john f. fay june 24, 2014

63
Selected Problems in Dynamics: Stability of a Spinning Body -and- Derivation of the Lagrange Points John F. Fay June 24, 2014

Upload: varen

Post on 22-Feb-2016

42 views

Category:

Documents


0 download

DESCRIPTION

Selected Problems in Dynamics: Stability of a Spinning Body -and- Derivation of the Lagrange Points. John F. Fay June 24, 2014. Outline. Stability of a Spinning Body Derivation of the Lagrange Points. TEAS Employees: Please log this time on the Training Tracker. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: John F. Fay June 24, 2014

Selected Problems in Dynamics:

Stability of a Spinning Body-and-

Derivation of the Lagrange PointsJohn F. Fay

June 24, 2014

Page 2: John F. Fay June 24, 2014

Outline

Stability of a Spinning Body

Derivation of the Lagrange Points

TEAS Employees: Please log this time on the Training Tracker

Page 3: John F. Fay June 24, 2014

Stability of a Spinning Body Euler’s Second Law:

(good for an inertial coordinate system)Problem: Inertia matrix “I” of a rotating body changes in an inertial coordinate system

IdtdM

Moments of TorqueInertia Matrix

Angular Velocity

Page 4: John F. Fay June 24, 2014

Euler’s Second Law (2)

In a body-fixed coordinate system:

Inertia Matrix: Describes distribution

of mass on the body

IIdtdM body

Momentsof Torque

Inertia MatrixAngular Velocity

zzyzxz

yzyyxy

xzxyxx

IIIIIIIII

I

Page 5: John F. Fay June 24, 2014

Euler’s Second Law (3)

Planes of Symmetry: x-y plane: Ixz = Iyz = 0 x-z plane: Ixy = Iyz = 0 y-z plane: Ixz = Ixz = 0

For a freely-spinning body:

0 IIdtd

body

zz

yy

xx

II

II

000000

0M

Page 6: John F. Fay June 24, 2014

Euler’s Second Law (4)

Rigid body: “I” matrix is constant in body coordinates

Do the matrix multiplication:

0 IIdtd

body

zzz

yyy

xxx

z

y

x

zz

yy

xx

III

II

II

00

0000

0 IdtdI

Page 7: John F. Fay June 24, 2014

Euler’s Second Law (5)

Do the cross product:

Result:

xxxyyyyx

zzzxxxxz

yyyzzzzy

zzz

yyy

xxx

z

y

x

IIIIII

III

I

000

0000

xxxyyyyx

zzzxxxxz

yyyzzzzy

z

y

x

zz

yy

xx

IIIIII

dtd

II

I

Page 8: John F. Fay June 24, 2014

Euler’s Second Law (6)

As scalar equations: 0 zyyyzz

xxx IIdtdI

0 xzzzxxy

yy IIdtd

I

0 yxxxyyz

zz IIdtdI

000

0000

xxxyyyyx

zzzxxxxz

yyyzzzzy

z

y

x

zz

yy

xx

IIIIII

dtd

II

I

Page 9: John F. Fay June 24, 2014

Small Perturbations:

Assume a primary rotation about one axis:

Remaining angular velocities are smallxx '

yy '

zz ' zyx ',','

Page 10: John F. Fay June 24, 2014

Small Perturbations (2)

Equations: 0'''

zyyyzzx

xx IIdtdI

0'''

xzzzxxy

yy IIdtd

I

0''' yxxxyy

zzz IIdtdI

Page 11: John F. Fay June 24, 2014

Small Perturbations (3)

Linearize: Neglect products of small quantities

0'

dtdI x

xx

0''

zzzxxy

yy IIdtd

I

0'' yxxyy

zzz IIdtdI

Page 12: John F. Fay June 24, 2014

Small Perturbations (4)

Combine the last two equations:

z

yy

zzxxy

III

dtd

''

0'' yxxyy

zzz IIdtdI

0''

zzzxxy

yy IIdtd

I

y

zz

yyxxz

III

dtd ''

switched

Page 13: John F. Fay June 24, 2014

Small Perturbations (4)

Combine the last two equations:

dtd

III

dtd z

yy

zzxxy ''2

2

0'' yxxyy

zzz IIdtdI

0''

zzzxxy

yy IIdtd

I

dtd

III

dtd y

zz

yyxxz''

2

2

Page 14: John F. Fay June 24, 2014

Small Perturbations (4)

Combine the last two equations:

0'

