josh thomas - stanford university...2008/10/03  · josh thomas gcep research symposium: ”energy...

28
A ”Quantum Leap” Forward for Li-Ion Battery Cathodes Ångström Advanced Battery Centre, Uppsala University, Sweden. [email protected] Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008

Upload: others

Post on 25-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

A ”Quantum

Leap”

Forward for Li-Ion

Battery

Cathodes

Ångström Advanced

Battery

Centre, Uppsala University, Sweden.

[email protected]

Josh Thomas

GCEP Research Symposium:

”Energy Research – Five Years and Beyond”Stanford University, 1-3 October 2008

Page 2: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

See also:

Poster #22:

Kinson Kam, Anti Liivat et al.

Poster #27: David Ensling et al. (esp. XPS/PES studies)

Page 3: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

GCEP is GCEP.... so a few ZEV-based

perspectives on the general situation at some other spot on the industrially developed GLOBE:

• Sweden looks to CA for a lead . . . . . . yet tends to ”have all the answers”

• USA can make things happen . . . . . Sweden can only follow

• Swedes share the same ”who . . . . . . . . and our car industry is ”US owned”killed the electric vehicle?”suspicions

• USA is capitalist

where . . . . . . . . Sweden is socialist

-

we look toprivate enterprise fluorishes ”the State”

to make the moves

Sweden is more optimistic

-

but also more utopic

and less realistic

Page 4: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

A future vision borrowed from Toyota . . . .

ALL future vehicle concepts will need (better) batteries

!

Page 5: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

This is where our project comes in . . .

A relatively uncontroversial consensus roadmap ahead towards ZEVs:

ICE ►► HEV ►► PHEV ►► FC-PHEV ►► (P-)EV

Time-scale ? cf. Joan Ogden (Day 1)

An estimate I saw somewhere a few months back:

. . . the last totally ICE vehicle will roll of the production lines in 2034

-

give or take a year.”

Title: A ”Quantum Leap”

Forward for Li-Ion Battery Cathodes

But why especially better

cathodes

?

Page 6: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Where are batteries today – after two centuries ?

Alessandro Volta, 1799

1839 (Fuel cell)1859 Pb-acid1899 Ni-Cd (Swedish!)1973 Li-metal1975 Ni-MH1979 Li-polymer

Li-ion: Sony 1990

(Cu/Zn)

Li-ion polymer: 2000The battery industry isclearly very conservative

Page 7: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

The rechargable Li-ion (polymer) battery

”good rechargability” =the ability to extract and reinsert an optimal amount of Li manytimes (1000’s) from the active particles without significant loss in capacity

Page 8: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Betterbatteries

Bettermaterials

Saferanodes

More stable electrolytes

• Higher capacity (”performance”)• Higher power (”performance”)• Safer (”performance”)• Longer lifetime (”performance”)

• Lower cost (”market”)• More abundant materials

(”market”/ ”environment”)• Non-toxic (”environment”)

We can ”upscale”with what we have today

The CATHODE

is holding back theupscaling of the

technology!

Page 9: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

A lower-cost EV-cathode material ?• Today’s most common mobile phone/laptop

material uses:

Li(Co,Ni)O2 , LiNi1-y-z Coy Alz O2

• Larger batteries demand lower-cost cathode materials ⇒

the obvious candidate . . .

. . . some Fe-based material:

- LiFePO4 (A123, etc.)- Li2 FeSiO4 (our focus)

( Fe- and Si-oxides make up >10% of the Earth’s crust)

Page 10: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Poor el. conductivity !

Solutions:- doping- coating- ”nano”-sizing

a) Layered: LiCoO2 -> Li0.5 CoO2 : ~3.9V, ~140 mAh/g

b) Spinels:LiMn2 O4 -> Mn2 O4 : ~3V or ~4.0V, 148 mAh/g

c) Olivines:LiFePO4 -> FePO4 , ~3.5V, ~170 mAh/g

d) OrthosilicatesLi2 FeSiO4 -> LiFeSiO4 , ~2.85V, ~ 170 mAh/g

Instabilitility !Solution: doping

Cathode materials: a comparison

Page 11: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Advantages:

• Potentially lower cost, abundant, non-toxic

• High cycling efficiency

• High stability

• Li2 Fe2+SiO4 ↔

LiFe3+SiO4 + Li+ + e-

• E= 2.85 V vs. Li+/Li (low!!)

• Q= 169 mAh·g-1

Our new Fe-based cathode material

Li2 FeSiO4 – an orthosilicate

Li/Fe ordering !

Page 12: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Strategies for improvement . . .

