journal of inequalities in pure and applied...

37
volume 3, issue 4, article 51, 2002. Received 5 April, 2002; accepted 20 May, 2002. Communicated by: B. Mond Abstract Contents Home Page Go Back Close Quit Journal of Inequalities in Pure and Applied Mathematics APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY FOR FUNCTIONS OF BOUNDED VARIATION S.S. DRAGOMIR School of Communications and Informatics Victoria University of Technology PO Box 14428 Melbourne City MC 8001 Victoria, Australia EMail : [email protected] URL: http://rgmia.vu.edu.au/SSDragomirWeb.html c 2000 Victoria University ISSN (electronic): 1443-5756 032-01

Upload: others

Post on 19-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

volume 3, issue 4, article 51,2002.

Received 5 April, 2002;accepted 20 May, 2002.

Communicated by: B. Mond

Abstract

Contents

JJ II

J I

Home Page

Go Back

Close

Quit

Journal of Inequalities in Pure andApplied Mathematics

APPROXIMATING THE FINITE HILBERT TRANSFORM VIA ANOSTROWSKI TYPE INEQUALITY FOR FUNCTIONS OFBOUNDED VARIATION

S.S. DRAGOMIRSchool of Communications and InformaticsVictoria University of TechnologyPO Box 14428Melbourne City MC8001 Victoria, AustraliaEMail : [email protected]: http://rgmia.vu.edu.au/SSDragomirWeb.html

c©2000Victoria UniversityISSN (electronic): 1443-5756032-01

Please quote this number (032-01) in correspondence regarding this paper with the Editorial Office.
Page 2: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 2 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Abstract

Using the Ostrowski type inequality for functions of bounded variation, an ap-proximation of the finite Hilbert Transform is given. Some numerical experi-ments are also provided.

2000 Mathematics Subject Classification: Primary 26D10, 26D15; Secondary41A55, 47A99.Key words: Finite Hilbert Transform, Ostrowski’s Inequality.

Contents1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Some Inequalities on the Interval[a, b] . . . . . . . . . . . . . . . . . . . 43 A Quadrature Formula for Equidistant Divisions. . . . . . . . . . 154 A More General Quadrature Formula. . . . . . . . . . . . . . . . . . . . 215 Numerical Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28References

Page 3: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

1. IntroductionCauchy principal value integrals of the form

(Tf) (a, b; t) = PV

∫ b

a

f (τ)

τ − tdτ(1.1)

:= limε→0+

[∫ t−ε

a

f (τ)

τ − tdτ +

∫ b

t+ε

f (τ)

τ − tdτ

]play an important role in fields like aerodynamics, the theory of elasticity andother areas of the engineering sciences. They are also helpful tools in somemethods for the solution of differential equations (cf., e.g. [23]).

For different approaches in approximating the finite Hilbert transform (1.1)including: interpolatory, noninterpolatory, Gaussian, Chebychevian and splinemethods, see for example the papers [1] – [12], [14] – [22], [24] – [33] and thereferences therein.

In contrast with all these methods, we point out here a new method in ap-proximating the finite Hilbert transform by the use of the Ostrowski inequalityfor functions of bounded variation established in [13].

For a comprehensive list of papers on Ostrowski’s inequality, visit the sitehttp://rgmia.vu.edu.au .

Estimates for the error bounds and some numerical examples for the obtainedapproximation are also presented.

Page 4: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

2. Some Inequalities on the Interval[a, b]

We start with the following lemma proved in [13] dealing with an Ostrowskitype inequality for functions of bounded variation.

Lemma 2.1. Let u : [a, b] → R be a function of bounded variation on[a, b].Then, for allx ∈ [a, b], we have the inequality:

(2.1)

∣∣∣∣u (x) (b− a)−∫ b

a

u (t) dt

∣∣∣∣ ≤ [1

2(b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣] b∨a

(u) ,

where∨b

a (u) denotes the total variation ofu on [a, b].The constant1

2is the best possible one.

Proof. For the sake of completeness and since this result will be essentially usedin what follows, we give here a short proof.

Using the integration by parts formula for the Riemann-Stieltjes integral wehave ∫ x

a

(t− a) du (t) = u (x) (x− a)−∫ x

a

u (t) dt

and ∫ b

x

(t− b) du (t) = u (x) (b− x)−∫ b

x

u (t) dt.

If we add the above two equalities, we get

(2.2) u (x) (b− a)−∫ b

a

u (t) dt =

∫ x

a

(t− a) du (t) +

∫ b

x

(t− b) du (t)

Page 5: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

for anyx ∈ [a, b].If p : [c, d] → R is continuous on[c, d] andv : [c, d] → R is of bounded

variation on[c, d], then:

(2.3)

∣∣∣∣∫ d

c

p (x) dv (x)

∣∣∣∣ ≤ supx∈[c,d]

|p (x)|d∨c

(u) .

