keele open access et al post... · web viewthere was a significant difference between the mean...

39
The use of a within-hive replication bioassay method to investigate the phagostimulatory effects of pollen, bee bread, and pollen extracts, on free-flying honey bee colonies Richard James Bridgett a , William Daniel John Kirk b , Falko Pieter Drijfhout a a Chemical Ecology Group, School of Physical and Geographical Sciences, Keele University, Staffordshire, UK b School of Life Sciences, Keele University, Staffordshire, UK Corresponding author: R Bridgett [email protected] Short title: Phagostimulatory effects of pollen 1

Upload: others

Post on 06-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

The use of a within-hive replication bioassay method to investigate the phagostimulatory effects of pollen, bee bread,

and pollen extracts, on free-flying honey bee colonies

Richard James Bridgetta, William Daniel John Kirkb, Falko Pieter Drijfhouta

a Chemical Ecology Group, School of Physical and Geographical Sciences, Keele University, Staffordshire, UKb School of Life Sciences, Keele University, Staffordshire, UKCorresponding author: R Bridgett [email protected]

Short title: Phagostimulatory effects of pollen

1

Page 2: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

Abstract

A method for conducting multiple-choice bioassays, incorporating within-hive replication, is described and demonstrated here. This method has been used to study the influence of phagostimulants in pollens on food uptake within honey bee colonies. Experiments using bee-collected trapped pollens and a sample of stored bee bread, suggest there is little or no difference in the preference of bees towards fresh pollen or bee bread. Further work using solvent extracts of pollen showed that phagostimulants are easily extractable in sufficient quantities to increase the consumption of artificial diet in field-based colonies, despite alternative natural forage being available. Data indicate that the addition of polar solvent extracts of pollen increase diet consumption more than less polar extracts. Isolating and identifying phagostimulants could contribute towards production of a range of more palatable artificial diets than those currently available.

Key Words: Apis mellifera/phagostimulant/diet/feeding/forage

Introduction

Numbers of honey bee colonies (Apis mellifera) have fallen sharply over recent years

across Europe and North America (VanEngelsdorp et al. 2008; 2010; Aston 2010;

Carreck & Neumann 2010; Potts et al. 2010; van der Zee et al. 2012). One way in which

beekeepers may attempt to stimulate colony population growth is to offer high-protein

artificial or supplemental diets to colonies. Commercial diets are available, but at times

these can be poorly consumed by bees compared to pollen (DeGrandi-Hoffman et al.

2010; Saffari et al. 2010a; Saffari et al. 2010b). Although bees generally prefer pollen

to a pollen substitute, the addition of small amounts of natural pollen improves the

uptake of artificial or supplemental diets within the hive, thereby contributing to better

overall colony health during times of sparse pollen (Herbert et al. 1980; Standifer 1980;

Manning et al. 2007). However, adding pollen to diets has risks associated with it, such

as transmission of pathogens between colonies, or the addition of pollens contaminated

with toxic substances (Herbert et al. 1980; Schmidt et al. 1987; Saffari et al. 2010b).

2

Page 3: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

Such risks can be minimised by subjecting pollen to a pre-feeding sterilisation process,

such as the irradiation or heat treatments described by Williams et al (2013); although

this is time consuming and may be unwanted expense for beekeepers. A recently

developed commercial diet has been reported to be as palatable as pollen to bees

(Saffari et al 2010a; Saffari et al. 2010b). Unfortunately, the reason for the increased

acceptability of this diet has not been identified, and diet palatability here was assessed

partly using no-choice feeding trials. More confidence could be placed in this result

were colonies offered artificial diet and pollen in choice trials; further research into

increasing the palatability of artificial diets is required.

Pollen palatability is not solely linked to the protein content of pollens (Schmidt 1984).

