω

vy/ω

Initial position: r(0)=(7.0 3.0)

Inital velocity: v(0)=(-8.0 6.0)

15Friday, December 21, 2012

Page 16: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Constructing 2D IHO orbits using Kepler anomaly plotsMean-anomaly and eccentric-anomaly geometryCalculus and vector geometry of IHO orbitsA confusing introduction to Coriolis-centrifugal force geometry

16Friday, December 21, 2012

Page 17: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

b bsin ω t

ω t

ω ta cos ω t

ay=bsin ω t

x=a cos ω t

ω t

r

φ

b

-b

-b

a

a

-a

ω t

a

y=bsin ω t

x=a cos ω t

r

b

-b

-b

a

a

-a

-a

ω t

Step 1. Draw concentriccircles of radius a and band a radius OA at angleω t

Step 3. Draw horizontial line BRfrom b-circle at ω t to line AX.Intersection is orbit point R.

Step 2. Draw vertical line AXfrom a-circle at ωt to x-axis

O

A

O

A

O

A

X X

BR

abω t

b

-b

-b

a

-a

-a

ab

O X O X

Step 4-NRepeatas oftenas needed

ba

Linear HarmonicForce-FieldOrbits

Unit 1Fig. 11.1

(top 2/3’s)

Kepler’s Mean Anomaly Line(slope angle θ =ωt)

Kepler’s Eccentric Anomaly Line

(slope is polar angle φ=atan[y/x])

17Friday, December 21, 2012

Page 18: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

b bsin ω t

ω t

ω ta cos ω t

ay=bsin ω t

x=a cos ω t

ω t

r

φ

b

-b

-b

a

a

-a

ω t

a

y=bsin ω t

x=a cos ω t

r

b

-b

-b

a

a

-a

-a

ω t

Step 1. Draw concentriccircles of radius a and band a radius OA at angleω t

Step 3. Draw horizontial line BRfrom b-circle at ω t to line AX.Intersection is orbit point R.

Step 2. Draw vertical line AXfrom a-circle at ωt to x-axis

O

A

O

A

O

A

X X

BR

abω t

b

-b

-b

a

-a

-a

ab

O X O X

Step 4-NRepeatas oftenas needed

ba

Linear HarmonicForce-FieldOrbits

Unit 1Fig. 11.1

Kepler’s Mean Anomaly

Line

Kepler’s Eccentric Anomaly Line

(slope is polar angle φ=atan[y/x])

18Friday, December 21, 2012

Page 19: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Constructing 2D IHO orbits using Kepler anomaly plotsMean-anomaly and eccentric-anomaly geometryCalculus and vector geometry of IHO orbitsA confusing introduction to Coriolis-centrifugal force geometry

19Friday, December 21, 2012

Page 20: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

r(t) φv(t)/ω

90°

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

r(t)φ=ω tv(t)/ω

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

90°

Time frame angle

φ=ω t(Mean Anomaly)

(a) Orbits (b) Tangents

radius vector :r =rxry

⎝⎜⎜

⎠⎟⎟= x

y⎛

⎝⎜

⎠⎟ =

acosω tbsinω t

⎝⎜⎜

⎠⎟⎟=

acosφbsinφ

⎝⎜⎜

⎠⎟⎟

velocity vector : v =vxvy

⎝⎜⎜

⎠⎟⎟=

−aω sinω tbω cosω t

⎝⎜⎜

⎠⎟⎟= dr

dt= r =

acos φ + 2π( )

bsin φ + 2π( )

⎜⎜⎜

⎟⎟⎟

( for ω = 1)

Unit 1Fig. 11.5

Calculus of IHO orbitsTo make velocity vector v just rotate by π/2 or 90°the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r rotated by π/2 or 90° is m.a. of vector v

20Friday, December 21, 2012

Page 21: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

r(t) φv(t)/ω

90°

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

r(t)φ=ω tv(t)/ω

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

90°

Time frame angle

φ=ω t(Mean Anomaly)