Using (2.2) and (2.3), we deduce∣∣∣∣u (x) (b− a)−∫ b

a

u (t) dt

∣∣∣∣ ≤ ∣∣∣∣∫ x

a

(t− a) du (t)

∣∣∣∣+ ∣∣∣∣∫ b

x

(t− b) du (t)

∣∣∣∣≤ (x− a)

x∨a

(u) + (b− x)b∨x

(u)

≤ max {x− a, b− x}

[x∨a

(u) +b∨x

(u)

]

=

[1

2(b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣] b∨a

(u)

and the inequality (2.1) is proved.Now, assume that the inequality (2.2) holds with a constantc > 0, i.e.,

(2.4)

∣∣∣∣u (x) (b− a)−∫ b

a

u (t) dt

∣∣∣∣ ≤ [c (b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣] b∨a

(u)

for all x ∈ [a, b].

Page 6: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Consider the functionu0 : [a, b] → R given by

u0 (x) =

0 if x ∈ [a, b]

∖{a+b2

}1 if x = a+b

2.

Thenu0 is of bounded variation on[a, b] and

b∨a

(u0) = 2,

∫ b

a

u0 (t) dt = 0.

If we apply (2.4) for u0 and choosex = a+b2

, then we get2c ≥ 1 which impliesthatc ≥ 1

2showing that1

2is the best possible constant in (2.1).

The best inequality we can get from (2.1) is the following midpoint inequal-ity.

Corollary 2.2. With the assumptions in Lemma2.1, we have

(2.5)

∣∣∣∣u(a + b

2

)(b− a)−

∫ b

a

u (t) dt

∣∣∣∣ ≤ 1

2(b− a)

b∨a

(u) .

The constant12

is best possible.

Using the above Ostrowski type inequality we may point out the followingresult in estimating the finite Hilbert transform.

Page 7: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Theorem 2.3. Let f : [a, b] → R be a function such that its derivativef ′ :[a, b] → R is of bounded variation on[a, b]. Then we have the inequality:

(2.6)

∣∣∣∣(Tf) (a, b; t)− f (t)

πln

(b− t

t− a

)−b− a

π[f ; λt + (1− λ) b, λt + (1− λ) a]

∣∣∣∣≤ 1

π

[1

2+

∣∣∣∣λ− 1

2

∣∣∣∣] [1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣] b∨a

(f ′) ,

for anyt ∈ (a, b) andλ ∈ [0, 1), where[f ; α, β] is the divided difference, i.e.,

[f ; α, β] :=f (α)− f (β)

α− β.

Proof. Sincef ′ is bounded on[a, b], it follows thatf is Lipschitzian on[a, b]and thus the finite Hilbert transform exists everywhere in(a, b).

As for the functionf0 : (a, b) → R, f0 (t) = 1, t ∈ (a, b), we have

(Tf0) (a, b; t) =1

πln

(b− t

t− a

), t ∈ (a, b) ,

then obviously

(2.7) (Tf) (a, b; t)− f (t)

πln

(b− t

t− a

)=

1

πPV

∫ b

a

f (τ)− f (t)

τ − tdτ.

Page 8: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 8 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Now, if we choose in (2.1), u = f ′, x = λc + (1− λ) d, λ ∈ [0, 1], then we get

|f (d)− f (c)− (d− c) f ′ (λc + (1− λ) d)|

≤[1

2|d− c|+

∣∣∣∣λc + (1− λ) d− c + d

2

∣∣∣∣]∣∣∣∣∣

d∨c

(f ′)

∣∣∣∣∣wherec, d ∈ (a, b), which is equivalent to

(2.8)

∣∣∣∣f (d)− f (c)

d− c− f ′ (λc + (1− λ) d)

∣∣∣∣ ≤ [1

2+

∣∣∣∣λ− 1

2

∣∣∣∣]∣∣∣∣∣

d∨c

(f ′)

∣∣∣∣∣for anyc, d ∈ (a, b), c 6= d.

Using (2.8), we may write∣∣∣∣ 1πPV

∫ b

a

f (τ)− f (t)

τ − tdτ − 1

πPV

∫ b

a

f ′ (λt + (1− λ) τ) dτ

∣∣∣∣(2.9)

≤ 1

π

[1

2+

∣∣∣∣λ− 1

2

∣∣∣∣]PV

∫ b

a

∣∣∣∣∣t∨τ

(f ′)

∣∣∣∣∣ dt

=1

π

[1

2+

∣∣∣∣λ− 1

2

∣∣∣∣][∫ t

a

(t∨τ

(f ′)

)dt +

∫ b

t

(τ∨t

(f ′)

)dt

]

≤ 1

π

[1

2+

∣∣∣∣λ− 1

2

∣∣∣∣][(t− a)

t∨a

(f ′) + (b− t)b∨t

(f ′)

]

≤ 1

π

[1

2+

∣∣∣∣λ− 1

2

∣∣∣∣] [1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣] b∨a

(f ′) .

Page 9: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 9 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Since (forλ 6= 1)

1

πPV

∫ b

a

f ′ (λt + (1− λ) τ) dτ

=1

πlim

ε→0+

[∫ t−ε

a

+

∫ b

t+ε

](f ′ (λt + (1− λ) τ) dτ)

=1

πlim

ε→0+

[1

1− λf (λt + (1− λ) τ)

∣∣∣∣t−ε

a

+1

1− λf (λt + (1− λ) τ)

∣∣∣∣bt+ε

]

=1

π· f (t)− f (λt + (1− λ) a) + f (λt + (1− λ) b)− f (t)

1− λ

=b− a

π[f ; λt + (1− λ) b, λt + (1− λ) a] .

