john swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and...

11
John Swallow’s pinger circuit – a foray into 1940s and 50s electronic archaeology John Gould ([email protected]) and Gwyn Griffiths ([email protected]) 1. Background Over recent years JG made a number of visits to the historic ship, Medusa, now based at Gosport. HMS Medusa was a harbour defence motor launch (HDML), a wooden hulled vessel built and launched in Poole, Dorset in 1943. http://www.hmsmedusa.org.uk/ . HMS Medusa ended her working life as one of the Admiralty Hydrographic Department’s inshore survey vessels (1953 - 1968) commanded at various times by Roger Morris who became Hydrographer of the Navy and by Desmond Scott who became Executive Secretary of the Intergovernmental Oceanographic Commission of UNESCO. My interest was aroused by Medusa’s role in D-Day. The invasion fleet had to be guided through gaps that had been swept in the minefield laid down the centre of the English Channel. These gaps were marked before D-Day by acoustic beacons anchored to the sea bed (Operation Enthrone) and Medusa’s role was to home in on one of the beacons and sit over it as a visible marker to guide the invasion fleet – a bit like things that we oceanographers do, but under much more dangerous conditions. So that set me thinking: What kind of a beacon was it? And, Did the 10kHz pingers that we used (starting with John Swallow’s floats in 1954/5 and Tony Laughton’s deep-sea cameras) owe anything in their design to the WWII beacon? The Medusa web site describes the beacon as an FH830 and a Google search revealed that it was designed by a Canadian, George Whalley (1915-1983), a member of the Royal Canadian Navy Volunteer Reserve who, post war, was best known as a broadcaster and poet. (http://archives.algomau.ca/gwp/node/62). My first enquiry was with Nigel Godsell who maintains a web site similar to OceansWormley but devoted to the work of the Admiralty Research Laboratory in the hope that he may have known of a link between the WWII pingers and the NIO ones when Group W was at Teddington. He did not know of one but we had an interesting discussion about nickel scroll transducers. I sent him a photo of the transducer on John Swallow’s float and he sent me a photo of one that was much larger. (Figure 1) Figure 1. Left John Swallow deploying one of his floats in the Irminger Sea in 1962 (Courtesy WHOI archives) Right A 6’ diameter nickel scroll transducer from ARL being brought aboard RRS Discovery II. (Courtesy Nigel Godsell).

Upload: others

Post on 16-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: John Swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and cofounded the company Edgerton, Germeshausen, and Grier that became EG&G in 1947. EG&G's

JohnSwallow’spingercircuit–aforayinto1940sand50selectronicarchaeology

JohnGould([email protected])andGwynGriffiths([email protected])

1. BackgroundOverrecentyearsJGmadeanumberofvisitstothehistoricship,Medusa,nowbasedatGosport.HMSMedusawasaharbourdefencemotorlaunch(HDML),awoodenhulledvesselbuiltandlaunchedinPoole,Dorsetin1943.http://www.hmsmedusa.org.uk/.HMSMedusaendedherworkinglifeasoneoftheAdmiraltyHydrographicDepartment’sinshoresurveyvessels(1953-1968)commandedatvarioustimesbyRogerMorriswhobecameHydrographeroftheNavyandbyDesmondScottwhobecameExecutiveSecretaryoftheIntergovernmentalOceanographicCommissionofUNESCO.MyinterestwasarousedbyMedusa’sroleinD-Day.TheinvasionfleethadtobeguidedthroughgapsthathadbeensweptintheminefieldlaiddownthecentreoftheEnglishChannel.ThesegapsweremarkedbeforeD-Daybyacousticbeaconsanchoredtotheseabed(OperationEnthrone)andMedusa’srolewastohomeinononeofthebeaconsandsitoveritasavisiblemarkertoguidetheinvasionfleet–abitlikethingsthatweoceanographersdo,butundermuchmoredangerousconditions.Sothatsetmethinking:Whatkindofabeaconwasit?And,Didthe10kHzpingersthatweused(startingwithJohnSwallow’sfloatsin1954/5andTonyLaughton’sdeep-seacameras)oweanythingintheirdesigntotheWWIIbeacon?TheMedusawebsitedescribesthebeaconasanFH830andaGooglesearchrevealedthatitwasdesignedbyaCanadian,GeorgeWhalley(1915-1983),amemberoftheRoyalCanadianNavyVolunteerReservewho,postwar,wasbestknownasabroadcasterandpoet.(http://archives.algomau.ca/gwp/node/62).MyfirstenquirywaswithNigelGodsellwhomaintainsawebsitesimilartoOceansWormleybutdevotedtotheworkoftheAdmiraltyResearchLaboratoryinthehopethathemayhaveknownofalinkbetweentheWWIIpingersandtheNIOoneswhenGroupWwasatTeddington.Hedidnotknowofonebutwehadaninterestingdiscussionaboutnickelscrolltransducers.IsenthimaphotoofthetransduceronJohnSwallow’sfloatandhesentmeaphotoofonethatwasmuchlarger.(Figure1)