(a) Orbits (b) Tangents

radius vector :r =rxry

⎝⎜⎜

⎠⎟⎟= x

y⎛

⎝⎜

⎠⎟ =

acosω tbsinω t

⎝⎜⎜

⎠⎟⎟=

acosφbsinφ

⎝⎜⎜

⎠⎟⎟

velocity vector : v =vxvy

⎝⎜⎜

⎠⎟⎟=

−aω sinω tbω cosω t

⎝⎜⎜

⎠⎟⎟= dr

dt= r =

acos φ + 2π( )

bsin φ + 2π( )

⎜⎜⎜

⎟⎟⎟

( for ω = 1)

accelerationor force vector : Fm= a =

axay

⎝⎜⎜

⎠⎟⎟=

−aω 2 cosω t

−bω 2 sinω t

⎝⎜⎜

⎠⎟⎟= dv

dt= v = r = d2r

dt2=

acos φ + 22π( )

bsin φ + 22π( )

⎜⎜⎜

⎟⎟⎟

Unit 1Fig. 11.5

or changeof velocity

Calculus of IHO orbitsTo make velocity vector v just rotate by π/2 or 90°the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r rotated by π/2 or 90° is m.a. of vector v

m.a. φ+π/2 of vector v rotated byanother π/2 is m.a. of vector a

21Friday, December 21, 2012

Page 22: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

r(t) φv(t)/ω

90°

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

r(t)φ=ω tv(t)/ω

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

90°

Time frame angle

φ=ω t(Mean Anomaly)

(a) Orbits (b) Tangents

radius vector :r =rxry

⎝⎜⎜

⎠⎟⎟= x

y⎛

⎝⎜

⎠⎟ =

acosω tbsinω t

⎝⎜⎜

⎠⎟⎟=

acosφbsinφ

⎝⎜⎜

⎠⎟⎟

velocity vector : v =vxvy

⎝⎜⎜

⎠⎟⎟=

−aω sinω tbω cosω t

⎝⎜⎜

⎠⎟⎟= dr

dt= r =

acos φ + 2π( )

bsin φ + 2π( )

⎜⎜⎜

⎟⎟⎟

( for ω = 1)

accelerationor force vector : Fm= a =

axay

⎝⎜⎜

⎠⎟⎟=

−aω 2 cosω t

−bω 2 sinω t

⎝⎜⎜

⎠⎟⎟= dv

dt= v = r = d2r

dt2=

acos φ + 22π( )

bsin φ + 22π( )

⎜⎜⎜

⎟⎟⎟

jerk or changeof acceleration : j=jxjy

⎝⎜⎜

⎠⎟⎟=

+aω 3sinω t

−bω 3cosω t

⎝⎜⎜

⎠⎟⎟= da

dt= a = v = r = d3r

dt3=

acos φ + 23π( )

bsin φ + 23π( )

⎜⎜⎜

⎟⎟⎟

Unit 1Fig. 11.5

or changeof velocity or changeof velocity

Calculus of IHO orbitsTo make velocity vector v just rotate by π/2 or 90°the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r rotated by π/2 or 90° is m.a. of vector v

m.a. φ+π/2 of vector v rotated byanother π/2 is m.a. of vector a

...and so forth...

22Friday, December 21, 2012

Page 23: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

r(t) φv(t)/ω

90°

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

r(t)φ=ω tv(t)/ω

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

90°

Time frame angle

φ=ω t(Mean Anomaly)

(a) Orbits (b) Tangents

radius vector :r =rxry

⎝⎜⎜

⎠⎟⎟= x

y⎛

⎝⎜

⎠⎟ =

acosω tbsinω t

⎝⎜⎜

⎠⎟⎟=

acosφbsinφ

⎝⎜⎜

⎠⎟⎟

velocity vector : v =vxvy

⎝⎜⎜

⎠⎟⎟=

−aω sinω tbω cosω t

⎝⎜⎜

⎠⎟⎟= dr

dt= r =

acos φ + 2π( )

bsin φ + 2π( )