Sunflower (Helianthus annuus) pollen has a protein content of only 15% (Pernal and

Currie 2000), and studies into colony longevity have shown that although colonies can

perform poorly when fed this nutritionally deficient pollen alone, bees find sunflower

pollen highly palatable (Schmidt et al 1995). Pollens also contain extractable naturally

occurring feeding stimulants (phagostimulants) (Doull 1973; Schmidt 1985; Schmidt et

al. 1987; Dobson & Bergstrom 2000; Schmidt & Hanna 2006). Previous work has

suggested that the lipid-based adhesive substance pollenkitt (in addition to other

functions) may be responsible for making pollen attractive to pollinators (Pacini and

Hesse 2005), whilst another study shows that a particular long chain fatty acid (trans,

cis, cis,-2,9,12 octadecatrienoic acid) acts as a strong attractant towards foraging bees

(Hopkins et al. 1969). Unfortunately, no other examples of studies confirming the

action of this fatty acid have been found, and it may be unwise to perpetuate assertions

from historical studies that have not been reconfirmed. Therefore, despite these

3

Page 4: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

assertions, the chemical nature of phagostimulants has more recently been reported as

remaining unknown (Schmidt & Hanna 2006).

Isolating and identifying additional phagostimulants could contribute towards the

production of a range of more palatable artificial diets. Using these could mitigate

against the risks associated with adding natural pollen to diets; thereby allowing

beekeepers to strengthen their colonies more safely. To achieve this, more

understanding of their chemical nature, and origin, is required.

Foraging bees do not consume the pollen they return to the hive. It is off-loaded to other

colony members that facilitate its processing. Foraged pollen is packed into comb cells,

covered with honey, and undergoes a chemical conversion into bee bread prior to

consumption (Vasquez & Olofsson 2009). The conversion processes include bacterial

lactic acid fermentation, but are not fully understood (Gilliam et al. 1989; Vasquez &

Olofsson 2009). The resultant bee bread has a lower pH than pollen, helping to prevent

detrimental microbial growth and spoilage (Loper et al. 1980; Herbert & Shimanuki

1978). Bee bread may also be of greater nutritional value, as lactic acid bacteria could

enhance the availability of vitamins B7 B11 and B12; vitamin B12 not being naturally

available from plant products (Vasquez & Olofsson 2009). Additionally it is partially

pre-digested, with some authors speculating that the end product may be more palatable

to bees than fresh pollen (Loper et al. 1980). The presence of compounds identified as

attractants to foraging bees in pollens (Hopkins et al. 1969), does not necessarily mean

that the same compounds function as phagostimulants for consumption within the hive.

There are documented examples of foraged pollens being poorly consumed once

4

Page 5: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

returned to the hive, and, of certain pollens being consumed despite exhibiting some

level of toxicity towards bees (Schmidt et al. 1995).

Previous phagostimulant studies have shown that increased consumption of artificial

diets can be achieved if solvent extracts of pollens are added. Studies indicate that both

polar and non-polar solvent extracts of pollen can provide increased stimulation

(Robinson & Nation 1968; Doull & Standifer 1970; Doull 1974b; Schmidt 1985;

Schmidt & Hanna 2006). What is not clear, however, is whether compounds extracted

by polar or non-polar solvents increase diet consumption more than the other, or, given

that bees do not consume freshly foraged pollen (Herbert & Shimanuki 1978), whether

there may be a more suitable pollen material to use than freshly trapped pollen

(corbicular pollen pellets) in attempting to isolate phagostimulants. Were bee bread

more palatable than fresh pollen, this may indicate that additional phagostimulants are

present following the conversion process. If so, using bee bread in studies aimed at

identifying phagostimulants would be more appropriate.

The relative palatability of different diets to colonies can be assessed more rigorously

by offering multiple diets to colonies, alongside control diets. It would be of additional

benefit if methods existed that enabled the gathering of sufficient data to perform

appropriate statistical analysis, without the need for large numbers of experimental

colonies. Being able to perform within-hive replication would allow enough replicates

to perform statistical analyses, but with a decreased number of colonies. Six

experiments using free-flying field colonies are communicated here. Experiments 1-3

focussed on ensuring the method was suitable to use in conducting multiple-choice

bioassays incorporating within-hive replication. Experiments 4-6 used this bioassay

method to test: 1) whether or not there was a significant difference between the

5

Page 6: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

phagostimulatory effects of a sample of bee bread, and bee-collected trapped pollen

(experiments 4a and 4b ); 2) whether extractable phagostimulants from pollens could

increase the uptake of artificial diet in the presence of alternative natural forage

(experiment 5), and 3) whether polar or non-polar solvent extracts of pollens provide

greater feeding stimulation to pollen-consuming bees (experiment 6).

Materials and Methods

Honey bee (Apis mellifera) colonies used within these studies were free-flying, and

located in a semi-rural environment between open farmland and urban development

within the UK. They were housed in modified 46 x 46 cm British national hives. These

consisted of one brood box and either one or two supers; each holding ten frames.