Figure1.LeftJohnSwallowdeployingoneofhisfloatsintheIrmingerSeain1962(CourtesyWHOIarchives)RightA6’diameternickelscrolltransducerfromARLbeingbroughtaboardRRSDiscoveryII.(CourtesyNigelGodsell).

Page 2: John Swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and cofounded the company Edgerton, Germeshausen, and Grier that became EG&G in 1947. EG&G's

2

SowhatofFH830?IlaterdiscoveredthatthehandbookanddesigndetailsareheldintheNationalArchivesandobtainedscansandsimilarcopiesfromAlanWatsonattheMedusaTrust.

Figure2SchematicoftheFH830acousticbeaconandthecoverofalaterAdmiraltyhandbook(CourtesyofNationalArchives,Kew)WhatwasimmediatelyclearwasthattherewasnoreallinkbetweenFH380andtheNIOdesign.FH830usedaquartzcrystaltransducerworkingat20kHzandlinkedtoaconicalprojectortodirecttheacousticsignalupwards.AtvarioustimesIinvolvedGwyninmyFH830discussionsandthissparkedhisinterest.Hewondered;CouldhebuildreplicasoftheFH830andSwallowcircuits?andHowwouldtheyperform?Hereishispartofthestory2. Dr.JohnSwallow's1955acousticpingerJohnSwallow'sseminal1955paper1onhisneutralbuoyancyfloatcontainsthecircuitdiagramofitsacousticpinger.ThecircuitwasdesignedbyRickHubbard,atechnicalassistantwithinGroupWatTeddington(Figure3).HubbarddidnotmovedowntoWormley2.ThecircuitisreproducedhereasaninsetinFigure4whichalsoshowsaphotographofthecomponentlayoutandtheacoustictransducer.Thereisanelegantsimplicityinitsdesign,summarisedinasinglesentenceinSwallow’spaper,"Thetransmitterconsistsofanickelscrollresonantat10kc/s,woundtoroidallyandenergizedbydischargingacapacitorthroughaflashtube".

Figure 3 Admiralty Research Laboratory Group W 1952. Rick Hubbard, back row left alongside D.W. (Dick) Privett, later NIO Librarian, In front are Henry Charnock (L) and George Deacon. NIO/IOS Directors. (Courtesy NOL archives)

1 Swallow, J.C., 1955. A neutral-buoyancy float for measuring deep currents. Deep Sea Research, 3: 74-81. 2 Our thanks to Brian McCartney for this information, 16 October 2018.

