jose a.r. cembranos et al- collider signatures of superwimp warm dark matter

Upload: optimusz

Post on 06-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    1/18

    0

    Jose A. R.Jose A. R. CembranosCembranos

    Dept. of Physics and AstronomyDept. of Physics and AstronomyUniversity of California, IrvineUniversity of California, Irvine

    IrvineIrvine , CA 92697, CA 92697

    Collaborators:Collaborators: James S. Bullock,James S. Bullock,

    Jonathan L.Jonathan L. FengFeng ,, ManojManoj KaplinghatKaplinghat ,,ArvindArvind RajaramanRajaraman , Bryan T. Smith, Bryan T. Smith

    andand FumihiroFumihiro TakayamaTakayama

    ColliderCollider Signatures ofSignatures ofSuperWIMPSuperWIMP Warm Dark MatterWarm Dark Matter

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    2/18

    Snowmass 2005 J.A.R. Cembranos 1

    CONTENTSCONTENTS1.- Dark Matter

    2.- Motivation

    3.- A new signal

    2.a. Theoretical2.b. Experimental

    Candidates beyond SM

    3.a. Small scale structure

    3.b. Collider implications

    SuperWIMPs WIMPsvs

    Known signals and constraints:2.b.1. Big Bang nucleosynthesis2.b.2. Cosmic microwave background

    2.b.3. Cosmic ray production

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    3/18

    Snowmass 2005 J.A.R. Cembranos 2

    DARK MATTER EVIDENCESDARK MATTER EVIDENCES

    4.- Nucleosynthesis

    3.- Large ScaleStructures (LSS)

    DARK HALO1.- Rotation curves

    2.- Cosmic Microwave Background

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    4/18Snowmass 2005 J.A.R. Cembranos 3

    EnergyEnergy ContentContent

    ofof thethe UniverseUniverse

    73%

    23%4%

    Dark Energy

    Non Barionic Cold Dark Matter

    Standard Model Matter

    BaryonicBaryonic

    COSMOLOGICAL MODELCOSMOLOGICAL MODEL

    Search of DM candidates beyond the SM.

    T h e S t a n d a r d C o s m

    o l o g y w a n t s

    n o n S t a n d a r d P a r t i

    c l e s

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    5/18Snowmass 2005 J.A.R. Cembranos 4

    Among the most well-motivated candidates are theweakly-interacting massive particles (WIMPs) withmasses of the order of the weak scale M ~ 100 GeV:

    DARK MATTER CANDIDATESDARK MATTER CANDIDATES

    1.- Supersymmetric (SUSY) models :Lightest supersymmetric particle (LSP): Neutralinos,

    WIMPS behave as cold DM (CDM) and are remarkablysuccessful in explaining the observed large scale

    structure down to length scales of ~ 1 Mpc.

    2.- Universal Extra Dimensions (UED):Lightest KK mode (LKKM): B 1,

    3.- Brane-World Scenarios (WBS):Branons,

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    6/18

    Snowmass 2005 J.A.R. Cembranos 5

    Superweakly-interacting massive particles(SWIMPs) appear naturally in the same wellmotivated scenarios:

    SUPERWIMP MODELSSUPERWIMP MODELS

    1.- Supersymmetric (SUSY) models :Lightest supersymmetric particle (LSP): gravitinos,axinos, quintessinos

    The relic density of SuperWIMPS also yieldsto the observed dark matter abundance sincethey are produced by the decay of a typicalWIMP.

    2.- Universal Extra Dimensions (UED):

    Lightest KK mode particle (LKKM): G 1,

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    7/18

    Snowmass 2005 J.A.R. Cembranos 6

    Freeze out

    Increasing

    C o m o v i n g N u m b e r D e n

    s i t y

    Increasing < sA v> < sA v>2. Decay

    WIMPsWIMPs vs.vs. SuperWIMPsSuperWIMPsThe evolution of the WIMP number density follows the Boltzmann

    equation:

    Thermal equilibrium density:

    n WIMP eq = g/(2 )3 f(p) d 3pWhen = n WIMP < H , the

    DM is frozen out.

    dn WIMP /dt = -3Hn WIMP - < Av >[(n WIMP )2- (n WIMP eq )2]

    WIMP relic density:WIMP h 2 m WIMP / AvWIMPTFreeze out ~ m WIMP / 20

    SWIMP relic density:SWIMP h 2 = WIMP h 2 m SWIMP /m WIMP

    m SWIMP / AvWIMP

    1. Freeze out

    Increasing < v>< sA v> < sA v>

    ( Time )

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    8/18

    Snowmass 2005 J.A.R. Cembranos 7

    A. Belyaev, ALCPG, Snowmass (2005)

    MSUGRA PARAMETER SPACEMSUGRA PARAMETER SPACE

    { m 0, M 1/2 , A 0, tan , sgn( ) , m 3/2 }

    1.c. LSP

    h2 > 0.13 excluded

    1.a. LSP excluded

    For example, mSUGRA have 6 free parameters:

    1.- WIMP scenario:

    1.b. LSP favored

    2.c. NLSP h2 > 0.13 favored

    2.a. NLSP favored2.- SuperWIMP scenario:

    2.b. NLSP disfavored

    Complementary scenarios

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    9/18

    Snowmass 2005 J.A.R. Cembranos 8

    1.- Big Bang nucleosynthesis

    SIGNALS AND COSTRAINTSSIGNALS AND COSTRAINTS

    Late decays modify late elements abundances.They can reduce the 7Li and explain the presentinconsistent measurements ( ).