⎜⎜⎜

⎟⎟⎟

( for ω = 1)

accelerationor force vector : Fm= a =

axay

⎝⎜⎜

⎠⎟⎟=

−aω 2 cosω t

−bω 2 sinω t

⎝⎜⎜

⎠⎟⎟= dv

dt= v = r = d2r

dt2=

acos φ + 22π( )

bsin φ + 22π( )

⎜⎜⎜

⎟⎟⎟

jerk or changeof acceleration : j=jxjy

⎝⎜⎜

⎠⎟⎟=

+aω 3sinω t

−bω 3cosω t

⎝⎜⎜

⎠⎟⎟= da

dt= a = v = r = d3r

dt3=

acos φ + 23π( )

bsin φ + 23π( )

⎜⎜⎜

⎟⎟⎟

inaugurationor changeof jerk :i =ixiy

⎝⎜⎜

⎠⎟⎟=

+aω 4 cosω t

+bω 4 sinω t

⎝⎜⎜

⎠⎟⎟= dj

dt= j= a = v = r = d4r

dt4=

acos φ + 24π( )

bsin φ + 24π( )

⎜⎜⎜

⎟⎟⎟

Unit 1Fig. 11.5

or changeof velocity or changeof velocity or changeof velocity

Calculus of IHO orbitsTo make velocity vector v just rotate by π/2 or 90°the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r rotated by π/2 or 90° is m.a. of vector v

m.a. φ+π/2 of vector v rotated byanother π/2 is m.a. of vector a

...and so forth...

...and so on...

23Friday, December 21, 2012

Page 24: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Constructing 2D IHO orbits using Kepler anomaly plotsMean-anomaly and eccentric-anomaly geometryCalculus and vector geometry of IHO orbitsA confusing introduction to Coriolis-centrifugal force geometry

24Friday, December 21, 2012

Page 25: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

F = -kr

orbital velocity=V

(b) “Carnival kid” orbiting inspace attached to a spring

centrifugalforce=+kr=+mω2r

ω t

centripetalforce=

(due to spring)

Carnival kidsays:

“This is awful!I can hardlyhold ontothis darnspring.”

F = -kr

orbital velocity=V

(a) “Earthronaut” orbitingtunnel inside Earth

centrifugalforce=+kr=+mω2r

ω t

centripetalforce=

(due to gravity)

Earthronautsays:

“This is great!I’m weightless.”

apogee(x=a, y=0)aphelion=a

perigee(x=0,y=b)

θperhelion=bmass gaining speed

as it falls

VelocityV

θVelocityV centripetal force F=-kr

Negative power( F•V=|F||V|cos θ <0)

Positive power( F•V=|F||V|cos θ >0)

mass losing speedas it rises

Unit 1Fig. 11.2

Unit 1Fig. 11.3

(Radius r decreasing)(Radius r increasing)

25Friday, December 21, 2012

Page 26: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Velocity

V

centripetal force F=-kr

centrifugal force

Total inertial force F=+kr

Coriolis force

centrifugal force

Velocity

along

radial

path

Coriolis force

(depends on

radial path

speed)

Rotational

velocity

V=ωr

circle

of

curvature

Velocity

V

centrifugal force is

Total inertial force F=+kr

circle

of

curvature

(a) Centrifugal and Coriolis

Forces on Merry-Go-Round

(b) Centrifugal and Coriolis

Forces on Oscillator Orbit

(Falling phase)

(c) Centrifugal and Coriolis

Forces on Oscillator Orbit

(Rising phase)

centrifugal force

Velocity

along

radial

path

Coriolis force

centripetal force F=-kr

Velocity

V

centripetal force F=-kr

centrifugal force

Total inertial force F=+kr

Coriolis force

circle

of

curvature

(d) Centrifugal Force

on Oscillator Orbit

(apogee and perigee)

Velocity

V

centripetal force F=-kr

centrifugal force is

Total inertial force F=+kr

Unit 1Fig. 11.4

a-d

Quite confusing? Discussion of Coriolisforces will be done more elegantly and made more physically intuitive in Ch. 12 of Unit1 and in Unit 6.