Colonies were of approximately equal strength, with bees on at least eight frames within

the brood chamber. Freshly foraged pollen was trapped using a hive entrance pollen trap

throughout 2012 and 2013, and stored at –40°C until use.

All bioassays utilised an artificial diet consisting of (by mass), 65% commercially

available Soya flour (NBTY Europe Ltd), 20% commercially available vegetable fat

(TREX, Edible oils Ltd), and 15% icing sugar (beet sugar, Silver Spoon, UK) as either a

control, or a substrate diet to which additions could be added for activity testing as

treatments. Small amounts of cool tap water were added to diets to facilitate their

binding into a dough-like texture. This formulation is an adaption of a publicised recipe

6

Page 7: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

by the Australian Government’s Rural Industries Research and Development

Corporation (Somerville 2005). Diets were prepared as a single bulk diet before being

split and administered to colonies in patty form within small 7mm deep, 3.5cm by

3.5cm, weighing boats (Fisher Scientific, UK). Patty surface area can influence

consumption, with larger surface area patties being consumed more quickly (Avni et al.

2009). Using weighing boats to deliver patties in, allowed standardization of individual

patty surface area to 12.25cm2 each, therefore eliminating this as a potential problem.

Colonies were double queen excluded (Herzog type) with patties placed, upturned, in

the bee space created between the queen excluders, above the brood nest. Patties were

positioned regularly in a grid pattern to ensure even distribution of treatments across the

colony, therefore minimising any positional bias. Patties were placed approximately

4cm from each other; with no patty positioned above an area of the brood chamber not

populated by bees. Diet consumption was measured by monitoring mass loss over time;

with bee preference inferred from this. Trials were conducted over a period of four days,

unless complete consumption of a patty was observed, at which point trials were halted

so as not to let the change in available diets (alteration of choice) affect the outcome.

Bioassay method development.

Performing within-hive replication leads to increased variation in the consumption of

any given diet, due to spatial variation in the placement of patties relative to the bulk of

the brood nest. To test whether the bioassay method is appropriate, and can effectively

distinguish between diets of differing palatability, despite this spatial variance, two

experiments were conducted.

Experiment 1- Bioassay of identical palatable diets only

7

Page 8: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

To ensure that spatial variation in patty placement consumption does not produce a false

positive result, four identical palatable diets were offered to colonies. These were

formulated by replacing 10% (by mass) of the described diet formulation with trapped

pollen; 55% of the whole remained as soya flour, with the amounts of vegetable fat and

sugar unchanged at 20% and 15% respectively. Trapped pollen pellets were lightly

broken down using a pestle and mortar to separate grains prior to addition to the diet.

This aided mixing and enhanced distribution throughout the diets. The four diets were

arbitrarily designated replicate A, B, C and D respectively. Each was split into sixteen

individual patties weighing 9.5g ± 0.5g each and offered to four colonies. Four patties

of each diet were administered to each colony in a regular arrangement (sixteen patties

in total), and their mass loss over four days was recorded. Data were then statistically

analysed to test whether there was any significant difference in the consumption of the

four identical diets.

Experiment 2- Bioassay of control versus treatment diets

To ensure that increased spatial variation does not prevent the detection of a difference

in diet palatability overall, a bioassay with two control diets (without pollen) of the

formulation described at the beginning of this section (Controls A and B), and two

treatment diets (Treatments C and D) was performed. Treatment diets were prepared as

described for experiment 1, incorporating 10% trapped pollen. These four diets were

then offered to colonies in the same manner as the previous experiment, with two

control (eight patties) and two treatment diets (eight patties) per colony. Consumption

8

Page 9: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

data were statistically analysed to confirm that the two diet types could be distinguished

from each other.

Experiment 3- Passive moisture loss simulation

A third experiment aimed at approximating the greatest degree of mass loss due to the

passive drying-out, (moisture loss) of diets in colonies over the test period was

performed. A diet of control formulation was prepared as before. This was split into 32

individual patties of 9.5g ± 0.5g that were placed within an incubator. The incubator

was kept at 34°C to simulate colony temperature, and mass loss of the individual patties

was recorded at 24hr intervals over a period of ten days.