Using (2.9) and (2.7), we deduce the desired result (2.6).

It is obvious that the best inequality we can get from (2.6) is the one forλ = 1

2. Thus, we may state the following corollary.

Corollary 2.4. With the assumptions of Theorem2.3, we have

(2.10)

∣∣∣∣(Tf) (a, b; t)− f (t)

πln

(b− t

t− a

)− b− a

π

[f ;

t + b

2,a + t

2

]∣∣∣∣≤ 1

[1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣] b∨a

(f ′) .

Page 10: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

The above Theorem2.3 may be used to point out some interesting inequal-ities for the functions for which the finite Hilbert transforms(Tf) (a, b; t) canbe expressed in terms of special functions.

For instance, we have:

1) Assume thatf : [a, b] ⊂ (0,∞) → R, f (x) = 1x. Then

(Tf) (a, b; t) =1

πtln

[(b− t) a

(t− a) b

], t ∈ (a, b) ,

b− a

π· [f ; λt + (1− λ) b, λt + (1− λ) a]

= − 1

π· b− a

[λt + (1− λ) b] [λt + (1− λ) a],

b∨a

(f ′) =

∫ b

a

|f ′′ (t)| dt =b2 − a2

a2b2.

Using the inequality (2.6) we may write that∣∣∣∣ 1

πtln

[(b− t) a

(t− a) b

]− 1

πtln

(b− t

t− a

)+

b− a

π [λt + (1− λ) b] [λt + (1− λ) a]

∣∣∣∣≤ 1

π

[1

2+

∣∣∣∣λ− 1

2

∣∣∣∣] [1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣] · b2 − a2

a2b2

Page 11: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

which is equivalent to:

(2.11)

∣∣∣∣ b− a

[λt + (1− λ) b] [λt + (1− λ) a]− 1

tln

(b

a

)∣∣∣∣≤[1

2+

∣∣∣∣λ− 1

2

∣∣∣∣] [1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣] · b2 − a2

a2b2.

If we use the notations

L (a, b) :=b− a

ln b− ln a(the logarithmic mean)

Aλ (x, y) := λx + (1− λ) y (the weighted arithmetic mean)

G (a, b) :=√

ab (the geometric mean)

A (a, b) :=a + b

2(the arithmetic mean)

then by (2.11) we deduce∣∣∣∣ 1

Aλ (t, b) Aλ (t, a)− 1

tL (a, b)

∣∣∣∣≤[1

2+

∣∣∣∣λ− 1

2

∣∣∣∣] [1

2(b− a) + |t− A (a, b)|

]2A (a, b)

G4 (a, b),

giving the following proposition:

Page 12: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Proposition 2.5. With the above assumption, we have

(2.12) |tL (a, b)− Aλ (t, b) Aλ (t, a)|

≤ 2A (a, b)

G4 (a, b)

[1

2+

∣∣∣∣λ− 1

2

∣∣∣∣] [1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣]× tAλ (t, b) Aλ (t, a) L (a, b)

for anyt ∈ (a, b), λ ∈ [0, 1).

In particular, fort = A (a, b) andλ = 12, we get

(2.13)

∣∣∣∣A (a, b) L (a, b)− (A (a, b) + a) (A (a, b) + b)

4

∣∣∣∣≤ 1

2· A2 (a, b)

G4 (a, b)· (A (a, b) + a) (A (a, b) + b)

4L (a, b) .

2) Assume thatf : [a, b] ⊂ R → R, f (x) = exp (x). Then

(Tf) (a, b; t) =exp (t)

π[Ei (b− t)− Ei (a− t)] ,

where

Ei (z) := PV

∫ z

−∞

exp (t)

tdt, z ∈ R.

Also, we have:

b− a

π[exp; λt + (1− λ) b, λt + (1− λ) a]

=1

π· exp (λt + (1− λ) b)− exp (λt + (1− λ) a)

1− λ,

Page 13: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

b∨a

(f ′) =

∫ b

a

|f ′′ (t)| dt = exp (b)− exp (a) .

Using the inequality (2.6) we may write:

(2.14)

∣∣∣∣exp (t)

[Ei (b− t)− Ei (a− t)− ln

(b− t

t− a

)]− exp (λt + (1− λ) b)− exp (λt + (1− λ) a)

1− λ

∣∣∣∣≤[1

2+

∣∣∣∣λ− 1

2

∣∣∣∣] [1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣] [exp (b)− exp (a)]

for anyt ∈ (a, b).

If in (2.14) we makeλ = 12

andt = a+b2

, we get∣∣∣∣exp

(a + b

2

)Ei

(b− a

2

)− 2

[exp

(a + 3b

4

)− exp

(3a + b

4

)]∣∣∣∣≤ 1

4(b− a) [exp (b)− exp (a)] ,

which is equivalent to:∣∣∣∣Ei

(b− a

2

)− 2

[exp

(b− a

4

)− exp

(−b− a

4

)]∣∣∣∣≤ 1

4(b− a)

[exp

(b− a

2

)− exp

(−b− a

2

)].