Page 3: John Swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and cofounded the company Edgerton, Germeshausen, and Grier that became EG&G in 1947. EG&G's

3

Thetypeofflashtubeinthiscircuithadahistorygoingbacktothe1920swiththeinventionofthegas-filledthyratronasahighcurrenttriggeredswitch.Thedevicewasmadesmaller,morerobust,andlessexpensiveduetotheworkofDr.Harold"Doc"EdgertonatMITintheearly1930s.Hisfascinatingdiariesarealsoavailableonline;forinstanceon6May1931hedescribesamains-poweredcircuitforaflashtubestroboscopeusingacircuit3nottoodissimilartothatofHubbard.Histubebecameknownasthestrobotron.Edgertonalsomadeseminalcontributionstothedevelopmentofsonar,andcofoundedthecompanyEdgerton,Germeshausen,andGrierthatbecameEG&Gin1947.EG&G'sMarineInstrumentssubsidiarydevelopedawidesuiteofoceanographicequipmentincludingsidescansonars,acousticreleasesandvectoraveragingcurrentmetersthatwereusedatWormley.Let'slookatthepingercircuitindetail,drawingonJohnSwallow'snotesfromhisdiary4andillustratedwithoscilloscopemeasurementsmadeonareplicaconstructedin2018,

Figure4.Thesixelectroniccomponentsandthenickelscrolltransducerthatmadeupthe1955acousticpingerusedinJohnSwallow'sneutral-buoyancyfloattogetherwiththecircuitdiagram.Source:NationalOceanographicLibrary4152(Circuit),4160(Components).

Figure5.ThecircuitofFigure4,withoutthetransducer,asconstructedin2018usingthesametypeofflashtubeandsimilarcomponentstotheoriginal.Whileperiodresistorshavebeenusedthecapacitorsaremodern,as1950scapacitorsofthistypewillhaveahighleakagecurrent.2.1HowthepingerworksThe360Vbatterychargesthe8µFreservoircapacitorviaa10kWcurrent-limitingresistorinabout0.2s,themaximumcurrentdrawnfromthebatterybeingabout36mA.ResistorRandtimingcapacitorCdeterminethepingrepetitionrate.TheNSP1flashtubeisacold-cathode"Neostron"withfourelectrodes5.Itpassesnocurrentuntilthevoltageatthetriggerelectrode(connectedtoRC)risestoatubeandage-dependentvalueofbetween80and130V.Attheinstantoftriggeringanarcformsfromthepositiveanodeatthetopofthetubetothecathodenearthebase.Thepeakcurrentcanbe200A.Inpracticethecurrentislimitedbytheresistanceofthewiring,theinternalresistanceofthereservoircapacitorandtheinductanceofthetransducer.Typically,thecurrentpulsemaylastfor10µs.

3 See https://edgerton-digital-collections.org/notebooks/03 on pages 88 to 90 4 Available at https://viewer.soton.ac.uk/nol/fullscreen/2417/1/ 5 Details and data sheet available at: http://www.r-type.org/exhib/aaa0473.htm

Page 4: John Swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and cofounded the company Edgerton, Germeshausen, and Grier that became EG&G in 1947. EG&G's

4

Thecurrentpulse,flowingthroughthecoilwoundthroughthenickelring,inducesamagneticfieldthatcausestheringtochangeitscircumference-nickelbeingamagnetostrictivematerial.Asimpleanalogyisthatoftappingabelloraglass-theimpulsegivesrisetoa"ringing"attheresonantfrequencyofthephysicalitem-beitabell,aglassorinthiscasetheringofnickel.Followingtheimpulse,thedurationoftheringingisdeterminedbytheamountofdamping,beitwithinthenickelring,fromthewirewoundoverthenickelorfromthesurroundingwater.Thetransmissionfrequencyof10kHzandthepulsedurationarethereforedeterminedbydimensionsandphysicalpropertiesandnotbytheelectronics.2.2JohnSwallow'sSeptember1955testsontheelectronicsSwallow'sdiarydescribesaseriesoftestsonanumberofpingerspriortoadeployment.Hisnotesshowacompleteunderstandingofthecircuitandlikelysourcesofproblems,notsurprisinggivenhistraininginelectronicswhileattheUniversityofCambridgein1941–43,followedbytrainingintherepairandmaintenanceofradioequipmentattheAdmiraltySignalsEstablishment,LytheHill,Haslemerein1943–44andhistourofdutyattachedtotheRoyalNavyinCeylonin1944–466.Heexaminedthe:

• Optimumnumberofturnsonthetransducer:Throughexperimenttheoptimumnumberofturnsonthetransducerwasfoundtobe30frommeasuringthesignalreceivedonasimilartransduceroverashortpathinwater,havingnoticedthathisearly,peculiar,resultswereaffectedbyairbubblestrappedonthetransducerface.• Lifetimeoftheflashtube:Swallowcheckedthatthe~144,000flashesoverafourdaydeploymentatoneevery2-3secondswasaverysmallfraction(0.27%)oftheexpectedlifeoftheflashtube,givenas300hoursat50pulsespersecondinthedatasheet.However,theprojectedlifewasnotbeingachievedinpractice.Ofsixpingershetestedon3September1955threehadproblemswiththeirflashtubes:nottriggering,givingacontinuousfaintglowandtakinglongerthancalculatedtotrigger,andnotstarting"exceptwhentapped".Whilethecircuitaspublished(Figure4)showedtheflashtubeasthecommercialFerrantiNSP1,Swallowactuallyusedthemilitaryequivalent,theCV2207.Itisthisdatasheetthathastheexpectedlifetime.However,itdoesnotcontainawarning(presentinthe1957NSP1datasheet5)onthepermanentdamagethatcouldoccurifthetubewasrunwithtoolowadischargecurrent(of5Aorless).Lowcurrentsresultinacontinuousglowratherthanaflash,leadingtodamagefromexcessiveheatdissipation.Possiblysomeofhistubeshadbeenrunwithtoolowacurrentatsometimeintheirlife.• '0V'connectionofthetimingcapacitor:By5Septemberanothertubehadstoppedflashing.Swallowdeterminedthatonecausecouldbea"voltagesurge"causedbyhavingthetimingcapacitorCconnectedtothe'0V'endofthetransducercoil,asinthecircuitdiagram.Hemodifiedthecircuitonallthepingersbymovingthetimingcapacitor'0V'connectiontothecathodeoftheflashtube.Allwereworkingfineintothefollowingdayandtherearenofurthernotesonproblemswiththeflashtubes.• Batterylife:The360Vsupplywasbuiltfrom24SiemensS123hearingaidbatteries,eachbatteryweighing13/8ounces8,foratotalbatteryweightofabout1.07kg.From26Octoberto5November1955Swallowhadtwopingersontesttodeterminethelifeoftheirbatteries.Oneunithadan8µFreservoircapacitorandbeganat29pulsesperminute,theotherhada4µFcapacitorandbeganat19pulsesperminute.Figure6showshisresultsforUnitNo.12withthe8µFcapacitorstartingwithfresh"BatteryNo.2".Thegraphalsoshowsourcalculationforthecumulativeenergyextracted,comprisingtheenergystoredinthecapacitorsandthatdissipatedintheseriesresistorsduringcharging;the85.5kJisequivalent

6 From typed notes of a conversation between John Swallow and Margaret Deacon 30 November 1994. 7 Data sheet available at: http://www.r-type.org/pdfs/cv220.pdf 8 https://viewer.soton.ac.uk/nol/fullscreen/2417/20/

Page 5: John Swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and cofounded the company Edgerton, Germeshausen, and Grier that became EG&G in 1947. EG&G's

5

to135mAh.Swallowusedthesefigurestoestimatethatthebatterieswouldgiveapingerwitha4µFcapacitorstartingat20pulsesperminutealifetimeofabout10days.

Figure6.VoltageandpulsesperminuteduringabatterylifetimetestbyJohnSwallowduringOctober-November1955togetherwithourcalculationofcumulativeenergyextractedandexpectedpulserate.