Physicist Force (where m wants to go)

Mathematician Force (would hold m back)

26Friday, December 21, 2012

Page 27: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Some Kepler’s “laws” for central (isotropic) force F(r)Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2 (Derived rigorously) Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r (Derived later)Total energy E=KE+PE invariance of IHO: F(r)=-k·r (Derived rigorously)Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2 (Derived later)

27Friday, December 21, 2012

Page 28: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

1. Area of triangle rv = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− bsinω t ⋅ −aω sinω t( ) = ab ⋅ω

t = 0 t = π/3ω t = π/2ωv=a ωv=b ω

r rr

ba

Unit 1Fig. 11.8

Some Kepler’s “laws” for central (isotropic) force F(r)...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

for IHO

vxvy

⎝⎜⎜

⎠⎟⎟=

−aω sinω tbω cosω t

⎝⎜⎜

⎠⎟⎟

rxry

!

"##

$

%&&= x

y

!

"#

$

%& =

acos! tbsin! t

!

"##

$

%&&

(Recall from Lecture 7: k = Gm 4π

3ρ⊕ )

28Friday, December 21, 2012

Page 29: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

1. Area of triangle rv = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− asinω t ⋅ −bω sinω t( ) = ab ⋅ω

2. Angular momentum L = mr × v is conserved

L = m |r × v |= m rxvy − ryvx( ) = m ⋅ab ⋅ω

t = 0 t = π/3ω t = π/2ωv=a ωv=b ω

r rr

ba

Unit 1Fig. 11.8

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

for IHO

for IHO

rv

|r×v| =r·v·sinrv

(Recall from Lecture 7: k = Gm 4π

3ρ⊕ )

29Friday, December 21, 2012

Page 30: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

1. Area of triangle rv = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− asinω t ⋅ −bω sinω t( ) = ab ⋅ω2. Angular momentum L = mr × v is conserved

L = m |r × v |= m rxvy − ryvx( ) = m ⋅ab ⋅ω

t = 0 t = π/3ω t = π/2ωv=a ωv=b ω

r rr

ba

Unit 1Fig. 11.8

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

for IHO

for IHO

3. Equal area is swept by radius vector in each equal time interval T

AT =r × dr

20

T

∫ =r × dr

dt2

dt0

T

∫ = r × v2

dt0

T

∫ = L2m

dt0

T

∫ = L2m

T for IHO

by 2.

rdr

|r×dr| =r·dr·sinrdr

(Recall from Lecture 7: k = Gm 4π

3ρ⊕ )

30Friday, December 21, 2012

Page 31: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

1. Area of triangle rv = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− asinω t ⋅ −bω sinω t( ) = ab ⋅ω2. Angular momentum L = mr × v is conserved

L = mr × v = m rxvy − ryvx( ) = m ⋅ab ⋅ω = m ⋅ab ⋅ 2πτ

t = 0 t = π/3ω t = π/2ωv=a ωv=b ω

r rr

ba

Unit 1Fig. 11.8

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

for IHO

for IHO

3. Equal area is swept by radius vector in each equal time interval T

AT =r × dr

20

T

∫ =r × dr

dt2

dt0

T

∫ = r × v2

dt0

T

∫ = L2m

dt0

T

∫ = L2m

T for IHO

In one period: τ= 1υ

= 2πω

= 2mAτ

L the area is: Aτ =

Lτ2m

( = ab ⋅π for ellipse orbit)

(Recall from Lecture 7: k = Gm 4π

3ρ⊕ )