Page 14: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 14 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

If in this inequality we makeb−a2

= z > 0, then we get

(2.15)∣∣∣Ei (z)− 2

[exp

(z

2

)− exp

(−z

2

)]∣∣∣≤ 1

2z [exp (z)− exp (−z)]

for anyz > 0.

Consequently, we may state the following proposition.

Proposition 2.6. With the above assumptions, we have

(2.16)

∣∣∣∣Ei (z)− 4 sinh

(1

2z

)∣∣∣∣ ≤ z sinh (z)

for anyz > 0.

The reader may get other similar inequalities for special functions if appro-priate examples of functionsf are chosen.

Page 15: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

3. A Quadrature Formula for Equidistant DivisionsThe following lemma is of interest in itself.

Lemma 3.1. Let u : [a, b] → R be a function of bounded variation on[a, b].Then for alln ≥ 1, λi ∈ [0, 1) (i = 0, . . . , n− 1) andt, τ ∈ [a, b] with t 6= τ ,we have the inequality:

(3.1)

∣∣∣∣∣ 1

τ − t

∫ τ

t

u (s) ds− 1

n

n−1∑i=0

u

[t + (i + 1− λi)

τ − t

n

]∣∣∣∣∣≤ 1

n

[1

2+ max

i=0,n−1

∣∣∣∣λi −1

2

∣∣∣∣]∣∣∣∣∣

τ∨t

(u)

∣∣∣∣∣ .Proof. Consider the equidistant division of[t, τ ] (if t < τ ) or [τ, t] (if τ < t)given by

(3.2) En : xi = t + i · τ − t

n, i = 0, n.

Then the pointsξi = λi

[t + i · τ−t

n

]+ (1− λi)

[t + (i + 1) · τ−t

n

](λi ∈ [0, 1] , i = 0, n− 1

)are betweenxi andxi+1. We observe that we may

write for simplicity ξi = t + (i + 1− λi)τ−tn

(i = 0, n− 1

). We also have

ξi −xi + xi+1

2=

τ − t

2n(1− 2λi) ,

ξi − xi = (1− λi)τ − t

n

Page 16: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

andxi+1 − ξi = λi ·

τ − t

n

for anyi = 0, n− 1.If we apply the inequality (2.1) on the interval[xi, xi+1] and the intermediate

point ξi

(i = 0, n− 1

), then we may write that

(3.3)

∣∣∣∣τ − t

nu

(t + (i + 1− λi)

τ − t

n

)−∫ xi+1

xi

u (s) ds

∣∣∣∣≤[1

2· |τ − t|

n+

∣∣∣∣τ − t

2n(1− 2λi)

∣∣∣∣]∣∣∣∣∣xi+1∨xi

(u)

∣∣∣∣∣ .Summing, we get∣∣∣∣∣

∫ τ

t

u (s) ds− τ − t

n

n−1∑i=0

u

[t + (i + 1− λi)

τ − t

n

]∣∣∣∣∣≤ |τ − t|

2n

n−1∑i=0

[1 + |1− 2λi|]

∣∣∣∣∣xi+1∨xi

(u)

∣∣∣∣∣=|τ − t|

n

[1

2+ max

i=0,n−1

∣∣∣∣λi −1

2

∣∣∣∣]∣∣∣∣∣

τ∨t

(u)

∣∣∣∣∣ ,which is equivalent to (3.1).

We may now state the following theorem in approximating the finite Hilberttransform of a differentiable function with the derivative of bounded variationon [a, b].

Page 17: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 17 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Theorem 3.2. Let f : [a, b] → R be a differentiable function such that itsderivativef ′ is of bounded variation on[a, b]. If λ = (λi)i=0,n−1, λi ∈ [0, 1)(i = 0, n− 1

)and

(3.4) Sn (f ; λ, t)

:=b− a

πn

n−1∑i=0

[f ; (i + 1− λi)

b− t

n+ t, (i + 1− λi)

a− t

n+ t

],

then we have the estimate:∣∣∣∣(Tf) (a, b; t)− f (t)

πln

(b− t

t− a

)− Sn (f ; λ, t)

∣∣∣∣(3.5)

≤ b− a

[1

2+ max

i=0,n−1

∣∣∣∣λi −1

2

∣∣∣∣] [1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣] b∨a

(f ′)

≤ b− a

b∨a

(f ′) .

Proof. Applying Lemma3.1for the functionf ′, we may write that

(3.6)

∣∣∣∣∣f (τ)− f (t)

τ − t− 1

n

n−1∑i=0

f ′[t + (i + 1− λi)

τ − t

n

]∣∣∣∣∣≤ 1

n

[1

2+ max

i=0,n−1

∣∣∣∣λi −1

2

∣∣∣∣]∣∣∣∣∣

τ∨t

(f ′)

∣∣∣∣∣

Page 18: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 18 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

for anyt, τ ∈ [a, b], t 6= τ .Consequently, we have∣∣∣∣ 1πPV

∫ b

a

f (τ)− f (t)

τ − tdτ(3.7)

− 1

πn

n−1∑i=0

PV

∫ b

a

f ′[t + (i + 1− λi)

τ − t

n

]dτ

∣∣∣∣∣≤ 1

[1

2+ max

i=0,n−1

∣∣∣∣λi −1

2

∣∣∣∣]PV

∫ b

a

∣∣∣∣∣τ∨t

(f ′)

∣∣∣∣∣ dτ

≤ 1

[1

2+ max

i=0,n−1

∣∣∣∣λi −1

2

∣∣∣∣] [1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣] b∨a

(f ′) .