' 22

2

yzzyy

yyxxzzxxy

IIIIII

dtd

0'' yxxyy

zzz IIdtdI

0''

zzzxxy

yy IIdtd

I

0'' 2

2

2

zzzyy

yyxxzzxxz

IIIIII

dtd

Page 15: John F. Fay June 24, 2014

Small Perturbations (5)

Case 1: Ixx > Iyy, Izz or Ixx < Iyy, Izz:

Sinusoidal solutions for , Rotation is stable

02

zzyy

yyxxzzxx

IIIIII

y' z'

0'

' 22

2

yzzyy

yyxxzzxxy

IIIIII

dtd

0'' 2

2

2

zzzyy

yyxxzzxxz

IIIIII

dtd

Page 16: John F. Fay June 24, 2014

Small Perturbations (6)

Case 2: Izz > Ixx > Iyy or Izz < Ixx < Iyy:

Hyperbolic solutions for , Rotation is unstable

02

zzyy

yyxxzzxx

IIIIII

y' z'

0'' 2

2

2

zzzyy

yyxxzzxxz

IIIIII

dtd

0'

' 22

2

yzzyy

yyxxzzxxy

IIIIII

dtd

Page 17: John F. Fay June 24, 2014

Numerical SolutionIxx = 1.0Iyy = 0.5Izz = 0.7

Body Coordinates

Page 18: John F. Fay June 24, 2014

Numerical Solution (2)Ixx = 1.0Iyy = 0.5Izz = 0.7

Global Coordinates

Page 19: John F. Fay June 24, 2014

Numerical Solution (3)Ixx = 1.0Iyy = 1.2Izz = 2.0

Body Coordinates

Page 20: John F. Fay June 24, 2014

Numerical Solution (4)Ixx = 1.0Iyy = 1.2Izz = 2.0

Global Coordinates

Page 21: John F. Fay June 24, 2014

Numerical Solution (5)Ixx = 1.0Iyy = 0.8Izz = 1.2

Body Coordinates

Page 22: John F. Fay June 24, 2014

Numerical Solution (6)Ixx = 1.0Iyy = 0.8Izz = 1.2

Global Coordinates

Page 23: John F. Fay June 24, 2014

Spinning Body: Summary

Rotation about axis with largest inertia:Stable

Rotation about axis with smallest inertia:Stable

Rotation about axis with in-between inertia:Unstable

Page 24: John F. Fay June 24, 2014

Derivation of the Lagrange Points Two-Body Problem:

Lighter body orbiting around a heavier body

(Let’s stick with a circular orbit) Actually both bodies orbit around the

barycenter

x

y

mM

D

Page 25: John F. Fay June 24, 2014

Two-Body Problem (2)

Rotating reference frame: Origin at barycenter of two-body system Angular velocity matches orbital velocity

of bodies Bodies are stationary in the rotating

reference frame

Mx

y

m

D

Page 26: John F. Fay June 24, 2014

Two-Body Problem (3)

Force Balance:Body “M” Body “m”

022

DGMmMxM 02

2 DGMmmxm

x

y

m

D

Mm xxD

xmxM(<0)

M

CentrifugalForceGravitational Force

Page 27: John F. Fay June 24, 2014

Two-Body Problem (4)

Parameters: M – mass of large body m – mass of small body D – distance between bodies

Unknowns: xM – x-coordinate of large body xm – x-coordinate of small body – angular velocity of coordinate system

Three equations, three unknowns

Mm xxD

022

DGMmMxM

022

DGMmmxm

Page 28: John F. Fay June 24, 2014

In case anybody wants to see the math …

mmm xMmMx

MmxD

022

DGMmMxM

022

DGMmmxm

Mm xxD 02

2 DGmxM 02

2 DGMxm

222

DxGM

DxGm

mM

mM xM

xm

Mm Mxmx

DmM

Mxm

DmMmxM

32

2

DmMG

DxGM

m

Page 29: John F. Fay June 24, 2014

Two-Body Problem (5)

Solutions:D

mMMxm

DmM

mxM

3

2

DmMG

x

y

m

DxmxM(<0)

M

Page 30: John F. Fay June 24, 2014

Lagrange Points

Points at which net gravitational and centrifugal forces are zero

Gravitational attraction to body “M” Gravitational attraction to body “m” Centrifugal force caused by rotating

coordinate system

x

y

mM

(x,y)

Page 31: John F. Fay June 24, 2014

Lagrange Points (2)

Sum of Forces: particle at (x,y) of mass “m ”

x-direction:

y-direction:

02

23

2223

22

xyxx

xxGm

yxx

xxGM

m

m

M

M mmm

02

23

2223

22

yyxx

yGm

yxx

yGM

mM

mmm

Page 32: John F. Fay June 24, 2014

Lagrange Points (3)