Palatability testing

Experiments 4a and 4b- The phagostimulatory effects of bee bread and fresh pollen

To assess the relative palatability of fresh pollen and bee bread, two identical bioassays

(experiments 4a and 4b) were performed consecutively. Within these, treatment diets

containing 10% bee bread and 10% fresh pollen, and a control diet were offered to

colonies. This comparison requires that both pollen forms contain broadly the same

pollen species. Attempts to perform this comparison may be confounded if this is not

the case. For this experiment, trapped pollen was collected on 8 May and 24 May 2012,

and bee bread was removed from a frame on 24 May 2012. Pollen and bee bread were

stored at –40°C until use.

Samples of the most common colour observed by eye from both the trapped pollen and

bee bread samples were mounted and examined microscopically according to the

9

Page 10: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

method described by Sawyer (1981). Pollens were identified with the aid of a reference

set of mounted pollen grains within the School of Life Sciences at Keele University.

Under natural conditions it is almost impossible to ensure bee bread samples contain

identical pollens to trapped samples, but sampling of both was done in the spring, when

bee bread in colonies from the previous season would likely have been used up, to

maximise the chance of pollen overlap.

Diets were prepared as before and split into individual patties weighing 8.5g ± 0.5g each

at placement. Four colonies were used within these experiments, with sixteen replicates

of each diet (four control, four trapped pollen treatment and four bee bread treatment

per colony) used in each experiment.

Experiment 5-Phagostimulant effect on free-flying colonies

This experiment assessed whether the addition of solvent extracts containing

phagostimulants could increase the consumption of artificial diet in free-flying field

colonies, in the presence of alternative natural forage. A series of ultrasonic assisted

solvent extractions, within an increasing polarity gradient, using n-hexane, ethyl acetate,

and methanol (HPLC grade solvents, Fisher Scientific) were performed on samples of

mixed-species trapped pollens. Extractions were performed in series on the same pollen

sample. Extraction with n-hexane was followed by extraction with ethyl acetate and

then methanol. These solvents were used to ensure compounds of differing polarities

were all efficiently extracted from the pollens.

Seven millilitres of extraction solvent were added per 1g of pollen to be extracted within

a 50mL centrifuge tube. This was then vortexed for 1 min before being placed in an

10

Page 11: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

ultrasonic bath for a further 30 min. The temperature of the water bath was not allowed

to exceed 45°C. Following this, extracts were centrifuged as required to remove pollen

solid from the solvent, before the supernatants were removed for further use. Extracts

were pooled, and the solvent was evaporated as far as possible. The resultant slurry was

then added to a diet of the formulation described previously to give a treatment diet

containing pollen extract.

The remaining pollen, post-extraction, was then added to another diet, forming a second

(extracted pollen) treatment diet. A third diet of the previous formulation alone provided

a control to test against these treatments. Treatment diet patties were prepared before

being left for 48h to facilitate complete solvent evaporation. The control diet, the

treatment diet containing the solvent extract, and the treatment diet containing the post-

extraction pollen were then offered to colonies. Three colonies were used, with five

replicates of each of these diets placed in each. Individual patties weighed 8.5g ± 0.5g at

placement. The experiment was halted after three days.

Experiment 6- The effect of solvent extract polarity on artificial diet consumption

To compare the effect that solvent extracts (varying in polarity) of pollens have on diet

consumption, another series of ultrasonic-assisted solvent extractions were performed

on two samples of mixed-species trapped pollens. The described extraction procedure of

experiment 5 was repeated. As well as ensuring efficient compound extraction, it is

expected that utilising these solvents also facilitates some crude segregation (based on

polarity) of extracted compounds between the extracts. Again, extractions were

performed in series, with all three solvent extractions performed on both pollen samples.

11

Page 12: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

The solvents were evaporated almost to dryness, leaving two n-hexane, two ethyl

acetate, and two methanol extracts to be added to diets as required.

One n-hexane, one ethyl acetate, and one methanol extract were pooled and added to an

artificial diet of the formulation given previously to use as a control. In the same way,

three additional treatment diets were formulated, but each treatment diet only had one

solvent extract (n-hexane, or ethyl acetate, or methanol) added. All four diets were split

into patties before again being left for 48 hours to facilitate complete solvent

evaporation. They were again distributed across the four brood chambers in a regular

manner, with sixteen replicates (four per colony) of each of the diets offered in total.