31Friday, December 21, 2012

Page 32: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

1. Area of triangle rv = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− asinω t ⋅ −bω sinω t( ) = ab ⋅ω2. Angular momentum L = mr × v is conserved

L = mr × v = m rxvy − ryvx( ) = m ⋅ab ⋅ω = m ⋅ab ⋅ 2πτ

t = 0 t = π/3ω t = π/2ωv=a ωv=b ω

r rr

ba

Unit 1Fig. 11.8

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

for IHO

for IHO

3. Equal area is swept by radius vector in each equal time interval T

AT =r × dr

20

T

∫ =r × dr

dt2

dt0

T

∫ = r × v2

dt0

T

∫ = L2m

dt0

T

∫ = L2m

T for IHO

In one period: τ= 1υ

= 2πω

= 2mAτ

L the area is: Aτ =

Lτ2m

( = ab ⋅π for ellipse orbit)

(Recall from Lecture 7: k = Gm 4π

3ρ⊕ )

( Recall from Lecture 7: ω = k /m = Gρ⊕4π / 3 )

32Friday, December 21, 2012

Page 33: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Some Kepler’s “laws” for central (isotropic) force F(r)Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2 (Derived rigorously) Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r (Derived later)Total energy E=KE+PE invariance of IHO: F(r)=-k·r (Derived rigorously)Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2 (Derived later)

33Friday, December 21, 2012

Page 34: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

1. Area of triangle rv = r × v/2 is constant

r × v = rxvy − ryvx =ab ⋅ Gρ⊕4π / 3 for IHO

a−1/2b GM⊕ for Coul.

⎧⎨⎪

⎩⎪

t = 0 t = π/3ω t = π/2ωv=a ωv=b ω

r rr

ba

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

for IHO

t = 0 vv

r rrba

v

vrCoulomb:

IHO:

for Coul.

34Friday, December 21, 2012

Page 35: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

1. Area of triangle rv = r × v/2 is constant

r × v = rxvy − ryvx =ab ⋅ Gρ⊕4π / 3 for IHO

a−1/2b GM⊕ for Coul.

⎧⎨⎪

⎩⎪2. Angular momentum L = mr × v is conserved

L = mr × v = m rxvy − ryvx( ) = m·ab ⋅ Gρ⊕4π / 3 for IHO

m·a−1/2b GM⊕ for Coul.

⎧⎨⎪

⎩⎪

t = 0 t = π/3ω t = π/2ωv=a ωv=b ω

r rr

ba

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

for IHO

for IHO

t = 0 vv

r rrba

v

vrCoulomb:

IHO:

for Coul.

for Coul.

35Friday, December 21, 2012

Page 36: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

1. Area of triangle rv = r × v/2 is constant

r × v = rxvy − ryvx =ab ⋅ Gρ⊕4π / 3 for IHO

a−1/2b GM⊕ for Coul.

⎧⎨⎪

⎩⎪2. Angular momentum L = mr × v is conserved

L = mr × v = m rxvy − ryvx( ) = m·ab ⋅ Gρ⊕4π / 3 for IHO

m·a−1/2b GM⊕ for Coul.

⎧⎨⎪

⎩⎪

t = 0 t = π/3ω t = π/2ωv=a ωv=b ω

r rr

ba

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

for IHO

for IHO

3. Equal area is swept by radius vector in each equal time interval T

τ= 1υ= 2πω

= 2mAτ

L= 2m·ab ⋅π

L=

2m·ab ⋅πm·ab ⋅ Gρ⊕4π / 3

= 2πGρ⊕4π / 3

for IHO

2m·ab ⋅πm·a−1/2b GM⊕

= 2πa−3/2 GM⊕

for Coul.

⎪⎪

⎪⎪

t = 0 vv

r rrba

v

vrCoulomb:

IHO:

for Coul.

for Coul.