How can we extract >1 Li to give a higher capacity at a higher voltage?

Li+ 2 (Fe2+

1-x Mn2+ x )SiO4 ⇒ Li+

1-x (Fe3+ 1-x Mn4+

x )SiO4 + (1+x)Li+ + (1+x)e-Li+2 (Fe2+1-x Mn2+

x )SiO4 ⇒ Li+1-x (Fe3+1-x Mn4+

x )SiO4 + (1+x)Li+ + (1+x)e-

e.g., for x = 0.5

Page 13: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Our strategy for improving performance

• Compositional

variation:

transition-metal

substitution,

polyanion

substitution, ”by-stander”

ions

to give

structural

support, etc.

• DFT calculations:

gives

indications of how to optimize electrochemical performance

• Synthesis:

e.g., nanostructures, coating, ....

• Materials

screening and characterization:

-

structure-

surface properties (SEI layer?)-

electrochemical

performance

A close interplay between DFT calculations and experiment!

Page 14: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

2 h

4 h

18 h

6 h

Nanostructures

e.g., solution-based synthesis:

• Precipitation of metal nitrate salts

• Similar redox behaviour as the bulk material

• Wide range of particle sizes can be tuned

conditions

Varyingsynthesis

Page 15: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Conductive enough to

distribute e-

evenly

Thin enough to allow

the passage of

Li+

Strategy

to compensate

for the low

electronicconductivity

of Li2

FeSiO4 –type

materials

carbon coated particles

nano-painting with

an electronic

conductor

Page 16: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Nano-painting further improves particle contact . . .

Carbon coating ≈

1nm thick, transparent to ions

Structured carbon black nanoparticles

Electrolyte

Page 17: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Going beyond Li2 FeSiO4 . . .

Li2 Fe SiO4 Li Fe SiO4

2.85V 169mAh/g2+

Inert Li !Fe2+/Fe3+

only !Inert polyanion !

3+

Li2 Fe VO4

Polyanion substitution

Fe VO4

~2.2V 160mAh/g

2+

Li Fe VO4

2+ 3-

3+ 3-

4-

~3.4V 160mAh/g

Li2

3+/3+~2.85V, ~3.8V 169mAh/g2+/2+

4+/3+

SiO4

Transition-metal substitution

Li SiO4

>4.3V (169x)

mAh/g

Kinetics! Reversibility!

SiO4MnxFe1-x

MnxFe1-x

MnxFe1-x

Li1-x

e.g., substitution

We want to make this box as small as possible !

Start material:Li2

FeSiO4

Page 18: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Mn4+

140°

Li2 Mnx Fe1-x SiO4

• Substitution of Fe by Mn facilitates a >1 Li+ transfer(Mn2+ Mn3+ Mn4+)

• Similar X-ray diffraction patterns to undoped Li2 FeSiO4

• First redox reaction occurs at > 4V (Mn2+ Mn3+) during 1st cycling

lithiated delithiated

Distortion

in MnO4

The manganese-doped silicate ?

Mn = 0.1

undoped

Page 19: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Polyanion substitution in Li2 FeSiO4 ?

V4+/V5+

Fe2+/Fe3+

- Complete delithiation !

- Less strain (bonds: dSi-O <dV-O <dFe-O )

- Higher σel (smaller bandgap)

But . . .

- Volume expansion: ~10%

- Low V4+/V5+ voltage: 2.2V

Li2 FeVO4

Li1 FeVO4

Li0 FeVO4

DFT modelling of substitutions: extra redox-activity

VO43-/VO4

4-

at SiO44-

160mAh/g

2.2V

160mAh/g

3.1V

Page 20: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Stability ????

XPS/PES surface analysis of Li2

FeSiO4

We must probe the stability (“lifetime”) of the material for different electrolyte systems

e.g., a comparative study of performance for two commonly used salts: LiTFSI

vs. LiPF6

Page 21: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Why is this critical ?

Surface chemistry

plays a crucial role in defining the cycling behaviour

of Li-ion batteries -

we can improve cycling performance

if we understand the cathode-electrolyte interface (= the SEI layer)

Page 22: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Electrolyte

systems studied . . .