On the other hand

PV

∫ b

a

f ′[t + (i + 1− λi)

τ − t

n

]dτ(3.8)

= limε→0+

[∫ t−ε

a

+

∫ b

t+ε

](f ′[t + (i + 1− λi)

τ − t

n

]dτ

)= lim

ε→0+

[n

i + 1− λi

f

(t + (i + 1− λi)

τ − t

n

)∣∣∣∣t−ε

a

+n

i + 1− λi

f

(t + (i + 1− λi)

τ − t

n

)∣∣∣∣bt+ε

]

Page 19: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 19 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

=n

i + 1− λi

[f

(t + (i + 1− λi)

b− t

n

)−f

(t + (i + 1− λi)

a− t

n

)]= (b− a)

[f ; t + (i + 1− λi)

b− t

n, (i + 1− λi)

a− t

n+ t

].

Since (see for example (2.7)),

(Tf) (a, b; t) =1

πPV

∫ b

a

f (τ)− f (t)

τ − tdτ +

f (t)

πln

(b− t

t− a

)for t ∈ (a, b) , then by (3.7) and (3.8) we deduce the desired estimate (3.5).

Remark 3.1. For n = 1, we recapture the inequality (2.6).

Corollary 3.3. With the assumptions of Theorem3.2, we have

(3.9) (Tf) (a, b; t) =f (t)

πln

(b− t

t− a

)+ lim

n→∞Sn (f ; λ, t)

uniformly by rapport oft ∈ (a, b) andλ with λi ∈ [0, 1) (i ∈ N).

Remark 3.2. If one needs to approximate the finite Hilbert Transform(Tf) (a, b; t)in terms of

f (t)

πln

(b− t

t− a

)+ Sn (f ; λ, t)

Page 20: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 20 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

with the accuracyε > 0 (ε small), then the theoretical minimal numbernε to bechosen is:

(3.10) nε :=

[b− a

επ

b∨a

(f ′)

]+ 1

where[α] is the integer part ofα.

It is obvious that the best inequality we can get in (3.5) is for λi = 12(

i = 0, n− 1)

obtaining the following corollary.

Corollary 3.4. Letf be as in Theorem3.2. Define

(3.11) Mn (f ; t) :=b− a

πn

n−1∑i=0

[f ;

(i +

1

2

)b− t

n+ t,

(i +

1

2

)a− t

n+ t

].

Then we have the estimate

(3.12)

∣∣∣∣(Tf) (a, b; t)− f (t)

πln

(b− t

t− a

)−Mn (f ; t)

∣∣∣∣≤ b− a

2nπ

[1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣] b∨a

(f ′)

for anyt ∈ (a, b).

This rule will be numerically implemented in Section5 for different choicesof f andn.

Page 21: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 21 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

4. A More General Quadrature FormulaWe may state the following lemma.

Lemma 4.1. Let u : [a, b] → R be a function of bounded variation on[a, b],0 = µ0 < µ1 < · · · < µn−1 < µn = 1 andνi ∈ [µi, µi+1], i = 0, n− 1. Thenfor anyt, τ ∈ [a, b] with t 6= τ , we have the inequality:

(4.1)

∣∣∣∣∣ 1

τ − t

∫ τ

t

u (s) ds−n−1∑i=0

(µi+1 − µi) u [(1− νi) t + νiτ ]

∣∣∣∣∣≤[1

2∆n (µ) + max

i=0,n−1

∣∣∣∣νi −µi + µi+1

2

∣∣∣∣]∣∣∣∣∣

τ∨t

(u)

∣∣∣∣∣ ,where∆n (µ) := max

i=0,n−1(µi+1 − µi) .

Proof. Consider the division of[t, τ ] (if t < τ ) or [τ, t] (if τ < t) given by

(4.2) In : xi := (1− µi) t + µiτ(i = 0, n

).

Then the pointsξi := (1− νi) t + νiτ(i = 0, n− 1

)are betweenxi andxi+1.

We havexi+1 − xi = (µi+1 − µi) (τ − t)

(i = 0, n− 1

)and

ξi −xi + xi+1

2=

(νi −

µi + µi+1

2

)(τ − t)

(i = 0, n− 1

).