In one period:

that is ωIHO

that is ωCoul

Applies toany central

F(r)

Applies toIHO and Coulomb

36Friday, December 21, 2012

Page 37: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Some Kepler’s “laws” for central (isotropic) force F(r)Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2 (Derived rigorously) Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r (Derived later)Total energy E=KE+PE invariance of IHO: F(r)=-k·r (Derived rigorously)Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2 (Derived later)

37Friday, December 21, 2012

Page 38: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Kepler laws involve -momentum conservation in isotropic force F(r)Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2

Total energy=KE+PE is constant

KE + PE = 12v iM i v + 1

2r iK i r

= 12

vx vy( )• m 00 m

⎛⎝⎜

⎞⎠⎟•

vxvy

⎝⎜⎜

⎠⎟⎟+ rx ry( )• k 0

0 k⎛⎝⎜

⎞⎠⎟•

rxry

⎝⎜⎜

⎠⎟⎟

= 12mv2

x + 12mv2

y + 12kr2

x + 12kr2

y

= 12m(−aω sinω t)2 + 1

2m(bω cosω t)2 + 1

2k(acosω t)2 + 1

2k(bsinω t)2

vxvy

⎝⎜⎜

⎠⎟⎟=

−aω sinω tbω cosω t

⎝⎜⎜

⎠⎟⎟

rxry

!

"##

$

%&&= x

y

!

"#

$

%& =

acos! tbsin! t

!

"##

$

%&&

38Friday, December 21, 2012

Page 39: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Kepler laws involve -momentum conservation in isotropic force F(r)Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2

Total IHO energy=KE+PE is constant

KE + PE = 12v iM i v + 1

2r iK i r

= 12

vx vy( )• m 00 m

⎛⎝⎜

⎞⎠⎟•

vxvy

⎝⎜⎜

⎠⎟⎟+ rx ry( )• k 0

0 k⎛⎝⎜

⎞⎠⎟•

rxry

⎝⎜⎜

⎠⎟⎟

= 12mv2

x + 12mv2

y + 12kr2

x + 12kr2

y

= 12m(−aω sinω t)2 + 1

2m(bω cosω t)2 + 1

2k(acosω t)2 + 1

2k(bsinω t)2

= 12ma2ω 2 (sin2ω t) + 1

2mb2ω 2 (cos2ω t)2 + 1

2ka2 (cos2ω t) + 1

2kb2 (sin2ω t)

= 12mω 2 (a2 + b2 ) Given : k = mω 2

39Friday, December 21, 2012

Page 40: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

= 12ma2ω 2 (sin2ω t) + 1

2mb2ω 2 (cos2ω t)2 + 1

2ka2 (cos2ω t) + 1

2kb2 (sin2ω t)

= 12mω 2 (a2 + b2 ) Given : k = mω 2

E = KE + PE = 12mω 2 (a2 + b2 ) = 1

2k(a2 + b2 ) since: ω = k

m = Gρ⊕4π / 3 or: mω 2 = k

Kepler laws involve -momentum conservation in isotropic force F(r)Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2

Total IHO energy=KE+PE is constant

KE + PE = 12v iM i v + 1

2r iK i r

= 12

vx vy( )• m 00 m

⎛⎝⎜

⎞⎠⎟•

vxvy

⎝⎜⎜

⎠⎟⎟+ rx ry( )• k 0

0 k⎛⎝⎜

⎞⎠⎟•

rxry

⎝⎜⎜

⎠⎟⎟

= 12mv2

x + 12mv2

y + 12kr2

x + 12kr2

y

= 12m(−aω sinω t)2 + 1

2m(bω cosω t)2 + 1

2k(acosω t)2 + 1

2k(bsinω t)2

40Friday, December 21, 2012

Page 41: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Some Kepler’s “laws” for central (isotropic) force F(r)Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2 (Derived rigorously) Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r (Derived later)Total energy E=KE+PE invariance of IHO: F(r)=-k·r (Derived rigorously)Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2 (Derived later)

