additional dimensions, dark matter and...

30
0 José A. R. José A. R. Cembranos Cembranos Department of Physics and Astronomy Department of Physics and Astronomy University of California, Irvine University of California, Irvine Irvine Irvine , CA 92697-4575 , CA 92697-4575 Additional Additional Dimensions Dimensions , , Dark Dark Matter Matter and and Accelerators Accelerators

Upload: doanthien

Post on 09-May-2018

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

0

José A. R. José A. R. CembranosCembranos Department of Physics and AstronomyDepartment of Physics and Astronomy

University of California, IrvineUniversity of California, IrvineIrvineIrvine, CA 92697-4575, CA 92697-4575

AdditionalAdditional DimensionsDimensions,,Dark Dark MatterMatter andand

AcceleratorsAccelerators

Page 2: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 1

CONTENTSCONTENTS

1.- Extra Dimensions

2.- Extra dimensionalmodels with darkmatter candidates

2.a. Characteristics

2.b. Astrophysicalsignals

2.c. Collider signatures

Page 3: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 2

EXTRA DIMENSIONSEXTRA DIMENSIONS

The main motivations for considering extradimensions have a theoretical origin.

1.- Modern Kaluza-Klein (KK) Theories 2.- Supersymmetry (SUSY) and Supergravity (SUGRA) 3.- Superstring4.- M-Theory

In the last years the most part of the developments intheoretical physics required the introduction of extradimensions (ED):

Page 4: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 3

BRANE WORLD IDEABRANE WORLD IDEA

The main idea is that our universe is 3-brane living in ahighier D=4+δ dimensional space (the bulk space)being the extra dimensions compactified to some smallvolume (Brane World).

In this picture theStandard modelparticles are confinedto the 3-brane butgravitons canpropagate along thewhole bulk space.

Page 5: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 4

DARK MATTER IN ED MODELSDARK MATTER IN ED MODELS

1.- Brane Worlds

2.- UniversalExtra Dimensions

KK-parity conservation:

Stability of the lightest KK mode:

2.a. KK-photon : WIMP

2.b. KK-graviton : SuperWIMP

Brane fluctuations = Branons: π(α)

Page 6: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 5

RIGID RIGID vsvs FLEXIBLE BRANE WORLDS FLEXIBLE BRANE WORLDS1.- Metric effects ( f >> MD) :

New particles: Kaluza-Klein graviton towerNewton law deviations

Black hole production…

2.- Brane effects ( f << MD) : New particles:

Branons = Brane fluctuations …

Sundrum, PRD 59, 085009 (1999)

Dobado and Maroto, NPB 592, 203 (2001)

Bando et al., PRL 83, 3601 (1999)Cosmological and Astrophysical Interest:

Dark Matter candidate

Cembranos et al., PRL 90, 241301 (2003)

Page 7: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 6

BRANON EFFECTIVE ACTIONBRANON EFFECTIVE ACTION The interaction of the branons (πα) with the SM

particles is given by:

As in the case of the gravitons, the branons couple tothe SM through:

N: Number of branons.

M: Branon mass.

f: Brane tension scale.

Cembranos et al., PRD 65, 026005 (2002)Dobado and Maroto, NPB 592, 203 (2001)

Creminelli and Strumia, NPB 596, 125 (2001) Alcaraz et al., PRD 67, 075010 (2003)

Page 8: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 7

PARTICLE COLLIDERSPARTICLE COLLIDERS1.- Electroweakboson widthmodifications.

2.- Direct searchesin e+e- colliders.

3.- Direct searchesin hadroniccolliders.

3.a. Single photon channel.

3.b. Mono jet channel.

3.c. Prospects for future hadronic

colliders. Cembranos et al., PRD 70, 096001 (2004)

2.a. Invisible Z width.

2.b. W decay. Alcaraz et al., PRD 67, 075010 (2003)

2.a. Single photon channel.

2.b. Single Z channel.

2.c. Prospects for future LC.Alcaraz et al., PRD 67, 075010 (2003)

L3, PLB 597, 145 (2004)

Page 9: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 8

SINGLE SINGLE γγ AND AND Z Z CHANNELSCHANNELS γ or Z production

The most importantsignal in electron-positron colliders isassociated with thesingle photonchannel (or single Zchannel) plusmissing energy.Alcaraz et al., PRD 67, 075010 (2003)

Page 10: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 9

L3 DATA ANALYSIS L3 DATA ANALYSIS

L3 is a collaborationwith more than 50institutions from allthe world.

L3 was a detectorworking with theproduced particles inthe electron-positroncollisions in the LEPring (CERN).

Analysis: 1.- Single photon 2.- Single Z 3.- Restrictions

L3, PLB 597, 145 (2004)

Page 11: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 10

Alcaraz et al., PRD 67, 075010 (2003)

CONSTRAINTS AND PROSPECTSCONSTRAINTS AND PROSPECTS Main analyses related to real

branon production in colliderexperiments. All the results areperformed at the 95% c.l. (N=1).

Page 12: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 11

BRANONS IN COSMOLOGYBRANONS IN COSMOLOGY

1.- Branons: Dark Matter (DM) candidates.