Patties weighed 8.5g ± 0.5g at placement. This experiment was halted after day three.

Statistical analysis

Previous studies have highlighted that feeding bees will not consume bee bread which is

located more than 7cm from the brood; stores located further than this are discovered

only by chance (Doull 1974a; van der Steen 2007). Each patty is considered an

independent observation within this method. Data were log10 (x) transformed to

homogenise the variance and normalise the distribution, before being analysed by

ANOVA within Minitab 16 (Minitab Inc., USA). ANOVA of experiments 1, 2, 3, 5 and

6 were conducted with colony considered as a block. The results of experiments 4a and

4b, carried out to assess the relative phagostimulatory effects of pollen and bee bread,

were combined after confirming the absence of a treatment x experiment interaction.

This allowed statistical analysis to be conducted with 32 replicates, and experiments 4a

and 4b are hereafter referred to as experiment 4. In experiment 4 colony and experiment

12

Page 13: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

were considered as blocks to remove the between-colony and between-experiment

variation. The regular distribution of different diets minimises the effect of spatial

variation in consumption from the density of brood below. See Fig.1 for an illustration

of a typical arrangement of patties across a brood chamber. Multiple comparisons of

individual treatments used Tukey’s test.

Results

Experiment 1- Bioassay of identical palatable diets only

There was no significant effect of diet (F 3, 57 = 0.00, P = 1.00) (Fig. 2), confirming that

the method was not producing false positives.

Experiment 2- Bioassay of control versus treatment diets

Data from a colony that swarmed were excluded from the analysis, leaving twelve

replicates of each diet type. There was a significant effect of diet on consumption (F3,42

= 135.36 P <0.001) (Fig. 3). There was a significant difference between the mean

consumption of Control A compared to Treatment C and Treatment D (both P <0.001),

but there was no significant difference between the consumption of Control A and

Control B (P = 0.99). Likewise, there was a significant difference between the mean

consumption of Control B and Treatment C and Treatment D (both <0.001). There was

no difference in the mean consumption of Treatment C and Treatment D (P = 1.00).

13

Page 14: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

Experiment 3- Passive moisture loss simulation

The mean cumulative mass loss of diets over a ten day period is shown in Fig. 4. The

mean decrease in mass due to passive moisture loss alone was 0.855g ± 0.01g and

0.971g ± 0.01g after three and four days respectively. This equates to 10% of the mean

initial mass.

Experiment 4- The phagostimulatory effects of bee bread and fresh pollen

There was a significant effect of diet on consumption (F2,89 = 116.36, P <0.001) (Fig. 5).

There was a significant difference between the mean consumption of control diet and

trapped pollen diet (P <0.001), and control diet and bee bread diet (P <0.001). However,

there was no significant difference between the consumption of trapped pollen diet and

bee bread diet (P = 0.12).

The trapped pollen samples contained predominantly pollens from species within the

Rosaceae, with lesser amounts from the Asteraceae, and Liliaceae. There was good

overlap with the bee bread samples, with the most abundant grains observed here also

Rosaceae. However, there were fewer unidentified pollens in the bee bread samples. At

the time of collection, species flowering within foraging distance of the colonies

included Rosaceae (hawthorn, cherry, apple, pear, rowan), Asteraceae (dandelion), and

Liliaceae (bluebell).

Experiment 5- Phagostimulant effect on free-flying colonies

14

Page 15: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

There was again a significant effect of diet on consumption (F2,40 = 28.33, P <0.001)

(Fig. 6). There was a significant difference between the consumption of all three test

diets: control and pollen extract diet (P <0.001); control and extracted pollen treatment

(P <0.001); and pollen extract treatment and extracted pollen diet (P = 0.01).

Experiment 6- The influence of varying solvent polarity pollen extracts on artificial diet

consumption

There was a significant effect of diet on consumption (F3,56 = 4.71, P = 0.01) (Fig. 7).

There was a significant difference between the mean consumption of the pooled extract

control diet and the diet containing hexane extract alone (P = 0.01). There was no

significant difference in the mean consumption of the control diet and the diet

containing ethyl acetate extract only (P = 0.07) or the diet containing methanol extract

only (P = 0.89). There was also no significant difference in the mean consumption of

the diet containing the hexane extract only and the diet containing the ethyl acetate

extract only (P = 0.85), or the diet containing the methanol extract only (P = 0.06).