41Friday, December 21, 2012

Page 42: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Kepler laws involve -momentum conservation in isotropic force F(r)Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2

We'll see that the Coul. orbits are simpler: (like the period...not a function of b)

E = KE + PE = 12mv2

x +12mv2

y −kr= 1

2mv2

x +12mv2

y −GM⊕m

r= −GM⊕m

a

Total IHO energy=KE+PE is constant

KE + PE = 12v iM i v + 1

2r iK i r

= 12

vx vy( )• m 00 m

⎛⎝⎜

⎞⎠⎟•

vxvy

⎝⎜⎜

⎠⎟⎟+ rx ry( )• k 0

0 k⎛⎝⎜

⎞⎠⎟•

rxry

⎝⎜⎜

⎠⎟⎟

= 12mv2

x + 12mv2

y + 12kr2

x + 12kr2

y

= 12m(−aω sinω t)2 + 1

2m(bω cosω t)2 + 1

2k(acosω t)2 + 1

2k(bsinω t)2

= 12ma2ω 2 (sin2ω t) + 1

2mb2ω 2 (cos2ω t)2 + 1

2ka2 (cos2ω t) + 1

2kb2 (sin2ω t)

= 12mω 2 (a2 + b2 ) Given : k = mω 2

E = KE + PE = 12mω 2 (a2 + b2 ) = 1

2k(a2 + b2 ) since: ω = k

m = Gρ⊕4π / 3 or: mω 2 = k

42Friday, December 21, 2012

Page 43: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by r•Q•r=1 is called positive-definite

r •Q• r = 1

x y( )•1

a20

0 1

b2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

• xy

⎝⎜

⎠⎟ = 1= x y( )•

xa2

yb2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

= x2

a2+ y2

b2

A inverse matrix Q-1 generates an ellipse by p•Q -1•p=1 called inverse or dual ellipse:

p•Q−1•p = 1

px py( )• a2 0

0 b2

⎝⎜⎜

⎠⎟⎟•

pxpy

⎝⎜⎜

⎠⎟⎟= 1= px py( )• a2 px

b2 py

⎜⎜⎜

⎟⎟⎟= a2 px

2 + b2 y2

43Friday, December 21, 2012

Page 44: Kepler Geometry of IHO Elliptical Orbits · Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (Ch. 9 and Ch. 11 of Unit 1) Constructing 2D IHO orbits by phasor

r(φ)

φ=ω t

ab

b-circle

a-circle

r(φ)ab

r(φ)=r(φ+π/2)•

r(φ)•r(φ)

Original ellipse

r•Q•r = r•p = 1

p(φ)

p(φ)

p(φ)= p(φ+π/2)•

p(φ)•

vector p(φ) isperpendicular

to r(φ)•vector p(φ) isperpendicular

to r(φ)

•Inverse ellipse

p•Q-1•p =p•r = 1

p(φ)

(a) Quadratic form ellipse and

Inverse quadratic form ellipse

(b) Ellipse tangents

r(φ)•

φ=ω t

p =Q i r = 1/ a2 00 1/ b2

⎝⎜

⎠⎟ •

xy

⎝⎜

⎠⎟ =

x / a2

y / b2

⎝⎜⎜

⎠⎟⎟=

(1 / a)cosφ(1 / b)sinφ

⎝⎜

⎠⎟ where:

x = rx = acosφ = acosω ty = ry = bsinφ = bsinω t

so: p i r = 1

r • p = 0 = rx ry( ) • pxpy

⎝⎜

⎠⎟ = −a sinφ b cosφ( ) • (1 / a) cosφ

(1 / b) sinφ⎛⎝⎜

⎞⎠⎟

where:rx = −a sinφry = b cosφ

and:px = (1 / a) cosφ py = (1 / b) sinφ

Note some quadratic form mutual duality relations:unit

mutual projection

p is perpendicular to velocity v=r , a mutual orthogonality•

Unit 1Fig. 11.6

44Friday, December 21, 2012