Page 22: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 22 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Applying the inequality (2.1) on [xi, xi+1] with the intermediate pointsξi

(i = 0, n− 1

), we get∣∣∣∣∫ xi+1

xi

u (s) ds− (µi+1 − µi) (τ − t) u [(1− νi) t + νiτ ]

∣∣∣∣≤[1

2(µi+1 − µi) |τ − t|+ |τ − t|

∣∣∣∣νi −µi + µi+1

2

∣∣∣∣]∣∣∣∣∣xi+1∨xi

(u)

∣∣∣∣∣for anyi = 0, n− 1. Summing overi, using the generalised triangle inequalityand dividing by|t− τ | > 0, we obtain∣∣∣∣∣ 1

τ − t

∫ b

a

u (s) ds−n−1∑i=0

(µi+1 − µi) u [(1− νi) t + νiτ ]

∣∣∣∣∣≤

n−1∑i=0

[1

2(µi+1 − µi) +

∣∣∣∣νi −µi + µi+1

2

∣∣∣∣]∣∣∣∣∣xi+1∨xi

(u)

∣∣∣∣∣≤[1

2∆n (µ) + max

i=0,n−1

∣∣∣∣νi −µi + µi+1

2

∣∣∣∣]∣∣∣∣∣

τ∨t

(u)

∣∣∣∣∣and the inequality (4.1) is proved.

The following theorem holds.

Theorem 4.2. Let f : [a, b] → R be a differentiable function such that itsderivativef ′ is of bounded variation on[a, b]. If 0 = µ0 < µ1 < · · · < µn−1 <

Page 23: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 23 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

µn = 1 andνi ∈ [µi, µi+1],(i = 0, n− 1

), then

(4.3) (Tf) (a, b; t) =f (t)

πln

(b− t

t− a

)+

1

πQn (µ, ν, t) + Wn (µ, ν, t)

for anyt ∈ (a, b), where

(4.4) Qn (µ, ν, t) := µ1f′ (t) (b− a) + (b− a)

n−2∑i=1

{(µi+1 − µi)

× [f ; (1− νi) t + νib, (1− νi) t + νia]

}+ (1− µn−1) [f (b)− f (a)]

if ν0 = 0, νn−1 = 1,

(4.5) Qn (µ, ν, t) := µ1f′ (t) (b− a) + (b− a)

n−1∑i=1

(µi+1 − µi)

× [f ; (1− νi) t + νib, (1− νi) t + νia]

if ν0 = 0, νn−1 < 1,

(4.6) Qn (µ, ν, t) := (b− a)n−2∑i=1

(µi+1 − µi)

× [f ; (1− νi) t + νib, (1− νi) t + νia]

+ (1− µn−1) [f (b)− f (a)]

Page 24: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 24 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

if ν0 > 0, νn−1 = 1 and

(4.7) Qn (µ, ν, t)

:= (b− a)n−1∑i=1

(µi+1 − µi) [f ; (1− νi) t + νib, (1− νi) t + νia]

if ν0 > 0, νn−1 < 1.In all cases, the remainder satisfies the estimate:

|Wn (µ, ν, t)| ≤ 1

π

[1

2∆n (µ) + max

i=0,n−1

∣∣∣∣νi −µi + µi+1

2

∣∣∣∣](4.8)

×[1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣] b∨a

(f ′)

≤ 1

π∆n (µ)

[1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣]∣∣∣∣∣

b∨a

(f ′)

∣∣∣∣∣≤ 1

π∆n (µ) (b− a)

b∨a

(f ′) .

Proof. If we apply Lemma4.1for the functionf ′, we may write that∣∣∣∣∣f (τ)− f (t)

τ − t−

n−1∑i=0

(µi+1 − µi) f ′ [(1− νi) t + νiτ ]

∣∣∣∣∣≤[1

2∆n (µ) + max

i=0,n−1

∣∣∣∣νi −µi + µi+1

2

∣∣∣∣]∣∣∣∣∣

τ∨t

(f ′)

∣∣∣∣∣

Page 25: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 25 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

for anyt, τ ∈ [a, b] , t 6= τ .Taking thePV in both sides, we may write that

(4.9)

∣∣∣∣ 1πPV

∫ b

a

f (τ)− f (t)

τ − tdτ

− 1

πPV

∫ b

a

(n−1∑i=0

(µi+1 − µi) f ′ [(1− νi) t + νiτ ]

)dτ

∣∣∣∣∣≤ 1

π

[1

2∆n (µ) + max

i=0,n−1

∣∣∣∣νi −µi + µi+1

2

∣∣∣∣]PV

∫ b

a

∣∣∣∣∣τ∨t

(f ′)

∣∣∣∣∣ dτ.

If ν0 = 0, νn−1 = 1, then

PV

∫ b

a

(n−1∑i=0

(µi+1 − µi) f ′ [(1− νi) t + νiτ ]

)dτ

= PV

∫ b

a

µ1f′ (t) dτ +

n−2∑i=1

(µi+1 − µi) PV

∫ b

a

f ′ [(1− νi) t + νiτ ] dτ

+ (1− µn−1) PV

∫ b

a

f ′ (τ) dτ

= µ1f′ (t) (b− a) + (b− a)

n−2∑i=1

(µi+1 − µi)

× [f ; (1− νi) t + νib, (1− νi) t + νia] + (1− µn−1) [f (b)− f (a)] .

Page 26: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 26 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

If ν0 = 0, νn−1 < 1, then

PV

∫ b

a

(n−1∑i=0

(µi+1 − µi) f ′ [(1− νi) t + νiτ ]

)dτ

= µ1f′ (t) (b− a) + (b− a)

n−1∑i=1

(µi+1 − µi)

× [f ; (1− νi) t + νib, (1− νi) t + νia] .