• Variationinpulserate:Oneofthelimitationswiththissimplecircuitisthattheinevitabledecayofthebatteryvoltagehasasubstantialeffectonthepulserate.Assumingafixedtriggervoltagevt,andabatteryvoltageofvbthetimebetweenpulsesisgivenby: -ln(((vb-vt)/vb)^CR)withvtat110VthecalculatedchangeinpulserateinFigure6closelymatchesthatobservedbySwallow.Laterpingersusedcrystal-controlledpulsetimingcircuitsthatenabledvisualpulse-to-pulsecorrelationonwet-paperrecorderssuchastheMufax,impossiblewiththissimplecircuit.

2.3Costofthe1955pingerandtoday'sequivalentThetotalcostofcomponentsforasimplepingerfloatin1955wasabout£17.JohnSwallow'sdiarygavethecostsofindividualparts,asshowninthistable.We'veaddedthecostsin2017usingafigureforinflationtogetherwithtoday'sactualpriceswhereavailableforeachitem.Theflashtubeisstillavailableas"NewOldStock"fromspecialistsuppliers,andisarealbargaincomparedwiththe1955cost.Theotherelectroniccomponentsareeitherasimilarpriceorcheaperinrealtermswhilethealuminiumtubesaremoreexpensiveandthebatteriesespeciallyso.Forthebatterieswe'velistedexactequivalentsthatareavailabletodayfromsuppliersthatmakereplicas.Amodern,cheapersolutionwouldbetousestandardalkalinecellsina12-voltpackanduseasolid-stateDC-to-DCstepupconvertertogivethe360V.

2.4WaveformsasseenonthemodernreplicaThesethreescreencapturesfromanoscilloscopeforthemodernreplicaillustratetheworkingoftheSwallowpingerasdescribedinthetextabove.Thefirsttwocoveratimespanof2.4seconds.

Page 6: John Swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and cofounded the company Edgerton, Germeshausen, and Grier that became EG&G in 1947. EG&G's

6

Figure7showstherapiddischargeofthe4µFreservoircapacitorfollowedbyrechargingto300Vinabout100ms.Figure8isthevoltageattheflashtube'striggerelectrode.Thesharpdecreasetozerohappensastheflashfires,thevoltagethenrisesascapacitorCchargesthroughtimingresistorRuntilitreachesthetriggervoltageatwhichthecyclerepeats.Heretheintervalis660ms,shorterthanSwallowwouldhaveused.Figure9representsthecurrentthroughtheflashtube;thetracecovers24µsandshowsacomplexwaveformwiththemaindischargehappening3µsaftertheinitialtrigger.Itisthislargecurrentpulse,withitsveryfastleadingedge,thatexcitesthemagnetostrictivetransduceratitsownresonantfrequency.

Figure7.Voltagewaveformatthereservoircapacitor.200msand100Vperdivision.

Figure8Voltage waveform at the trigger electrode. 200ms and 50V per division.

Figure9.Currentwaveformattheflashtubeoutput.2µsperdivision,currentscalenotcalibrated..

Page 7: John Swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and cofounded the company Edgerton, Germeshausen, and Grier that became EG&G in 1947. EG&G's

7

3. GeorgeWhalley'sWWIIFH830acousticpingerTheacousticpingerwithintheFH830sub-surfaceMarkerBuoydesignedbyGeorgeWhalleyattheAdmiraltyintheearlyyearsofWorldWarIIwasdifferentineveryrespectfromJohnSwallow's1955pinger.

Figure 10. FH380 Mk 1 acoustic beacon (L) and it associated transmitter unit. (From B=National Archives Courtesy of the Medusa Trust) Thefollowingtablesetsouthoweachcircuitfulfilledtheessentialfunctionsofanacousticpingerandthecomponenttechnologies.MostoftheinformationinthistableontheFH830pingerwasobtainedfromdocumentADM277/28intheUKNationalArchives9.

Function Whalley,WWIIFH830 HubbardandSwallow,1955Transmissionfrequency

Vacuumtube(valve)inductor-capacitortunedcircuit.Nominalfrequency20kHz.

Mechanicalresonanceofnickelstripwoundasatightscrolltoformaring.Nominalfrequency10kHz.