2.- Searches of branons as Dark Matter.

3.- Cosmological and astrophysical restrictions.

2.a.- Direct detection experiments.2.b.- Indirect detection experiments.

Branons are generically stable, weakly interactiveand massive.

Weakly-Interactive Massive Particles: WIMPs.

Cembranos et al., PRL 90, 241301 (2003)

Cembranos et al., PRL 90, 241301 (2003)

Cembranos et al., PRD 68, 103505 (2003)Kugo and Yoshioka, NPB 594, 301 (2001)

AMS Note, 2003-08-02 (2003)

Page 13: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 12

MAIN RESULTSMAIN RESULTSCosmological and astrophysical constraints.

3. - Restrictions

due to thepowerspectrum.

4. - Astrophysics restrictions.

1. - Collider restrictions.

2.- Restrictionsdue to thetotal darkmatterdensity.

A.- Branonsas WIMPs

Cembranos et al., PRL 90, 241301 (2003)

C.- Branons as aNon Thermal Relic

Maroto, PR

D 69, 043509 (2004)

B.- Branonsas Warm DM

Cembranos et al., PRL 90, 241301 (2003)

Cembranos et al., PRD 68, 103505 (2003)

Page 14: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 13

DIRECT SEARCHESDIRECT SEARCHESWIMPs elastically scatter off nuclei

nuclear recoilsMeasure recoil energy spectrum

v/c ≈ 10-3Direct interaction of the DM halo with thedetector. Typical nucleus recoil energy:ER~1-100 keV.

The rate of the WIMP interactions depends on the localDM density and relative WIMP velocity.

Page 15: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 14

DIRECT RESULTSDIRECT RESULTS

The appropriate quantity to compare with the experimental results isnot the elastic branon-nucleus cross section σ, but the differentialcross section per nucleon at zero momentum transfer: σn.

For the branoncase:

Cembranos et al., PRL 90, 241301 (2003)

Page 16: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 15

µ

νµ

INDIRECT SEARCHESINDIRECT SEARCHES

WIMPs annihilate 1.- In the center of the Sun, and the Earth core:

high energy neutrinos.

2.- In the halo: γ, e+, p-, D ... Antares, Amanda, IceCube, ...

2.a.- Halo profiles from simulationsand rotation curves.

2.b.- Green´s functions frompropagation model.

2.c.- Average cross section from theeffective theory.

Page 17: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 16

AMS PROSPECTSAMS PROSPECTS

Cosmic rays : p,D, He, C, …,e+,e-, γ, ...

It will collect~1010 CRs innear-earth orbitfrom few GeV tofew TeV.

AMS estimations: 1.- Positrons 2.- Photons 3.- Sensitivity

AMS Note, 2003-08-02 (2003)

Page 18: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 17

UNIVERSAL EXTRA DIMENSIONSUNIVERSAL EXTRA DIMENSIONS All particles are free to move in all dimensions.

Momentum conservation in the extra dimensions

Exact KK-parity conservation

KK-numbers conservation at tree-level.

1.- Cosmological and astrophysical consequence:The lighest KK-state is stable.

2.- Consequence for collider phenomenology:These new particles have to be produced in pairs.

Page 19: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 18

KK SPECTRUM KK SPECTRUMThe mass spectrum is given by ,

where (radiative corrections have been

taken into account).

Cheng et al., PRD 66, 056006 (2002)

22

0

22

0

2

0

2

CCKKMkMkmm !+=

Page 20: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 19

KK-PHOTONKK-PHOTON DARK MATTERDARK MATTER A KK-photon with m = 800 – 1000 GeV could explain the

missing matter problem. One of the most distinctive signalsof this type of dark matter is its Mono-energetic positronsignal from its annihilation.

Servant and Tait, NPB 650, 391 (2003)Cheng et al., PRL 89, 211301 (2002)

Page 21: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 20

Z and Z and γγ KK-modes KK-modes

W KK-modesW KK-modes

4TeV

1.- direct observation 1.- direct observation up to 1/R ~ 6 TeV up to 1/R ~ 6 TeV

2.- indirect observation 2.- indirect observation up to 1/R ~ 9 TeV up to 1/R ~ 9 TeV

gluon KK-modesgluon KK-modes1.- Excess in the dijet Pt distribution 1.- Excess in the dijet Pt distribution up to 1/R ~ 15 TeV up to 1/R ~ 15 TeV

''*

qqgqq !!

COLLIDER PHENOMELOGY

1.- invariant mass reconstruction 1.- invariant mass reconstruction up to 1/R ~ 5.8 TeV up to 1/R ~ 5.8 TeV

2.- interference with Drell-Yan 2.- interference with Drell-Yan up to 1/R ~ 9.5 TeV up to 1/R ~ 9.5 TeV

!+"" !!

