jens limpert - swissphotonics :: home

43
Jens Limpert [email protected] +49 (0) 36 41. 947 811 +49 (0) 36 41. 947 802 High power fiber lasers and amplifiers Jens Limpert Friedrich-Schiller University Jena, Institute of Applied Physics, Jena, Germany and Fraunhofer Institut of Applied Optics and Precission Engeniering, Jena, Germany

Upload: others

Post on 12-Sep-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jens Limpert - Swissphotonics :: Home

Jens [email protected]

+49 (0) 36 41. 947 811 +49 (0) 36 41. 947 802

High power fiber lasers and amplifiers

Jens Limpert

Friedrich-Schiller University Jena, Institute of Applied Physics, Jena, Germanyand

Fraunhofer Institut of Applied Optics and Precission Engeniering, Jena, Germany

Page 2: Jens Limpert - Swissphotonics :: Home

Outline of the talk

Properties of Fiber Lasers

Advanced Fiber Designs

Selected Experiments of High Power Fiber Lasers

Conclusion and Outlook

High power fiber lasers and amplifiers

Page 3: Jens Limpert - Swissphotonics :: Home

rod

disk slab fiber

Solid-State Laser Concepts

power dependent thermal lensing and thermal stress-induced birefringence

reduced thermo-optical distortions

347 -- 352342 -- 347337 -- 342333 -- 337328 -- 333324 -- 328319 -- 324315 -- 319310 -- 315288

temperature [K]

Page 4: Jens Limpert - Swissphotonics :: Home

Double-clad fiber laser

active corecladding

pumplight

laser radiation

mirror

mirror

inner cladding (pump core)

outer cladding

active core

laser radiation

refractive index profile

n

Page 5: Jens Limpert - Swissphotonics :: Home

active corecladding

pumplight

laser radiation

mirror

mirror

Properties of Rare-Earth-Doped Fibers

• no or reduced free space propagation• immune against thermo-optical problems• excellent beam quality• high gain• efficient, diode-pumped operation

Page 6: Jens Limpert - Swissphotonics :: Home

Power evolution of single-mode fiber lasers

1992 1994 1996 1998 2000 2002 2004 20060

500

1000

1500

2000

2500

3000

3500

2500 W

3000 W

2000 W

1530 W1360 W

1300 W800 W

600 W

135 W200 W

150 W170 W

485 W

110 W9,2 W5 W 30 W

Con

tinuo

us-w

ave

outp

ut p

ower

[W]

Year

V. Fomin et al, “3 kW Yb fibre lasers with a single-mode output,” InternationalSymposium on High Power Fiber Lasers and their applications (2006)

Page 7: Jens Limpert - Swissphotonics :: Home

1050 1075 1100 1125 1150 1175 1200

Stokes-SignalLaser

Ausgangsleistung 100 W 110 W 120 W

Inte

nsitä

t [w

.E.]

Wellenlänge [nm]

Performance-limiting effectsEnd-facet damage

Thermal effects

Non-linear effects

Available pump power

Source: www.specialtyphotonics.com

Page 8: Jens Limpert - Swissphotonics :: Home

1050 1075 1100 1125 1150 1175 1200

Stokes-SignalLaser

Ausgangsleistung 100 W 110 W 120 W

Inte

nsitä

t [w

.E.]

Wellenlänge [nm]

Performance-limiting effectsEnd-facet damage

Thermal effects

Non-linear effects

Available pump power

Source: www.specialtyphotonics.com

effR

effSRSthreshold Lg

AconstP

⋅=

.

Page 9: Jens Limpert - Swissphotonics :: Home

Photonic Crystal FibersDouble clad fibers

Polymer coating

Active core

Pump cladding

•guiding properties of the core

•guiding of the pump light

Page 10: Jens Limpert - Swissphotonics :: Home

Microstructured Fiber Step-index Fiber

Δn ~ 1·10-4

NA ~ 0.02Δn ~ 1·10-3

NA ~ 0.06

significantly larger single-mode core possible

Index control of doped fiber cores

n

r

ncore

nClad

0 a

neff-01

n

r

ncore

nClad

0 a

neff-01

n

r

ncore

0

neffclad

neff-01

405.22 22 ≤−⋅= cladcore nnaVλπ

Page 11: Jens Limpert - Swissphotonics :: Home

Yb-doped corePump core area

Coating

0 200 400 600 800 1000 1200 1400 1600 1800 20000,0

0,2

0,4

0,6

0,8

1,0

350 nm 380 nm 400 nm

NA

Bridge width [nm]