Pinginterval Chargingofcapacitorsviaaresistordrivenbythetransmissionsignalwithswitch-selectedperiods."Slightlyaffected"bythebatteryvoltage.

Chargingofacapacitorviaaresistorfromthehighvoltagebattery.Intervalincreasesmarkedlyasbatteryvoltagedecays.

Pingduration Setbycapacitors,valvegridcurrentandthecut-offvoltageandmutualconductanceoftheoscillatorvalve,typically100ms.

Setbythemechanicaldampingoftheoscillationsofthenickelscroll,typicallyafewmilliseconds.

Acoustictransducer

Piezoelectric,quartzcrystal.Highimpedance,about1Mohminparallelwith295pF,voltagedriven,about1400Vpeak.

Magnetostrictive,nickelscroll.Lowimpedanceofafewohms,currentdriven,about50Apeak.

Activedevices Twodirectlyheatedvacuumtubes(valves)requiring4vfilamentbatteries,oneastheoscillator,andtheotherastheoutputamplifier.

Singlecoldcathodeflashtuberequiringnofilamentsupply.

Circuitcomplexity Twenty-twocomponents,twospeciallywoundautotransformersintheMk1pinger,excludingtimercircuitry.

Fivecomponents,nonespeciallymade.

9 "ASDIC beacon buoy. Includes 6 photographs depicting: Asdic beacon buoys: FH 830, ...", catalogue entry at http://discovery.nationalarchives.gov.uk/details/r/C527364

Page 8: John Swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and cofounded the company Edgerton, Germeshausen, and Grier that became EG&G in 1947. EG&G's

8

Maximumdepth 25fathoms(about46metres) Testedto4500metres.Endurance Upto85days About10days.Batteries Lowvoltage:MK1FourVarleyV80

2Vleadacidaccumulatorsinseriesparallel,weightabout24kgtotal10.MkIIandIIIusedsixSiemensNsizedrycellsinseriesparallel.Highvoltage:ThreeEverReadyWinner120Vdrybatteriesinseries,weight9.9kgtotal.Totalbatteryweightabout34kg.

Highvoltage:24SiemensS123hearingaidbatteries.Totalweightabout1.07kg.

Totalweightofbuoy/floatinair.

278lb(126kg) About10kg.

3.1Howthepingerworks-oscillatorThepingercircuitinFigure11hasbeentranscribedfromthatinFigure4ofthe"ExtractfromtheF.H.830Mk.IOperatingandMaintenanceInstructionBook"intheNationalArchives9.TheresonantfrequencyoftappedcoilL2withfixedcapacitorC10andvariablecapacitorC2setsthetransmissionfrequency.C2providesavariationofabout200Hzaround20kHz.OscillationismaintainedbytheamplificationprovidedbyV1withthefeedbackprovidedbycouplingcapacitorC8.

Figure11DiagramofthepingerpartoftheFH830buoycircuit,redrawnfromtheoriginal.InaconventionaloscillatorthelowerconnectionofbiasresistorsR4andR3wouldbedirectlytothecommonnegativeofthefilamentandhighvoltagesupply(whichwewillcallground).However,heretheconnectionisviatheresistorchainR1andR5-R8,inparallelwithcapacitorsC5andC6.Thisarrangementsetsboththetransmissionpulsedurationandthepulseinterval.WhenthecircuitisswitchedonthelowerconnectionsofR3andR4areatgroundvoltage,asthecircuitoscillatesthegridandfilamentoftheeachvalveactasdiodes,rectifyingpartoftheACwaveform,andanegativeDCvoltagebuildsupatthegrid.ThepotentialdifferenceacrossR4drivesacurrent10 No details were given, and none could be found, for the Varley accumulators. To give an indication of weight and capacity dimensions from the drawings were scaled by the buoy outside diameter of 16", to give a size of about 5"x5"x7.25". The closest 2V accumulator capacity and weight, typical of period, were then obtained from http://www.valve-radio.co.uk/literature/oldham-accumulators-and-batteries/ High voltage battery details from https://www.radiomuseum.org/r/ever_winner_120.html

