juliana tms 2011

Upload: tntalp

Post on 05-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Juliana TMS 2011

    1/18

    J. Ivancik and D. Arola

    Laboratory for Advance Materials and Processes (LAMP)

    Department of Mechanical Engineering

    University of Maryland Baltimore County

    TMS 2011

  • 8/2/2019 Juliana TMS 2011

    2/18

    A

    B

    Enamel

    Dentin

    Pulp

    1 mm

    Peripheral dentin

    A

    1 m

    B

    Inner dentin

    1 m

    tubules

    Dentin content (weight%)

    70% mineral, 20% organic 10% fluid

  • 8/2/2019 Juliana TMS 2011

    3/18

    Giannini et al., Dent Mater, 2004.

    61.6 16.3 MPa

    48.7 16.7 MPa33.9 8 MPa

    UTS

    Iwamoto et al.,J Biomed Mater Res A, 2003.

  • 8/2/2019 Juliana TMS 2011

    4/18

    Arola et al., Biomaterials, 2007

    Endurance limitAt 107 cycles (10 yrs);

    =45 : e=53 MPa

    =0 : e=44 MPa

    =90 : e=23 MPa

  • 8/2/2019 Juliana TMS 2011

    5/18

    Demineralization*

    Excavation**Pitt Ford, The Restoration of Teeth, 1992 Arola et al, J. Mat Sci.:Materials in Medicine, 1998

    500 m

    In an examination of 102 cracked teeth,only 5 were unrestored [Cameron,

    1976].

    Over 50% of teeth with failedrestorations show signs of fracture orcracking [White, 1996].

    Restoration

  • 8/2/2019 Juliana TMS 2011

    6/18

    Develop further understanding of the structure -property relationships that contribute to the fatiguecrack growth behavior of dentin.

    Establish the importance of tubule density on theresistance to fatigue crack initiation and rate ofincremental growth.

  • 8/2/2019 Juliana TMS 2011

    7/18

    3rd molars 17 age 72 years

    2.0

    4.0

    2.0

    1.0

    a 1.0

    6.0

    All dimensions in mm

  • 8/2/2019 Juliana TMS 2011

    8/18

  • 8/2/2019 Juliana TMS 2011

    9/18

    time (s)

    Pmax

    Pmin

    Load (N)

    Fatigue loadsload controlR = Pmin/Pmax = 0.5, 0.110 < Pmax < 20 Nfrequency=5 Hz

    ProtocolHBSS hydration bathmode I cyclic loadingmeasure crack length at Ni

  • 8/2/2019 Juliana TMS 2011

    10/18

    KP

    B Wf

    a

    W

    P

    P

    a4.0

    Bajaj et al., Biomaterials, 2006.

    Paris law parameters

    Paris law (Region II)

    High

    Low

  • 8/2/2019 Juliana TMS 2011

    11/18

  • 8/2/2019 Juliana TMS 2011

    12/18

    10-8

    10-7

    10-6

    10-5

    0.0001

    0.001

    0.01

    0.7 0.8 0.9 1 2

    K (MPa.m0.5

    )

    da/dN(mm/cycle)

    Fatigue crack growth within young human dentin

    10-8

    10-7

    10-6

    10-5

    0.0001

    0.001

    0.01

    0.7 0.8 0.9 1 2

    innercentralperipheral

    K (MPa.m0.5

    )

    da/dN(mm/cycle)

    10-8

    10-7

    10-6

    10-5

    0.0001

    0.001

    0.01

    0.7 0.8 0.9 1 2

    inner

    centralperipheral

    K (MPa.m0.5

    )

    da/dN(mm/cycle)

  • 8/2/2019 Juliana TMS 2011

    13/18

    Location

    Paris Law Parameters

    mC

    (mm/cycle).(MPa*m0.5)-m

    Peripheral

    (N=12)27.15 3.8d,e 1.78E-10a

    Central

    (N=12)24.8 3.2d 1.16E-07b

    Inner(N=8)

    29.1 4.7e 6.26E-05c

    Means indicated by different letters are significantly different at p

  • 8/2/2019 Juliana TMS 2011

    14/18

    0.6

    0.8

    1.0

    1.2

    1.4

    0 1x104 2x104 3x104 4x104 5x104 6x104

    Lumen density/mm2

    Kth(

    MPa*m

    0.5)

    Image processing

    Stress intensity thresholdvs. lumen density

  • 8/2/2019 Juliana TMS 2011

    15/18

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    0 1x104

    2x104

    3x104

    4x104

    5x104

    6x104

    Lumen density/mm2

    LogC(mm/cy

    cles*MPa.m

    0.5)-m

    Fatigue crack growth coefficientvs. lumen density

    Image processing

  • 8/2/2019 Juliana TMS 2011

    16/18

    100 m 50 m

  • 8/2/2019 Juliana TMS 2011

    17/18

    The FCG resistance of young dentin is dependent on thetubule density.

    The effective crack growth rate for young dentin increasesfrom the superficial region to deep dentin. Cracks in deepdentin exhibit an incremental growth rate that is at least 1000times larger than that of peripheral dentin.

    Cracks in deep dentin undergo initiation of fatigue crack

    growth at a lower intensity range than those in superficialdentin. The stress intensity threshold of deep dentin is atleast 50% lower than that of superficial dentin.

  • 8/2/2019 Juliana TMS 2011

    18/18

    This work was made possible by a fellowship from theNational Institute for Dental and Craniofacial Research(T32DE07309-11).

    The investigation was also supported by grant R01 DE016904

    from the National Institute of Dental and CraniofacialResearch (Dwayne D. Arola, PI).