25 µm

380 nm

The air-cladding region

high numerical aperture inner cladding no radiation has contact to coating material

Page 12: Jens Limpert - Swissphotonics :: Home

1.5 mm outercladding

pump core(200 µm)

active core(80 µm)

air-clad 8 µm core

„rod-type“ fiber: 30 dB/m Pumplichtabsorption, 71 µm Modenfelddurchmesser, M2 ~ 1.2

“rod-type” photonic crystal fiber

Limpert et. al., "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005)

Page 13: Jens Limpert - Swissphotonics :: Home

Rod-type photonic crystal fiber laser

0 50 100 150 200 250 300 350 400 4500

50

100

150

200

250

300

350slope efficiency ~ 78%

Out

put p

ower

[W]

Launched pump power [W]

320 W continuous-wave, >10 mJ ns-pulses extracted

Page 14: Jens Limpert - Swissphotonics :: Home

Design freedom to tailor optical, mechanical and thermo-optical properties

Advantages of PCF

•higher index control•larger SM cores

•shorter fibers possible (0.5 m)•comparable heat dissipation

•intrinsically polarizing without drawbacks

Rare-earth doped photonic crystal fibers

Page 15: Jens Limpert - Swissphotonics :: Home

fs source

Fiber

Fiber laser systems

fiber integrated mirror, e.g. fiber bragg grating

Fiber

Pump light coupling, e.g. tapered fiber bundles

all fiber laserCW, Q-switched

Fiber

low power light source

single pass amplifiers advanced fiber amplifiers

Pump(R=1) (R<1)

saturableabsorber

dispersioncompensation

activemedium

ultra-short fiber oscillators

Properties of Fiber Lasers

Advanced Fiber Designs

Selected Experiments of High Power Fiber Lasers

Conclusion and Outlook

Page 16: Jens Limpert - Swissphotonics :: Home

High power continuous-wave fiber laser

0 500 1000 1500 2000 2500 3000 3500 40000

250500750

100012501500175020002250250027503000

slope efficiency of 75 % measurement

Out

put p

ower

[W]

launched pump power [W]

•fiber length 15 m, forced air-cooling

•two side pump coupling of 2 kW

•fiber temperature max. 120°C

•beam quality M² < 1.4 at 2 kW

•max. 2.53 kW laser output

75% slope efficiency (below 1.5 kW, above wavelength drift of pump diode)

Page 17: Jens Limpert - Swissphotonics :: Home

Scaling approach: Incoherent Combining

transmission grating

Λ= 800 nm)(cos LittΘ⋅Λ

Δ=ΔΘ

λ

(in near and far field)

Polarizing PCF, 1.5 m, 40 µm core

153 W

Combining-efficiency 95 %Degree of Polarization 98%

Scalable while maintaining beam quality

S. Klingebiel,F. Röser,B. Ortac, J. Limpert, A. Tünnermann, ”Spectral beam combining of Yb-doped fiber lasers with high efficiency,”JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 24 (8): 1716-1720 (2007)

Page 18: Jens Limpert - Swissphotonics :: Home

Combining of pulsed fiber lasers

two beams (ΔΤ ~ 10ns):

Inte

nsity

[a.u

]

Time [50 ns/Div]

M²x =1.17M²y =1.10

M²x =1.22M²y =1.13

M²x =1.17M²y =1.18

SPIRICONTM M2 measurementscaling of MW peak power pulsed fiber sources beyond self-focusing limit of 4 MW

Page 19: Jens Limpert - Swissphotonics :: Home

Q-switching of fiber lasers

AOM air-cooledHR @ > 1010 nmHT @ < 990 nm

Q-switching elementHR @ > 1010 nm

rod-type fiber

output

Yb-dopedHT @ < 990 nm

diode @ 976 nm

pump PCF

R = 0.08

end caps on

Microscope image of the rod-type photonic crystal fiberand close-up to the inner cladding and core region.