Page 9: John Swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and cofounded the company Edgerton, Germeshausen, and Grier that became EG&G in 1947. EG&G's

9

throughit,chargingthecapacitorsC5andC6,withasmallfractionthroughthehighvalueresistorchainR1,R5-8.WithatimeconstantdeterminedbytheproductofR3inparallelwithR4,andC5inparallelwithC6,thevoltageattheV1gridbecomesmorenegativeuntilitreachesthecut-offvoltageandthetransmissionpulseends.Cut-offisthenegativegridvoltageatwhichnocurrentflowsthroughthevalve.ThedischargepathforC5andC6isthroughtheresistorchainR1,R5-R8,whichsetsthepulseinterval.Oscillationsdonotimmediatelyrestartasthecapacitorsdischargeasthegainofthevalvewillbeverylowclosetothecut-offpointandagreatergainisneededtostartoscillationscomparedwithmaintainingoscillationoncestarted.TheamountofgainneededismainlydeterminedbytheturnsratiobetweentapsL2BandL2DandL2BandL2A,L2BbeingatACgroundduetoC3;thehandbookdoesnotincludethisdetail.WithR3=51kWandR4=100kWandC5=2µFandC6=1µFthetimeconstantCR,andhencetheapproximatepulseduration,is102ms.TheoperatorcansetthepulseintervalviaaplugconnectiontotheendsofR5-8,whichgavetimeconstantsof1.35,2.88,5.88and13.8seconds.However,asV1beginstooscillateafterabout0.34ofatimeconstanttheapproximatepulseintervalswere0.5,1,2and4seconds.3.2Howthepingerworks-amplifierTappingL1CprovidesanimpedancematchfromtheoscillatortunedcircuittothegridoftheamplifierV2viacouplingcapacitorC7.TheamplifiedsignalatV2anodeistappedintothetunedautotransformerL1atL1B,withthehighimpedancequartztransducerconnectedattapL2CviacouplingcapacitorC9.VariablecapacitorC1isinparallelwiththequartztransducerandservestotuneL1toparallelresonance.Somewhatconfusinglythecircuitdiagramandthetextrefertothequartztransducerasthe"oscillator",which,atleastthesedays,suggeststhatthequartztransducersetstheoscillationfrequency.Thatisnotso,L2andthecapacitorsinparallelsetthefrequency.BoththeamplifierandoscillatorvalvesaretypeP410,directlyheatedaudiooutputtriodes11thatwereintroducedin1929.WhiletheDCvoltageattheanodeofV1isreducedbytheproductofR2andthecurrentflowingthroughit,thefullbatteryvoltage,initially360V,ispresentattheanodeofV2.Thisfarexceedsthe"absolutemaximum"of150VintheP410'sdatasheetandshowstherobustnessofthese1920striodes.Overall,thispingerhasaclevermethodofprovidingapulsedtransmissionwithauser-settablepulseintervalinacompactdesignthatusesstandardcomponents,anditwouldhavebeencommonpracticetowindinductorsforspecificrequirements.

3.3WaveformsasseenonamodernfunctionalreplicaAfunctionalreplicaoftheFH830circuitinFigure11hasbeenconstructedwithcomponentsofvaryingvintage,Figure9.Whilecapacitorsfromthe1940sareavailabletheywouldnotbeappropriateforuseinthiscircuitduetoinevitableleakagecurrentsexceeding1µAthatwouldaffectthetimingcircuitsandthevalvebiasing.Resistorsfromthe1940shavebeenused.P410valvesarenowveryscarce,andwhenavailabletheycostabout£100each.Valveswith2Vfilamentsweremorecommonandarelessexpensive.ThisreplicausestwoPM2audiooutputtriodesdatingfromthelate1920s.TheFH830handbookdoesnotprovidedetailsofthetwoautotransformersotherthantheinductanceofthecompletewindings,15.5mHfortheoscillatorand160mHfortheoutput.Here,thecoilshavebeenwoundonferritecoresthatwereintroducedin194912,withthetappingpointscalculatedtomatchthecircuitimpedancesand,fortheoscillator,toprovidesufficientfeedbackgiventheamplificationavailablefromthePM2valve.