There was no significant difference in the consumption of the diet containing ethyl

acetate extract only and the diet containing methanol extract only (P = 0.30).

Discussion

Experiments 1 and 2 showed that regular distribution of treatments above the brood

within each hive adequately reduced any bias from spatial variation of the brood below.

The method did not produce false positives and it correctly distinguished between

palatable and less palatable diets.

15

Page 16: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

Data from experiment 3 suggest that after three or four days mass loss of up to

approximately 1g (10%) may be expected, due to passive moisture loss alone. This data

should be treated with a degree of caution though, as although approximate colony

temperature could be replicated, there was no facility to replicate colony humidity.

Increased colony humidity is almost certainly going to influence the rate of moisture

loss of patties placed within. However, it is unlikely it would increase the rate of

moisture loss above that observed here, and mass loss of greater than 10% of patties is

therefore likely due to consumption by bees.

The experiment assessing the phagostimulatory effects of bee bread and fresh pollen

(experiment 4) showed that bees exhibited no significant preference for diets containing

either freshly foraged pollen, or a sample of bee bread. In this instance, these results do

not support previous suggestions that bees may find bee bread more palatable (Loper et

al. 1980). The addition of 10% by mass of pollen or bee bread significantly increased

diet uptake. As there was no indication of an increase in phagostimulant abundance due

to the pollen conversion process, it seems acceptable to use freshly trapped pollen

pellets in work aimed at identifying phagostimulants; trapped pollen is easier to gather

and manipulate than bee bread, and no preference towards bee bread was observed here.

The lack of a preference for either diet may also reveal additional information relating

to the chemical nature of phagostimulants in pollens. Considering the function of

phagostimulants may be important when devising identification methods. Volatiles are

easily analysed using gas chromatography, but less volatile, more polar, compounds are

likely to require the use of alternative analytical methods in their identification. Were

phagostimulants volatile, functioning via olfactory stimulation, it might be expected that

their presence in bee bread would be diminished due to time spent within the conversion

16

Page 17: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

process, and evaporation at colony temperature. This would likely result in a significant

difference between the consumption levels of trapped pollen and bee bread. These data

suggest that consumption was broadly similar, possibly indicating that phagostimulants

are more likely detected in the taste of a food source (functioning as a gustatory

stimulant) once bees have commenced feeding. This hypothesis is perhaps also

supported by data highlighting that extremely non-polar compounds (therefore likely to

include volatiles) in certain pollen extracts seem to offer no phagostimulatory effect

(Schmidt 1985).

The experiment assessing the strength of extractable phagostimulants on free-flying

colonies (experiment 5) indicates that stimulants are easily extractable from pollens in

sufficient quantities to increase uptake of an artificial diet, even in the presence of

alternative natural forage during summer. The consumption of the pollen extract diet

was approximately five times greater than the control, while the extracted pollen diet

was consumed significantly more than the control, but less than the pollen extract diet.

This indicates that complete extraction of the phagostimulants in this manner is not

achieved. The increased consumption of the diet containing extracted pollen over the

control diet reveals that either some phagostimulants are not extractable from pollen via

this method or, more likely, that increased volumes of solvent would be needed to

achieve 100% extraction.

The control diet within the final experiment consisted of all three solvent extracts

combined. In this instance, the phagostimulatory effects of the less polar hexane extract

were significantly less than all three solvent extracts combined. However, neither the

ethyl acetate nor methanol extract individually provided significantly less stimulation

than the positive control. The observed mean consumption values themselves may

17

Page 18: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

suggest a trend in the phagostimulatory activity of extracts of: n-hexane extract < ethyl

acetate extract < methanol extract < combined extracts. No other examples of multiple-

choice feeding trials directly comparing the activity of different polarity solvent extracts

have been found, but these data appear to indicate that the more active phagostimulants

reside in more polar solvent extracts. While these data support previous data in

suggesting the greatest stimulation may result from the summative effects of polar and

non-polar compounds (Schmidt & Hanna 2006), potentially there are specific, more

polar compounds that can provide significant stimulation themselves. Future research

into the phagostimulatory activity provided by fractions of polar extracts would be

highly beneficial. However, achieving isolation and identification of polar compounds

acting as phagostimulants may present significant challenges. These supplemental

feeding trials join a substantial list of previous nutritional studies, summarised by

Brodschneider and Crailsheim (2010). The consumption rates (g/day) of the

supplemental diets within these most recent studies vary, but are comparable to some of

those previously observed. The colonies used within these studies were free-flying field

colonies, with no restrictions placed upon them. Although it is perhaps preferable to

conduct such experiments using large numbers of colonies, this within-hive replication

method offers a viable alternative, should financial or infrastructural constraints prevent

the use of more colonies.