**/#Zqq

Z and Z and γγ KK-modes KK-modes

1. LEP 2 Constraints: 1/R > 4.5 TeV (95% cl)1. LEP 2 Constraints: 1/R > 4.5 TeV (95% cl)

2. LHC PROSPECTS: 1/R 2. LHC PROSPECTS: 1/R ~ ~ 15 TeV (95% cl)15 TeV (95% cl)

Page 22: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 21

KK-GRAVITON KK-GRAVITON DARK MATTERDARK MATTER The mass spectrum and the possible decays chains of

the first set of KK states taking into account radiativecorrection to the masses:

Cheng et al., PRD 66, 056006 (2002)

G1

Page 23: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 22

Freeze out

Increasing

Com

ovin

g N

umbe

r Den

sity

Increasing τ < s Av> < sAv>

2. Decay

WIMPsWIMPs vs. vs. SuperWIMPsSuperWIMPsThe evolution of the WIMP number density follows the Boltzmann

equation:

Thermal equilibrium density:nWIMP

eq = g/(2π)3 ∫ f(p) d3p

When Γ = <σAv> nWIMP < H , theDM is frozen out.

dnWIMP/dt = -3HnWIMP - < σAv >[(nWIMP)2- (nWIMPeq)2]

WIMP relic density: ΩWIMP h2 ∝ mWIMP /〈σAvWIMP〉 TFreeze out ~ mWIMP / 20

SWIMP relic density: ΩSWIMP h2 = ΩWIMP h2 mSWIMP /mWIMP

∝ mSWIMP /〈σAvWIMP〉

1. Freeze out Increasing <σΑv><sAv> < s Av>

( Time )

Page 24: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 23

1.- Big Bang nucleosynthesis

SIGNALS AND COSTRAINTSSIGNALS AND COSTRAINTS

Late decays modify late elements abundances.They can reduce the 7Li and explain the presentinconsistent measurements ( ).

3.- Cosmic rays

The SWIMP DM signatures are completely different tothe typical WIMP signals:

Feng et al., PRD 68, 063504 (2003)

The same analyses constraint superWIMP models:

2.- Cosmic microwave backgroundLate decays may also distort the CMB spectrum,from the Planck spectrum (µ=0) toa general Bose-Einstein one.

Charged metastable particles from cosmic rays could be detected:1.- With high energy neutrino telescopes (IceCube,…)

2.- With sea water analyses since the staus are trapped in Earth.Albuquerque et al., PRL 92, 221802 (2003) X. Bi et al., PRD 70, 123512 (2004) Cembranos et al., in progress

Cyburt et al., PRD 67, 103521 (2002)

Feng et al., PRD 70, 063514 (2004)

Page 25: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 24

4.- The velocity or angular momentum of DM halos can beincreased for KK-graviton dark matter

STRUCTURE FORMATIONSTRUCTURE FORMATION

1.a. Reducing the phase space density

5.- Small scales in the linear Power Spectrum are damped:2.a Free-streaming scale 2.b. Acoustic damping scale

M. Kaplinghat, astro-ph/0507300 Sigurdson and Kamionkowski, PRL 92, 171302 (2004)

Cembranos et al. hep-ph/0507150

Page 26: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 25

1.- CHARGED Next Lightest Particle

Production of two metastable KK-leptonsHighly ionizing charged tracks

COLLIDER SIGNATURESCOLLIDER SIGNATURES

(1)

Page 27: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 26

TRAPPING KK-LEPTONSTRAPPING KK-LEPTONS 1.- KK-leptons are missed in the

environment of the detector.

Feng and Smith, PRD 71, 015004 (2005)

Page 28: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 27

TRAPPING SLEPTONSTRAPPING SLEPTONS

2.- KK-leptons are trapped in tanksof water.

1.- KK-leptons are missed in theenvironment of the detector.

Feng and Smith, PRD 71, 015004 (2005)

Page 29: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 28

TRAPPING SLEPTONSTRAPPING SLEPTONS

Quiet Environment

4.- We wait for detecting thedecays.

A.- In the LHC, the trap cancatch ~100/yr in 100m3we If it producesaround 106 KK-leptons/yr.

2.- KK-leptons are trapped in tanksof water.

1.- KK-leptons are missed in theenvironment of the detector.

3.- The water is moved to a quietenvironment.

Collider

B.- By tuning the beamenergy in the ILC toproduce slow KK-leptons,it is possible to trap~100/yr in 100 m3we.

Feng and Smith, PRD 71, 015004 (2005)

Page 30: Additional Dimensions, Dark Matter and Acceleratorscosmology.berkeley.edu/.../Talks/cembranos_adddimensions.pdfAdditional Dimensions, Dark Matter and Accelerators CDMSCD06 J.A.R. Cembranos

CDMSCD06 J.A.R. Cembranos 29

CONCLUSIONSCONCLUSIONS

1.- Branons in Flexible Brane Worlds

2.c.I. L3 (LEP-CERN)2.c.II. AMS (International Space Station)2.c.III. CMS (LHC-CERN)2.c.IV. American Linear Collider WG

2.- KK-photons in Universal Extra Dimensions

Extra dimensional models provide alternative explanationsto the Dark Matter (DM) problem. In particular, we havediscussed the phenomenology of three different DMcandidates:

3.- KK-gravitons in Universal Extra Dimensions

Astrophysical observations and collider analyses will befundamental to distinguish one candidate from the others.