Fiber parameter:

outer diameter: up to 2 mm60 µm Yb-doped core, Aeff ~ 2000 µm2,

180 µm (NA ~ 0.6) inner cladding30 dB/m pump absorption @ 976 nm,

(0.5 m absorption length)

Page 20: Jens Limpert - Swissphotonics :: Home

0 20 40 60 80 100

4

6

8

10

Aver

age

outp

ut p

ower

[W]

Repetition rate [kHz]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pul

se e

nerg

y [m

J]

output characteristics @ 100 kHz

0 50 100 1500

25

50

75

100

Ave

rage

out

put p

ower

[W]

Launched pump power [W]

0

20

40

60

80

100

120

Pul

se d

urat

ion

[ns]up to 100 W

down to 12 ns

output characteristics vs. rep. rate

pulse @ 2.5 mJ energy

-20 -10 0 10 20 30 40 500,0

0,2

0,4

0,6

0,8

1,0

Δτ = 8 ns

Inte

nsity

[a.u

.]

Time [ns]

Q-switching of fiber lasers

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, A. Tünnermann, “Millijoule pulse energy Q-switched short-length fiber laser,” Optics letters Vol.32, No.11, 1551-1553, 2007

Page 21: Jens Limpert - Swissphotonics :: Home

Quasi-monolithic, passively Q-switched microchip laser

808nm, 0.5W100µm, 0,22NA

f=30mm f=20mm a) b) c) ‏

AR@808nm, HR@1064nm

a) 0.2mm, 3% doped Nd:YVO4, AR@808nm, T=10% @ 1064nm

b) Spin on glass glue,c) SESAM, ΔR=20%,

TR= 320ps,

-Unmatched simplicity

-No moving parts in theresonator

-Simple gluing technique

-Spin on glass glue*high dielectric strength*high transparency

•1µJ, 50ps, 40kHz•0.5µJ, 110ps, 170kHz

Current production costs:~300€

3mm

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann,"High-pulse-energy passively Q-switched quasi-monolithic microchip lasers

operating in the sub-100-ps pulse regime," Opt. Lett. 32, 2115-2117 (2007)

Page 22: Jens Limpert - Swissphotonics :: Home

Fiber based amplification of ps-µchip lasers

Pump diode

amplified signal

low costmicro-chip

laser

Isolator

60 ps, 0.75 µJ, 50 kHz

60 ps, 80 µJ, 50 kHz peak power: 1.33 MW

micromachining

35 µm, 1.5 m

Page 23: Jens Limpert - Swissphotonics :: Home

Pump(R=1) (R<1)

ultra-shortpulsed laser

SA

DC

AM

•active medium (AM)-e.g. Yb-doped fiber

•saturable absorber (SA)-favours pulse against noise background-initiates mode-locking

•dispersion compensation (DC)- keeps the pulse short during roundtrip

Dispers

ion

Nonlinea

rity

gain

loss

Theory: dissipative, nonlinear system:

Ultra-short pulse generation

Page 24: Jens Limpert - Swissphotonics :: Home

High-energy femtosecond fiber laser

Pump diode975 nm

OutputOptical IsolatorM1

HR

M2

Yb-doped rod-type fiberL1 L2 L3

SAM L4

HR

HR

HR

Total cavity dispersion : + 0.012 ps2

Repetition rate : 10.18 MHz

Modulation depth 30%Fast relaxation time 200 fsSlow relaxation time 500 fs

dispersion compensation free

B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, A. Hideur,“High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Optics Express, vol. 15, pp. 10725– 10732, 2007.

Page 25: Jens Limpert - Swissphotonics :: Home

-20 -10 0 10 200.0

0.2

0.4

0.6

0.8

1.0

In

tens

ity (a

. u.)

Delay time (ps)

Autocorrelation trace

• Output pulse duration = 4 ps

-6 -4 -2 0 2 4 60.0

0.2

0.4

0.6

0.8

1.0

In

tens

ity (a

. u.)

Delay time (ps)

Extra-cavity compression

• Compressed pulse duration = 400 fs

Compression efficiency: 75 %

Energy per pulse: 200 nJ

Peak power: 500 kW

Average output power: 2.7 W

Energy per pulse: 265 nJ

Single pulse characterization:

High-energy femtosecond fiber laser - Results

Page 26: Jens Limpert - Swissphotonics :: Home

Optical Spectrum

• Spectral bandwidth = 8.4 nm

-6 -4 -2 0 2 4 60.0

0.2

0.4

0.6

0.8

1.0

In

tens

ity (a

. u.)