Acknowledgements.

This research was supported by the Perry Foundation and the British Beekeepers

Association (BBKA). We thank David Buckley for the loan of his colonies and practical

18

Page 19: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

beekeeping support; and David Aston and Pam Hunter of the BBKA Technical

Committee for their specialist advice.

References.

Aston, D., (2010). Honey bee winter loss survey for England, 2007-8. J. Apic. Res. 49 (1), 111–112.

Avni, D., Dag, A., Shafir, S. (2009). The effect of surface area of pollen patties fed to honey bee (Apis mellifera) colonies on their consumption, brood production and honey yields. J. Apic. Res. 48 (1), 23-28.

Brodschneider, R., Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie. 41 (3), 278-294.

Carreck, N., Neumann, P. (2010). Honey bee colony losses. J. Apic. Res. 49 (1), 1–6.

DeGrandi-Hoffman, G., Chen, Y., Huang, E., Huang, M. (2010). The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.) J. Insect Physiol. 56 (9), 1184-1191.

Dobson, H., Bergstrom, G. (2000). The ecology and evolution of pollen odors. Plant Systematics and Evolution. 222 (1-4), 63–87.

Doull, K., (1973). Relationships between pollen, broodrearing and consumption of pollen supplements by honeybees. Apidologie. 4 (4), 285–293.

Doull, K., (1974a). Effect of distance on the attraction of pollen to honeybees in the hive. J. Apic. Res. 13 (1), 27–32.

Doull, K., (1974b). Effects of attractants and phagostimulants in pollen supplement on the feeding behaviour of honeybees in the hive. J. Apic. Res. 13 (1), 47–54.

Doull, K., Standifer, L., (1970). Feeding responses of hoheybees in the hive. J. Apic. Res. 9 (3), 129–132.

Gilliam, M., Prest, D., Lorenz, B., (1989). Microbiology of pollen and bee bread: taxonomy and enzymology of molds. Apidologie. 20 (1), 53–68.

Herbert, E., Shimanuki, H., (1978). Chemical composition and nutritive value of bee-collected and bee-stored pollen. Apidologie, 9 (1), 33–40.

19

Page 20: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

Herbert, E., Shimanuki, H., Shasha, B., (1980). Brood rearing and food consumption by honeybee colonies fed pollen substitutes supplemented with starch-encapsulated pollen extracts. J. Apic. Res. 19 (2), 115–118.

Hopkins, C., Jevans, A., Boch, R., (1969). Occurrence of octadeca-trans-2,cis-9,cis-12-trienoic acid in pollen attractive to the honey bee. Can. J. Biochem. 47 (4), 433–436.

Loper, G., Standifer, L., Thompson, M., Gilliam, M., (1980). Biochemistry and Microbiology of bee-collected almond (Prunus dulcis) pollen and bee bread. Apidologie. 11 (1), 63–73.

Manning, R., Rutkay, A., Eaton, l., Dell, B., (2007). Lipid-enhanced pollen and lipid-reduced flour diets and their effect on the longevity of honey bees (Apis mellifera L.). Aust. J. Entomol. 46 (3), 251–257.

Pacini, E., Hesse, M., (2005). Pollenkitt - its composition, forms and functions. Flora. 200 (5), 399–415.

Pernal, S., Currie, R., (2000). Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.) Apidologie. 31 (3), 387-409.

Potts, S., Roberts, S., Dean, R., Marris, G., Brown, M., Jones, R., Neumann, P., Settele, J., (2010). Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49 (1), 15–22.

Robinson, F., Nation, J., (1968). Substances that attract caged honeybee colonies to consume pollen supplements and substitutes. J. Apic. Res., 7 (2), 83–88.

Saffari, A., Kevan, P., Atkinson, J., (2010a). Consumption of three dry pollen substitutes in commercial apiaries. J. Apic. Sci. 54 (1) 5-12.