11 See http://www.r-type.org/exhib/aaa1263.htm 12 The 1949 example in Figure 2 at https://ieeexplore.ieee.org/document/4490128

Page 10: John Swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and cofounded the company Edgerton, Germeshausen, and Grier that became EG&G in 1947. EG&G's

10

Figure12Thefunctionalreplica,constructedtotheoriginalcircuitdiagrambutwithcomponentsofvaryingvintage.

Figure13Uppertrace:Outputvoltageacrossa440k�dummyloadshowingapulsedurationofabout60msandapulseintervalofabout460ms(Y-axis:200Vperdivision,X-axis:50msperdivision).Lowertrace:VoltageatthejunctionofR4andC5;themeanlevelis-21V(Y-axis:1Vperdivision).TheuppertraceinFigure13showsapulseoutputof800Vpeaktopeakacrossa440k�dummyloadatasupplyvoltageof120V.Giventhevalvesare90yearsoldtheyhavenotbeenpushedto360VasintheFH830.Thepulselengthat60msisshorterthanthe100msinthehandbook.However,thefollowingTableshowsthatpulselengthisdependentonsupplyvoltage,andcouldconceivablyreach100msat360V.Thepulseintervalisalsoshorterthaninthehandbook,herethesettingwasfor1secondbuttheintervalwasabout455msat120V.Thereislessofavariationforthepulseintervalwiththeappliedvoltage,farlessthanfortheSwallowcircuit,ausefulfeature.However,pulselengthandintervaldodependonindividualvalvecharacteristics,swappingtheoscillatorandamplifiervalveshalvedbothtimes.ThelowertraceinFigure13showsthevoltageatthejunctionofR4andC5wherethemeanlevelwas-21V.HerethegridisdrivenmorenegativeduringthepulseasC5andC6chargeupuntilthevalvecutsoffandtransmissionstops.Thispointthenbecomeslessnegative,andwhenthehysteresistorestartoscillationisovercome,andthegainincreases,thecircuitbeginstooscillate.TheslowriseandgradualdecaythatarecharacteristicofthiscircuitareshownmoreclearlyintheexpandedviewinFigure14.

Page 11: John Swallow’s pinger circuit – a foray into 1940s and 50s ... · development of sonar, and cofounded the company Edgerton, Germeshausen, and Grier that became EG&G in 1947. EG&G's

11

Figure14:Expandedtimetracefortheoutputpulseshowingtheslowinitialriseandthegradualdecay(X-axis:10msperdivision).

Highvoltagesupply(V)

Pulseinterval(ms)

Pulselength(ms)

Peakvoltage(V)

45 365 40 14460 410 45 20090 435 50 304120 455 60 408150 430 70 464175 430 75 520

4. PostscriptandatributeThisisasfaraswehavebeenabletoprogress.Themajorstumblingblockhasbeenthatwehavebeenunabletolocatetransducersofthetypesusein1944andfrom1955onwardstotesttheacousticoutputofthesepingers.ThoseofuswhoworkedwithSwallow’sfloatsinthe1950sand60scanvouchforthechallengeoflocatinghisfloatsevenwhenworkingundergoodacousticconditionsandfromaquietresearchship.ItincreasesouradmirationfortheanonymousASDICoperatoraboardHMSMedusaonD-Daywhoensuredthatthebeaconwaslocatedandthatthevesselremainedonstation!Hemusthavebeenoneofthemostimportantunsungheroesoftheday.AcknowledgementWearegratefultotheNationalOceanographicLibraryforpermissiontoquotefromJohnSwallow's1955diaryandtoreproducethetwophotographsNOL4152andNOL4160.