Structure Cut-off voltage [V] Conc. Name

LiTFSI 2.0 –

3.7 1 MLithium

bis(trifluoromethane

-sulfonyl)imide

LiPF6 2.0 –

3.7 1 Mlithium

hexafluorophosphat

e

LiTDI 2.0 –

4.0 1 MLithium

trifluoromethyl

dicyanoimidazole

LiPDI 2.0 –

4.0 1 MLithium

pentafuoroethyl

dicyanoimidazole

LiBOB 2.0–

4.2 0.8 MLithium bis-oxalato

borate

N SS

O

O

O

O

CF3F3C

Li+

FP

F

F

F

FFLi+

O

O O

B

O

O

O

O

O

Li+

N

N

NC

NC

CF3

Li+

N

N

NC

NCF2C CF3

Li+

Solvents: EC : DEC 2:1

Corrosion on Al current collector

Sensitive to H2

O

New !

Studied on the anode side

Page 23: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Electrochemical

performance . . .

30

50

70

90

110

130

0 8 16 24 32 40 48Cycle Number

Cap

acity

[mA

h/g]

LiTFSI_1 a

LiTFSI_1 b

LiTFSI_2 a

LiTFSI_2 b

LiPF6_1 a

LiPF6_1 b

LiPF6_2 a

LiPF6_2 b

40

60

80

100

120

140

0 8 16 24 32 40 48Cycle Number

Cap

acity

[mA

h/g]

LiTDI_1 a

LiTDI_1 b

LiTDI_2 a

LiTDI_2 b

LiPDI_1 a

LiPDI_1 b

LiPDI_2 a

LiPDI_2 b

LiBOB_1 a

LiBOB_1 b

LiBOB_2 a

LiBOB_2 b

a -

charge capacityb -

discharge capacity

LiPDILiBOB

LiTFSI

LiPF6

Cycle Number

LiTDI

Cap

acity

[mA

h/g]

Page 24: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Li2

FeSiO4

/C

cycled with two electrolytes:

(a) 1M LiTFSI

(2:1) EC:DEC(b) 1M LiPF6 (2:1) EC:DEC

Measured with XPS on both lithiated

anddelithiated

precycled electrodes.

Comparative study: LiTFSI

vs. LiPF6

Safe transfer

from cell to XPS analysis:

S

Se-

Ar

gloveboxTransfer vessel PES analysis

Page 25: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Comparative study: LiTFSI

vs. LiPF6

Inte

nsi

ty

294 291 288 285 282binding energy [eV]

C1sLiFTSI

a

b

-CF3

-CO3

-COOH

-CHC-C

-COH

Inte

nsi

ty

294 291 288 285 282binding energy [eV]

C1sLiPF6

c

d

-CHC-C

-CO3

-COOH

-COH

LiPF6LiTFSI

char

ged

disc

harg

ed

C 1s

Inte

nsi

ty

694 691 688 685 682binding energy [eV]

F1sLiPF6

c

d

LiPF6+binder+P-F-O

LiF

Inte

nsi

ty

694 691 688 685 682binding energy [eV]

F1sLiFTS I

a

bLiF

-CF3+binder

LiPF6LiTFSI

char

ged

disc

harg

ed

F 1s

Inte

nsi

ty

694 691 688 685 682binding energy [eV]

F1sLiFTS I

a

bLiF

-CF3+binder

Inte

nsi

ty

107 105 103 101 99binding energy [eV]

Si2pLiTFSI

a

b

Inte

nsi

ty

107 105 103 101 99binding energy [eV]

Si2pLiPF6

c

d -Si-F

-SiO4-SiO4

LiPF

6

LiTFSI

char

ged

disc

harg

ed

Si 2pSolvent reaction: EC polymer •

Salt degradation: PF6 P-F-O

LiF

formation

Corrosion of electrode: Si-F bonds

Page 26: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

SEI models deduced (schematic)

LiTFSI

electrolyte LiPF6

electrolyte•

Decomposition of the solvent •

Degradation of the salt/electrode

LiFC/Li2

FeSiO4

LiPF6

/ Lix

PFy

/ Lix

POy

Fz

LiFFree surface?

PEO

PEO

LiPF6

/Lix

PFy

/Lix

POy

FzPEO

C/Li2

FeSiO4

LiTFSI/TFSI-

Polymer e.g., PEOEC (C3

O3

H4

)

LiTFSI

Li2

CO3

Li2

CO3

Page 27: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Conclusions

A combination of DFT

and selective synthesis

is proving a most fruitful route towards understanding how the full promise of the Li2

FeSiO4

system can be realized in a lower-priced Li-ion battery cathode material

XPS/PES

is helping us tune the optimal electrolyte

to use for a given cathode in a battery

Page 28: Josh Thomas - Stanford University...2008/10/03  · Josh Thomas GCEP Research Symposium: ”Energy Research – Five Years and Beyond” Stanford University, 1-3 October 2008 See also:

Thank you -

GCEP!