Saffari, A., Kevan, P., Atkinson, J., (2010b). Palatability and consumption of patty-formulated pollen and pollen substitutes and their effects on honeybee colony performance. J. Apic. Sci. 54 (2), 63–71.

Schmidt, J., (1984). Feeding preferences of Apis mellifera L. (Hymenoptera: Apidae): Individual versus mixed pollen species. J. Kansas Entomol. Soc. 57 (2), 323-327.

Schmidt, J., (1985). Phagostimulants in pollen. J. Apic. Res. 24 (2), 107–114.

Schmidt, J., Hanna, A., (2006). Chemical nature of phagostimulants in pollen attractive to honeybees. J. Insect Behav. 19 (4), 521–532.

Schmidt, J., Thoenes, S. & Levin, M., (1987). Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Am. 80 (2), 176–183.

20

Page 21: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

Schmidt, L., Schmidt, J., Rao, H., Wang, W., Xu, L., (1995). Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. 88 (6),1591–1595.

Somerville, D., (2005). Fat bees skinny bees - a manual on honey bee nutrtion for beekeepers, Rural Industries Research and Development Corporation., Barton

Standifer, L., (1980). Honey bee nutrition and supplemental feeding: in US Department of Agriculture Handbook, 335 39–45.

Van der Steen, J., (2007). Effect of a home-made pollen substitute on honey bee colony development. J. Apic. Res. 46 (2), 114–119.

VanEngelsdorp, D., Hayes, J., Underwood, R., Pettis., (2008). A survey of honey bee colony losses in the U.S., Fall 2007 to Spring 2008. PLoS ONE, 3 (12), e4071.

VanEngelsdorp, D., Hayes, J., Underwood, R., Pettis., (2010). A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. J. Apic. Res. 49 (1),7-14.

Vasquez, A., Olofsson, T., (2009). The lactic acid bacteria involved in the production of bee pollen and bee bread. J. Apic. Res. 48 (3), 189–195.

Van der Zee, R., Pisa, L., Andonov, S., Brodschneider, R., Charriere, J., et al., (2012). Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008-9 and 2009-10. J. Apic. Res. 51 (1), 100–114.

Williams, G., Alaux, C., Costa, C., Csaki, T., Doublet, V., (2013) Standard methods for maintaing Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 52 (1), 1-36.

21

Page 22: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

Figure legends

Fig. 1 Diagram showing an example of regular patty placement across a brood chamber. Different letters correspond to different replicate diets used within experiment 1. Individual patties were positioned 4cm away from neighbouring patties

Fig. 2 Back-transformed mean (±SEM) consumption (g per patty) of four identical palatable 10% pollen treatment diets. Trial duration was 4days, and 16 replicate patties of each diet were used. Consumption of diets that share the same letter did not significantly differ (P<0.05)

Fig. 3 Back-transformed mean (±SEM) consumption (g per patty) of the two control and two palatable 10% pollen diets. Trial duration was 4days, and 12 replicate patties of each diet were used. Consumption of diets that share the same letter did not significantly differ (P<0.05)

Fig. 4 Cumulative mean mass loss (±SEM) per control patty over the 10 day period within the incubator (n=32)

Fig. 5 Back-transformed mean (±SEM) consumption (g per patty) of the control, 10% pollen, and 10% bee bread diets. Trial duration was 4days, and 32 replicate patties of each diet were used. Consumption of diets that share the same letter did not significantly differ (P<0.05)

Fig. 6 Back-transformed mean (±SEM) consumption (g per patty) of the control, pollen extract, and extracted pollen diets. Trial duration was 3days, and 15 replicate patties of each diet were used. Consumption of diets that share the same letter did not significantly differ (P<0.05)

Fig. 7 Back-transformed mean (±SEM) consumption (g per patty) of the combined pollen extract (control); hexane extract, ethyl acetate, and methanol extract diets. Trial duration was 3days, and 16 replicate patties of each diet were used. Consumption of diets that share the same letter did not significantly differ (P<0.05)

22

Page 23: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

Figures

Fig. 1

Fig. 2

23

Page 24: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

Fig. 3

Fig. 4

24

Page 25: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

Fig. 5

Fig. 6

25

Page 26: Keele Open Access et al post... · Web viewThere was a significant difference between the mean consumption of control diet and trapped pollen diet (P

Fig. 7

26