Delay time (ps)

Extra-cavity compression

• Compressed pulse duration = 400 fs

Compression efficiency: 75 %

Energy per pulse: 200 nJ

Peak power: 500 kW

Average output power: 2.7 W

Energy per pulse: 265 nJ

Single pulse characterization:

1010 1020 1030 1040 1050

10-3

10-2

10-1

100

Inte

nsity

(a. u

.)

Wavelength (nm)

High-energy femtosecond fiber laser - Results

Page 27: Jens Limpert - Swissphotonics :: Home

Ultra-short pulse fiber amplification systemsHigher average power

Higher pulse energy Higher repetition rate

1 10 100 1000

10

100

1000

10000

100 W

10 W1 W

100 mW

Puls

e en

ergy

[µJ]

repetition rate [kHz]

Page 28: Jens Limpert - Swissphotonics :: Home

Higher average power

Higher pulse energy Higher repetition rate

1 10 100 1000

10

100

1000

10000

100 W

10 W1 W

100 mW

Puls

e en

ergy

[µJ]

repetition rate [kHz]

fiber-basedsystems*

* Röser et. al., „Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,“ Opt. Lett. 32, 3495 (2007)* Röser et. al., „90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 2230 (2007)

Ultra-short pulse fiber amplification systems

Page 29: Jens Limpert - Swissphotonics :: Home

-4 -2 0 2 40,0

0,2

0,4

0,6

0,8

1,0 B = 0 B = 0.6 B = 8 B = 16

SHG

inte

nsity

[a.u

.]

Time delay [ps]

( )∫ ⋅⋅

=L

dzzInB0

22λπ

Accumulated nonlinear phase (B-integral):

Influence of self-phase modulation (SPM)

Reduction of pulse quality

Simulated autocorrelation traces

( ) ( ) zTzATzSPMNL

2,, γφ =

Nonlinear phase:

Page 30: Jens Limpert - Swissphotonics :: Home

Chirped Pulse Amplification (CPA)

reduced pulse peak power during amplification

mode-locked laser amplifier grating compressorgrating stretcher

D. Strickland and G. Mourou, “Compression of amplified optical pulses,”Opt. Comm. 56, 3, 219 (1985).

reduced nonlinearityenhanced damage threshold

Page 31: Jens Limpert - Swissphotonics :: Home

Yb:KGW oscillator Stretcher -Compressor -

Unit

AOMPre-amplifier

Main amplifier

ISO

Output

State of the art FCPA System

Schematic Setup

Page 32: Jens Limpert - Swissphotonics :: Home

Yb:KGW oscillator9.7 MHz, 1.6 W, 400 fs , 1030 nm

Stretcher -Compressor -

Unit

AOM

ISO

Output

State of the art FCPA System

Schematic Setup

Pre-amplifier

Main amplifier

Page 33: Jens Limpert - Swissphotonics :: Home

Yb:KGW oscillator9.7 MHz, 1.6 W, 400 fs , 1030 nm

Stretcher -Compressor -

Unit1740 l/mm

dielectric gratings

AOM

ISO

Output

State of the art FCPA System

Schematic Setup

Pre-amplifier

Main amplifier

Page 34: Jens Limpert - Swissphotonics :: Home

Yb:KGW oscillator9.7 MHz, 1.6 W, 400 fs , 1030 nm

Stretcher -Compressor -

Unit1740 l/mm

dielectric gratings

AOM

Pre -amplifier40 µm core PCF, 1.2 m

Main amplifier80 µm core PCF, 1.2 m

ISO

Output

State of the art FCPA System

Schematic Setup

Page 35: Jens Limpert - Swissphotonics :: Home

1.5 mm outercladding

pump core(200 µm)

active core(80 µm)

air-clad

Rod-type photonic crystal fiber

High pump light absorption (30dB/m) -> short fiber length+ large mode area ( >100x of standard fiber) -> ultralow Nonlinearity

Limpert et. al., "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005)