Simplifications: Divide by mass “m” of particle Substitute for “2” and divide by “G”

03

23

2223

22

DmMx

yxx

xxm

yxx

xxM

m

m

M

M

03

23

2223

22

DmMy

yxx

my

yxx

My

mM

Page 33: John F. Fay June 24, 2014

Lagrange Points (4)

Qualitative considerations: Far enough from the system, centrifugal force will

overwhelm everything else Net force will be away from the origin

Close enough to “M”, gravitational attraction to that body will overwhelm everything else

Close enough to “m”, gravitational attraction to that body will overwhelm everything else

mM

Page 34: John F. Fay June 24, 2014

Lagrange Points (5)

Qualitative considerations (2) Close to “m” but beyond it, the attraction to “m”

will balance the centrifugal force search for a Lagrange point there

On the side of “M” opposite “m”, the attraction to “M” will balance the centrifugal force search for a Lagrange point there

Between “M” and “m” their gravitational attractions will balance search for a Lagrange point there

mM

Page 35: John F. Fay June 24, 2014

Some Solutions: Note that “y” equation is uniquely

satisfied ify = 0 (but there may be nonzero solutions also)

03

23

2223

22

DmMy

yxx

my

yxx

My

mM

Lagrange Points (6)

Page 36: John F. Fay June 24, 2014

Lagrange Points (7) Some Solutions:

“x” equation when “y” is zero:

Note:

032

32232

DmMx

xx

xxm

xx

xxM

m

m

M

M

33232

MMM xxxxxx ?

0

33

MMmm

MMmm

xxxxxxxxmMx

xxxxmDxxxxMD

Page 37: John F. Fay June 24, 2014

Lagrange Points (8)

Oversimplification: Let “m” = 0 xM = 0

Solutions: Anywhere on the orbit of “m”

03

2322

DMx

yx

Mx

03

2322

DMy

yx

My

32322 Dyx

032

3222

322

DmMx

yxx

xxm

yxx

xxM

m

m

M

M

03

23

2223

22

DmMy

yxx

my

yxx

My

mM

Page 38: John F. Fay June 24, 2014

Lagrange Points (9)

Perturbation:

For the y = 0 case:

Mm 10 DxM Dxm 1

0111

113

3

DxDxDxDxx

DxDxD

DxDxD

0

33

MMmm

MMmm

xxxxxxxxmMx

xxxxmDxxxxMD

Page 39: John F. Fay June 24, 2014

Lagrange Points (10)

For the y = 0 case (cont’d):– Lagrange Points L1,L2: near x = D:

0111

11 33

DxDxDxDxx

DxDxDDxDxD

1Dx

0111

125

255

D

DD

0

33

MMmm

MMmm

xxxxxxxxmMx

xxxxmDxxxxMD

Page 40: John F. Fay June 24, 2014

L1, L2: y = 0, x = D(1 +

Collecting terms:

Multiplying things out:

01

11112

2

22

332222

3232

2221

253

57333

0111

125

255

D

DD

Page 41: John F. Fay June 24, 2014

L1, L2 (2): y = 0, x = D(1 + Balancing terms:

Linearizing:

22

332222

3232

2221

253

57333

Order of magnitude 3

Order of magnitude

33 3

31

Page 42: John F. Fay June 24, 2014

Lagrange Points (11)

Lagrange Point L3: y = 0, near x = –D

Since | |, | | << 1 < 2:

0112211

1122

1Dx

01211

1222

22

0111

11 33

DxDxDxDxx

DxDxDDxDxD

Page 43: John F. Fay June 24, 2014

L3: y = 0, x = –D(1 +

Multiply out and linearize:

125

02214441

444

01211

1222

22

08844444

444

0125

Page 44: John F. Fay June 24, 2014

Lagrange Points (12)

Summary for a Small Perturbation and y = 0:

Lagrange Points: L1:

L2:

L3:

Mm 10 DxM Dxm 1

3

311 Dx

1251Dx

3

311 Dx

Page 45: John F. Fay June 24, 2014

Lagrange Points (13)

What if y is not zero? Mm 10 DxM Dxm 1

x

y

2q

1DR

Page 46: John F. Fay June 24, 2014

Lagrange Points (14)

Polar Coordinates:

Mm 10 DxM

Dxm 1

x

y

2q

qq 2sin,2cos DDR

0,RF

1DR

q

q2sin1

,2cos1D

DR

ereq

Page 47: John F. Fay June 24, 2014

Lagrange Points (15) Consider the forces in the R-

direction: From M:

From m:

Centrifugal force:

2

322 2sin2cos1

2cos1

qq

qm

DDD

DDGMFM

2

322 2sin12cos11

2cos11

qq

qm

DDD

DDGmFm

m 12DFC

Page 48: John F. Fay June 24, 2014

R-direction Forces Simplify:

From M:

From m:

Centrifugal force:

2

3222 2sin2cos1

2cos1

qq

qm

D

GMFM

2

3222 2sin12cos11

2cos11

qq

qm

D

MGFm

m

11

2DGMFC

Page 49: John F. Fay June 24, 2014

R-direction Forces (2) Linearize in and :

From M:

From m:

Centrifugal force:

qmqqm 2cos221

2cos3312cos1

22

DGM

DGMFM

m

q

qm22

32 22212cos1221

2cos11D

GM

D

MGFm

m 12D

GMFC

Page 50: John F. Fay June 24, 2014

R-direction Forces (3) Balance the Forces:

0122

2cos221 222 mmqmDGM

DGM

DGM

0122

2cos221 q

22

2cos2211 q

22

2cos23 q

32cos21

221 q

Page 51: John F. Fay June 24, 2014

Lagrange Points (16)

Consider the forces in the q-direction:

From M:

From m:

Centrifugal force is completely radial

2

322 2sin2cos1

2sin

qq

qm

DDD

DGMFM

2

322 2sin12cos11

2sin1

qq

qm

DDD

DGmFm

0CF

Page 52: John F. Fay June 24, 2014

q-Direction Forces

Simplify:

2

322 2sin2cos1

2sin

qq

qm

DDD

DGMFM

2

322 2sin12cos11

2sin1

qq

qm

DDD

DGmFm

2

3222 2sin2cos1

2sin

qq

qm

D

GMFM

2

3222 2sin12cos11

2sin1

qq

qm

D

GMFm

Page 53: John F. Fay June 24, 2014

q-Direction Forces (2)

Linearize in and :

qm

qqm

22

2sin2cos331

2sinD

GMD

GMFM

2

3222 2sin2cos1

2sin

qq

qm

D

GMFM

2

3222 2sin12cos11

2sin1

qq

qm

D

GMFm

q

qmq

qm

232

232

2cos22

2sin212cos1221

2sin1

D

GMD

GMFm

Page 54: John F. Fay June 24, 2014

q-Direction Forces (3)

Simplifying further: qm

2

2sinD

GMFM

qqm

q

qm

qq

qm

322322

23222

sin82sin

sin222

2sinsincos122

2sin

DGM

D

GMD

GMFm

qm2

2sinD

GMFM

q

qm2

32 2cos22

2sin

D

GMFm

Page 55: John F. Fay June 24, 2014

q-Direction Forces (4)

Balance the two forces:

0

sin82sin2sin

322

qqmqm

DGM

DGM

qm2

2sinD

GMFM

qqm

32 sin82sin

DGMFm

qqmqm

322 sin82sin2sin

DGM

DGM

1sin8 3 q

21sin q

306

q 60

32

q

Page 56: John F. Fay June 24, 2014

Lagrange Points (17)

Solving for our radius:

32cos21

221 q

1DR

603

2 q

q

12281

32121

2211

32cos21

2211

DD

DR

Page 57: John F. Fay June 24, 2014

Lagrange Points (13 redux) What if y is not zero? Mm 10

DxM Dxm 1

x

y

602 q

12281DR

Page 58: John F. Fay June 24, 2014

Lagrange Points (18):

Summary for zero y: Between M and m: L1:

On the opposite side of m from M: L2:

On the opposite side of M from m: L3:

Mm 10 DxM Dxm 1

3

311 Dx

3

311 Dx

1251Dx

Page 59: John F. Fay June 24, 2014

Lagrange Points (19):

Summary for nonzero y: Ahead of m in orbit: L4:

Behind m in orbit: L5:

602 q

602 q

Mm 10 DxM Dxm 1

12281DR

12281DR

Page 60: John F. Fay June 24, 2014

Summary of Lagrange Points

(courtesy of Wikipedia, “Lagrange Points”)

(What is wrongwith this picture?)

Page 61: John F. Fay June 24, 2014

Potential Energy Contours

Page 62: John F. Fay June 24, 2014

Stability of Lagrange Points Requires saving higher-order terms

in linearized equations Results:

– L1, L2, L3 unstable Body perturbed from the point will move

away from the point– L4, L5 neutrally stable

Body perturbed from the point will drift around the point

Page 63: John F. Fay June 24, 2014

Conclusions

Stability of Spinning Bodies

Derivation of Lagrange Points