jitter and phasenoise devices simulation

17
1) Jitter and Phasenoise 2) Devices 3) simulation

Upload: yuval

Post on 08-Jan-2016

50 views

Category:

Documents


4 download

DESCRIPTION

Jitter and Phasenoise Devices simulation. Jitter is a measurement of the variations in the time domain, and essentially describes how far the signal period has wandered from its ideal value. Typically, deviations below 10 MHz are not classified as jitter, but as wander or drift. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Jitter and Phasenoise Devices simulation

1) Jitter and Phasenoise

2) Devices

3) simulation

Page 2: Jitter and Phasenoise Devices simulation

Jitter is a measurement of the variations in the time domain, and essentiallydescribes how far the signal period has wandered from its ideal value.Typically, deviations below 10 MHz are not classified as jitter, but as wanderor drift.

Phase noise is a frequency-domain view of the noise spectrum around the oscillator signal, while jitter is a timedomain measure of the timing accuracy of the oscillator period

Problem: There exist many similar definitions – same word describes different things!

Page 3: Jitter and Phasenoise Devices simulation

Absolute jitter: It is given by the sum of each periods variation from the averagePeriod jitter:simply measures the period of each clock cycle in the waveform

Cycle-to-cycle jitter: This is the jitter definition that most people mean when they talk about jitter as a single number. It measures the variance of each period to the average period:

Page 4: Jitter and Phasenoise Devices simulation

Phasenoise:

Measuring phasenoise

Page 5: Jitter and Phasenoise Devices simulation

Translating between phasenoise and jitter

The total noise power of the sidebands can be determined by integrating the L(f) function over the band of interest - in this case, 12 KHz to 10 MHz. This might be for example be the case if low frequency noise= ”‘slow”’drifts are not of importance.

Page 6: Jitter and Phasenoise Devices simulation

What are our frequency - boundaries?

TTC (Timing, Trigger and Control) is only the delivery system: Info about timing to beam?

Page 7: Jitter and Phasenoise Devices simulation

Pulsed BBLR:

Load: L = Zin/2f of 840nH.

Design strategy

Page 8: Jitter and Phasenoise Devices simulation

1) Remo Maccaferri

– has specs, thinking of avalache devices (as far as I know) advantage: high current, fast switching, disadvantage: lifetime, fuzzy status, problematic to turn off

2) M. Paoluzzi

- no avalanche devices (fuzzy state, but knows he is no expert on them)

- he thinks its possible to meet the specs with:

Transitor:polyfet rf devices - F1401

Gatedriver: IXYS- IXDD415SI

-spice models avaiable, to be tested.

Page 9: Jitter and Phasenoise Devices simulation

Simulations: SPS – DA as function of beam-wire distance - which law?

The simulated dependance on the beam-wire distance is fitted by y = a*x^b + c, where a = 0.188, b = 1.836, c = 0.06768

-> The dependance always follows a power law.

Page 10: Jitter and Phasenoise Devices simulation
Page 11: Jitter and Phasenoise Devices simulation

- > Can we make test the power law in the SPS at different tunes?

Page 12: Jitter and Phasenoise Devices simulation

Experiment Simulation

2005 – injection

Instabilities found

Sextupoles inportant

Instabilities found

2006 –store

Doubtfull

No instabilities

“hard” to produce

RHIC

Page 13: Jitter and Phasenoise Devices simulation

No sextupoles

Blue beam - L45, LR(s=0), t-comp, Qx=28.733, Qy=29.722

including sextupoles

Page 14: Jitter and Phasenoise Devices simulation

Tune from one turn map ( included in BBTrack 5.3.0.3)

Example: an instable particle

Page 15: Jitter and Phasenoise Devices simulation
Page 16: Jitter and Phasenoise Devices simulation

Is the tune difference a valid Lyaponov-function?

-> seams easier to detect.

- What are the frequencies?

Chromaticity=0, no sextupoles, offmomentum

Page 17: Jitter and Phasenoise Devices simulation

Next steps

- Chromaticity tuneshift?

-Tune variation fue to coupling

-….