State of the art FCPA System

8 µm core

Page 36: Jens Limpert - Swissphotonics :: Home

200/80 Rod-type PCF, 1.2m length

MFD = 71 µm-> MFA ~ 4000 µm2

Near field image

State of the art FCPA System

M2x = 1.17 , M2

y = 1.26(Spiricon™, 4σ method)

Beam quality-measurement

Page 37: Jens Limpert - Swissphotonics :: Home

Yb:KGW oscillator9.7 MHz, 1.6 W, 400 fs , 1030 nm

Stretcher -Compressor -

Unit1740 l/mm

dielectric gratings

AOM

Pre -amplifier40 µm core PCF, 1.2 m

Main amplifier80 µm core PCF, 1.2 m

ISO

Output

State of the art FCPA System

Schematic Setup

• multilayer dielectric reflection gratings – average power scalable• 70% compressor throughput efficiency

Page 38: Jens Limpert - Swissphotonics :: Home

0 50 100 150 200 2500

20

40

60

80

100

Com

pres

sed

outp

ut p

ower

[W]

Launched pump power [W]

slope efficiency = 46%

100 W compressed @ 200 kHz-> 0.5 mJ pulse energy

Output characteristics

State of the art FCPA System

50 W compressed @ 50 kHz-> 1 mJ pulse energy

0 50 100 150 2000

10

20

30

40

50

Com

pres

sed

outp

ut p

ower

[W]

Launched pump power [W]

total slope efficiency = 25%

Page 39: Jens Limpert - Swissphotonics :: Home

1020 1030 1040 1050

-80

-70

-60

-50

-40

-30

-20

1000 1020 1040 1060 1080

-80

-60

-40

Inte

nsity

, log

sca

le [a

.u.]

Wavelength [nm]

Wavelength [nm]

1020 1030 1040 1050-80

-70

-60

-50

-40

-30

-20

1000 1020 1040 1060 1080

-80

-70

-60

-50

-40

-30

Inte

nsity

, log

sca

le [a

.u.]

Wavelength [nm]

Wavelength [nm]

State of the art FCPA System

Spectrum @ highest power

ASE supression better than 30 dBExtended measurement shows no sign of Stimulated Raman Scattering

(1st stokes expected at 1080nm)

Spectrum @ highest pulse energy

Page 40: Jens Limpert - Swissphotonics :: Home

-10 -5 0 5 100.0

0.2

0.4

0.6

0.8

1.0

ΔτAC = 1.23 ps ΔτAC = 1.2 ps ΔτAC = 0.93 ps

SH In

tens

ity [a

.u.]

Time delay [ps]

At low pulse energy

200 kHz / 500 µJ(B-Integral 4.7)

50 kHz / 1 mJ(B-Integral 7)

Autocorrelation

1mJ, 800 fs => pulse peak power ~ 1 GW!

State of the art FCPA System

Page 41: Jens Limpert - Swissphotonics :: Home

0 200 400 600 800 1000 12000

100

200

300

400

500

600

700

800

slope efficiency 66%

Out

put p

ower

[W]

Launched pump power [W]

Average power scalability of main amplifier

710 W max. output (pump power limited)

570 W/m with no thermal degradation(passively cooled)

diode laser80 µm core Rod-type PCF1.2 m Lengthdiode laser DM DM

HR R=10%Schematic Setup cw cavity

1 kW, 1 MHz, 1 mJ, sub-1 ps !

Page 42: Jens Limpert - Swissphotonics :: Home

75 msbreakthrough time

106 rounds/srotating speed

75 µmtrepanning radius

Copper (Cu 99.9%)

Thickness: 0.5 mm

Rep.rate.: 975 kHz

Pulse Energy : 70 μJ

Focal length: 80mm

Fluence: ~ 2.32 J/cm2

Number of rounds: 50

Laser trepanning with high average power on copper

Page 43: Jens Limpert - Swissphotonics :: Home

Conclusion and outlook

Success story is based on …RE-doped fibers are a power scalable solid-state laser concept !

significant progress in fiber manufacturing technologyrecent developments of reliable high power all solid-state pump sources

Outstanding performance in a variety of operation regimescontinuous-wave: >10 kW diffraction-limited

ultra-short pulse: >1 kW, 1 MHz, 1 mJ, sub-1 ps

RE-doped fibers are good for …