    3.- Cosmic rays

    The superWIMP signatures are completely different tothe typical WIMP signals:

    Feng et al. , PRD 68, 063504 (2003)

    The same analyses constraint superWIMPmodels: NLSP disfavored.

    2.- Cosmic microwave backgroundLate decays may also distort the CMB spectrum,from the Planck spectrum ( =0) to

    a general Bose-Einstein one.

    Sleptons NLSP are produced in cosmic rays and could be detected:1.- With high energy neutrino telescopes (IceCube,)

    2.- With sea water analyses since the staus are trapped in Earth.Albuquerque

    et al., PRL 92, 221802 (2003) X. Bi

    et al., PRD 70, 123512 (2004) Cembranos et al. , in progress

    Cyburt et al. , PRD 67, 103521 (2002)

    Feng et al. , PRD 70, 063514 (2004)

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    10/18

    Snowmass 2005 J.A.R. Cembranos 9

    CDM appears to face difficulty in explaining the observedstructure on length scales < 1 Mpc.

    SMALL SCALE PROBLEMSSMALL SCALE PROBLEMS

    1.- Overdense cores in galactic halos

    2.- Too many dwarf galaxies in the local Group3.- Disk galaxies with angular momentum loss.

    Superweakly-interacting massive particles (SuperWIMPsor SWIMPs) can resolve these problems since they areproduced with large velocities at late times.Consequently:

    A.- Reduce the phase space density smoothingout cusps in DM halos.B.- Damp the linear power spectrum reducing

    power on small scales.

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    11/18

    Snowmass 2005 J.A.R. Cembranos 10

    1.- The velocity or angular momentum of DM halos can beincreased in the SWIMP scenario

    STRUCTURE FORMATIONSTRUCTURE FORMATION

    1.a. Reducing the phase space density

    2.- Small scales in the linear Power Spectrum are damped:2.a Free-streaming scale 2.b. Acoustic damping scale

    M. Kaplinghat, astro-ph/0507300 Sigurdson and Kamionkowski, PRL 92, 171302 (2004)

    Cembranos et al. hep-ph/0507150

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    12/18

    Snowmass 2005 J.A.R. Cembranos 11

    GRAVITINO AND AXINO STUDIESGRAVITINO AND AXINO STUDIES

    Preferred regions for Q and FS with a slepton as NLSPA. Gravitino B. Axino

    =

    Brandenburg et al. , PLB 617, 99 (2005)

    Feng et al. , PRL 91, 011302 (2003)

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    13/18

    Snowmass 2005 J.A.R. Cembranos 12

    1.- CHARGED NLSP

    Production of two metastable sleptons

    Highly ionizing charged tracks

    COLLIDER SIGNATURESCOLLIDER SIGNATURES

    2.- Neutral NLSPNew motivations to distinguish between the

    neutralino and sneutrino NLSP models

    Feng and Smith, PRD 71, 015004 (2005)

    Hamaguchi et al. , PRD 70, 115007 (2004)

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    14/18

    Snowmass 2005 J.A.R. Cembranos 13

    TRAPPING SLEPTONSTRAPPING SLEPTONS1.- Sleptons are missed in theenvironment of the detector.

    Feng and Smith, PRD 71, 015004 (2005)

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    15/18

    Snowmass 2005 J.A.R. Cembranos 14

    TRAPPING SLEPTONSTRAPPING SLEPTONS

    2.- Slepton are trapped in tanks of

    water.

    1.- Sleptons are missed in theenvironment of the detector.

    Feng and Smith, PRD 71, 015004 (2005)

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    16/18

    Snowmass 2005 J.A.R. Cembranos 15

    TRAPPING SLEPTONSTRAPPING SLEPTONS

    Quiet Environment

    4.- We wait for detecting thedecays.

    A.- In the LHC, the trap cancatch ~100/yr in 100m3we If it produces

    around 10 6 sleptons/yr.

    2.- Slepton are trapped in tanks of

    water.

    1.- Sleptons are missed in theenvironment of the detector.

    3.- The water is moved to a quietenvironment.

    Collider

    B.- By tuning the beamenergy in the ILC to

    produce slow sleptons, itis possible to trap ~100/yrin 100 m 3we.

    Feng and Smith, PRD 71, 015004 (2005)

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    17/18

    Snowmass 2005 J.A.R. Cembranos 16

    The lower areas areaccessible at futurecollider experiments(LEP-II fixes the presentexclusion region) .

    COLLIDER SENSITIVITIESCOLLIDER SENSITIVITIESA. Gravitino B. Axino

  • 8/3/2019 Jose A.R. Cembranos et al- Collider Signatures of SuperWIMP Warm Dark Matter

    18/18

    Snowmass 2005 J.A.R. Cembranos 17

    CONCLUSIONSCONCLUSIONS

    1.- We have examined the implications of superWIMP(SWIMP) dark matter (DM) for small scale structures.

    3.- These analyses could be interpreted as a new SWIMP signal or as anew SWIMP constraint depending of future astrophysical observations.

    2.- Because SWIMPs are produced with large velocity in late decays,

    their behavior in relation with structure formation can differ verymuch of cold DM.

    4.- We have analyzed the consequences for collider experimentssupposing pure SWIMP DM scenarios:

    4.a. In the gravitino SWIMP case, no signal is expected in the ILC.The LHC only will be sensitivity to a small preferred region.

    4.b. The situation is opposite for the axino SWIMP scenario,whose signals can be found not only for the warm DM case butalso for the cold DM one.