If ν0 > 0, νn−1 = 1, then

PV

∫ b

a

(n−1∑i=0

(µi+1 − µi) f ′ [(1− νi) t + νiτ ]

)dτ

= (b− a)n−2∑i=1

(µi+1 − µi) [f ; (1− νi) t + νib, (1− νi) t + νia]

+ (1− µn−1) [f (b)− f (a)] .

and, finally, ifν0 > 0, νn−1 < 1, then

PV

∫ b

a

(n−1∑i=0

(µi+1 − µi) f ′ [(1− νi) t + νiτ ]

)dτ

= (b− a)n−1∑i=1

(µi+1 − µi) [f ; (1− νi) t + νib, (1− νi) t + νia] .

Page 27: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 27 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Since

PV

∫ b

a

∣∣∣∣∣τ∨t

(f ′)

∣∣∣∣∣ dτ ≤[1

2(b− a) +

∣∣∣∣t− a + b

2

∣∣∣∣] b∨a

(f ′)

and

(Tf) (a, b; t) =1

πPV

∫ b

a

f (τ)− f (t)

τ − tdτ +

f (t)

πln

(b− t

t− a

),

then by (4.9) we deduce (4.3).

Page 28: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 28 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

5. Numerical ExperimentsFor a functionf : [a, b] → R, we may consider the quadrature formula

En(f ; a, b, t) :=f (t)

πln

(b− t

t− a

)+ Mn (f ; t) , t ∈ [a, b] .

As shown above in Section 4,En(f ; a, b, t) provides an approximation for theFinite Hilbert Transform(Tf) (a, b; t) and the error estimate fulfils the bounddescribed in(2.3).

If we consider the functionf : [−1, 1] → R, f (x) = exp(x), then the exactvalue of the Hilbert transform is

(Tf) (a, b; t) =exp(t)Ei(1− t)− exp(t)Ei(−1− t)

π, t ∈ [−1, 1]

and the plot of this function is embodied in Figure1.

If we implement the quadrature formula provided byEn(f ; a, b, t) usingMaple 6 and chose the value ofn = 100, then the errorEr (f ; a, b, t) :=(Tf) (a, b; t)− En(f ; a, b, t) has the variation described in the Figure2.

Forn =1,000, the plot ofEr (f ; a, b, t) is embodied in the following Figure3.

Now, if we consider another function,f : [−1, 1] → R, f(x) = sin x, then

Page 29: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 29 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Figure 1:

the exact value of the Hilbert transform is

(Tf) (a, b; t) =−Si(−1 + t) cos(t) + Ci(1− t) sin(t)

π

+Si(t + 1) cos(t)− sin(t)Ci(t + 1))

π, t ∈ [−1, 1] ;

where

Si(x) =

∫ x

0

sin(t)

tdt, Ci(x) = γ + ln x +

∫ x

0

cos(t)− 1

tdt;

having the plot embodied in the following Figure4.If we choose the value ofn = 100, then the errorEr (f ; a, b, t) for the

functionf(x) = sin x, x ∈ [−1, 1] has the variation described in the Figure5below.

Page 30: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 30 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Figure 2:

Moreover, forn =100,000, the behaviour ofEr (f ; a, b, t) is plotted in Fig-ure6.

Finally, if we choose the functionf : [−1, 1] → R, f(x) = sin (x2) , theMaple 6 is unable to produce an exact value of the finite Hilbert transform. Ifwe use our formula

En(f ; a, b, t) :=f (t)

πln

(b− t

t− a

)+ Mn (f ; t) , t ∈ [a, b]

for n =1,000, then we can produce the plot in Figure7.Taking into account the bound(3.12) we know that the accuracy of the plot

in Figure7 is at least of order10−5.

Page 31: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 31 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Figure 3:

Figure 4:

Page 32: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 32 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Figure 5:

Figure 6:

Page 33: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 33 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

Figure 7:

Page 34: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 34 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

References[1] G. CRISCUOLOAND G. MASTROIANNI, Formule gaussiane per il cal-

colo di integrali a valor principale secondo e Cauchy loro convergenza,Calcolo,22 (1985), 391–411.

[2] G. CRISCUOLOAND G. MASTROIANNI, Sulla convergenza di alcuneformule di quadratura per il calcolo di integrali a valor principale secondoCauchy,Anal. Numér. Théor. Approx.,14 (1985), 109–116.

[3] G. CRISCUOLOAND G. MASTROIANNI, On the convergence of an in-terpolatory product rule for evaluating Cauchy principal value integrals,Math. Comp.,48 (1987), 725–735.

[4] G. CRISCUOLOAND G. MASTROIANNI, Mean and uniform conver-gence of quadrature rules for evaluating the finite Hilbert transform, in: A.Pinkus and P. Nevai, Eds.,Progress in Approximation Theory(AcademicPress, Orlando, 1991), 141–175.

[5] C. DAGNINO, V. DEMICHELIS AND E. SANTI, Numerical integrationbased on quasi-interpolating splines,Computing, 50 (1993), 149–163.

[6] C. DAGNINO, V. DEMICHELIS AND E. SANTI, An algorithm for nu-merical integration based on quasi-interpolating splines,Numer. Algo-rithms, 5 (1993), 443–452.

[7] C. DAGNINO, V. DEMICHELIS AND E. SANTI, Local spline approxi-mation methods for singular product integration,Approx. Theory Appl.,12(1996), 1–14.

Page 35: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 35 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

[8] C. DAGNINO AND P. RABINOWITZ, Product integration of singular in-tegrands based on quasi-interpolating splines,Comput. Math.,to appear,special issue dedicated to 100th birthday of Cornelius Lanczos.

[9] P.J. DAVIS AND P. RABINOWITZ, Methods of Numerical Integration,(Academic Press, Orlando, 2nd Ed., 1984).

[10] K. DIETHELM, Non-optimality of certain quadrature rules for Cauchyprincipal value integrals,Z. Angew. Math. Mech,74(6) (1994), T689–T690.

[11] K. DIETHELM, Peano kernels and bounds for the error constants of Gaus-sian and related quadrature rules for Cauchy principal value integrals,Nu-mer. Math.,to appear.

[12] K. DIETHELM, Uniform convergence to optimal order quadrature rulesfor Cauchy principal value integrals,J. Comput. Appl. Math.,56(3) (1994),321–329.

[13] S.S. DRAGOMIR, On the Ostrowski integral inequality for mappings ofbounded variation and applications,Math. Ineq.& Appl., 3(1) (2001), 59–66.

[14] D. ELLIOTT, On the convergence of Hunter’s quadrature rule for Cauchyprincipal value integrals,BIT, 19 (1979), 457–462.

[15] D. ELLIOTT AND D.F. PAGET, On the convergence of a quadrature rulefor evaluating certain Cauchy principal value integrals,Numer. Math.,23(1975), 311–319.

Page 36: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 36 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

[16] D. ELLIOTT AND D.F. PAGET, On the convergence of a quadrature rulefor evaluating certain Cauchy principal value integrals: An addendum,Nu-mer. Math.,25 (1976), 287–289.

[17] D. ELLIOTT AND D.F. PAGET, Gauss type quadrature rules for Cauchyprincipal value integrals,Math. Comp.,33 (1979), 301–309.

[18] T. HASEGAWA AND T. TORII, An automatic quadrature for Cauchy prin-cipal value integrals,Math. Comp.,56 (1991), 741–754.

[19] T. HASEGAWA AND T. TORII, Hilbert and Hadamard transforms by gen-eralised Chebychev expansion,J. Comput. Appl. Math.,51 (1994), 71–83.

[20] D.B. HUNTER, Some Gauss type formulae for the evaluation of Cauchyprincipal value integrals,Numer. Math.,19 (1972), 419–424.

[21] N.I. IOAKIMIDIS, Further convergence results for two quadrature rulesfor Cauchy type principal value integrals,Apl. Mat.,27 (1982), 457–466.

[22] N.I. IOAKIMIDIS, On the uniform convergence of Gaussian quadraturerules for Cauchy principal value integrals and their derivatives,Math.Comp.,44 (1985), 191–198.

[23] A.I. KALANDIYA, Mathematical Methods of Two-Dimensional Elastic-ity, (Mir, Moscow, 1st English ed., 1978).

[24] G. MONEGATO, The numerical evaluation of one-dimensional Cauchyprincipal value integrals,Computing,29 (1982), 337–354.

Page 37: Journal of Inequalities in Pure and Applied Mathematicsemis.maths.adelaide.edu.au/journals/JIPAM/images/... · APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY

Approximating the Finite HilbertTransform via an Ostrowski

Type Inequality for Functions ofBounded Variation

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 37 of 37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

http://jipam.vu.edu.au

[25] G. MONEGATO, On the weights of certain quadratures for the numericalevaluation of Cauchy principal value integrals and their derivatives,Numer.Math.,50 (1987), 273–281.

[26] D.F. PAGETAND D. ELLIOTT, An algorithm for the numerical evaluationof certain Cauchy principal value integrals,Numer. Math.,19 (1972), 373–385.

[27] P. RABINOWITZ, On an interpolatory product rule for evaluating Cauchyprincipal value integrals,BIT, 29 (1989), 347–355.

[28] P. RABINOWITZ, Numerical integration based on approximating splines,J. Comput. Appl. Math.,33 (1990), 73–83.

[29] P. RABINOWITZ, Application of approximating splines for the solutionof Cauchy singular integral equations,Appl. Numer. Math.,15 (1994),285–297.

[30] P. RABINOWITZ, Numerical evaluation of Cauchy principal value inte-grals with singular integrands,Math. Comput.,55 (1990), 265–276.

[31] P. RABINOWITZ AND E. SANTI, On the uniform convergence of Cauchyprinciple value of quasi-interpolating splines,Bit, 35 (1995), 277–290.

[32] M.S. SHESHKO, On the convergence of quadrature processes for a singu-lar integral,Izv, Vyssh. Uohebn. Zaved Mat.,20 (1976), 108–118.

[33] G. TSAMASPHYROSAND P.S. THEOCARIS, On the convergence ofsome quadrature rules for Cauchy principal-value and finite-part integrals,Computing, 31 (1983), 105–114.