jam and fundamental diagram in traffic flow on sag and hill

12
Jam and Fundamental Diagram in Traffic Flow on Sag and Hill K.Komada S.Masukura T.Naga tani Shizuoka Univ. Japan

Upload: teagan

Post on 03-Feb-2016

23 views

Category:

Documents


0 download

DESCRIPTION

Jam and Fundamental Diagram in Traffic Flow on Sag and Hill. K.Komada S.Masukura T.Nagatani Shizuoka Univ. Japan. Purpose of Study. Proposal of traffic model including the gravitational force   - We extend the optimal velocity model to study the - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

Jam and Fundamental Diagram in Traffic Flow on

Sag and Hill

K.Komada S.Masukura T.Nagatani

Shizuoka Univ.   Japan

Page 2: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

Purpose of Study

• Proposal of traffic model including the gravitational force  - We extend the optimal velocity model to study the jamming transition induced by the gravitational force.

• Fundamental diagrams for the traffic flow on sag and hill  - We study the flow, traffic states ,and jamming transitions induced by sag and hill.

• Jam induced by sag  - We clarify the relationship between densities before and after the jam from the theoretical current curves.

Page 3: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

Traffic model

dt

tdxxBmgxF

mdt

txd iiii )()(sin)()(2

2

)(sin)(

)()(

2

2

ii

ii xBmg

dt

tdxxF

dt

txdm

Equation of motion on uphill

θ

mg

mgsin θ

mgcos θ

dt

tdxxVa

dt

txd ii

i )()(

)(2

2

sensitivity

)(sin)(

)( iii

xBmgxFxV

Δ

ma

Extended Optimal velocity Function

ccif xxx

vtanhtanh

2max,

    depends on the gradient of max,,upgv )(sin ixBmg

)( ixB About

ix

ix

)( ixB

)( ixB

for → ∞

→ 0for

→ 1

→ 0

We extend the OV model and obtain the following

)tanh()tanh(2 ,,

max,,bupbupi

upg xxxv

Page 4: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

ccif

i xxxv

xV tanhtanh2max,

)tanh()tanh(2 ,,

max,,bupbupi

upg xxxv

ccif

i xxxv

xV tanhtanh2max,

)tanh()tanh(2max,

ccif

i xxxv

xV

bdownbdownidowng xxx

v,,

max,, tanhtanh2

①OV function on normal section

② Extended OV function on uphill section

③Extended OV function on downhill sectionO

ptim

al V

eloc

ity

Headway

Vf,max

xcxdown,b

Vg,down,max

Opt

imal

Vel

ocit

y

Headway

Vf,max

xc(=xup,b)

Vg,up,max

①②③①

Page 5: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

Simulation method• Single lane • The periodic boundary condition• Forth-order Runge-Kutta method

Values of parameters• Number of cars N=20

0• Length of road L=N×Δ

x

• LN1=LD1=LU1=LN2=L/4

• Time interval isΔ t=1 / 128• Vf,max=2.0,x c= 4.0

LN1 LD1 LU1LN2

Page 6: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

0.5

0.4

0.3

0.2

0.1

0.0

Cur

rent

0.60.50.40.30.20.10.0

Density

Sag(a=1.5) Sag(a=3.0) Theory

Vf,max=2.0

Vg,down,max=0.5

Vg,up,max=0.5

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ

High sensitivity⇒3 traffic statesLow sensitivity ⇒5 traffic states

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Vel

ocit

y

10008006004002000

Position

N1 N2D1 U1

a=1.5 a=3.0

Velocity profile ( ρ=0.17 )

Velocity profile ( ρ=0.19 )

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Vel

ocit

y

10008006004002000

Position

N1 N2D1 U1

a=1.5 a=3.0

Traffic jam induced by sag+ oscillating jam at low sensitivity

Sensitivity:a=3.0>ac=2.0(critical value)

Sensitivity:a=1.5<ac=2.0(critical value)

Fundamental diagram ( Xc=Xdown,b=Xup,b )

Traffic jam induced by sag

Page 7: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

Relationship between headway profile and

theoretical current ( X c =Xup,b=Xdown,b )

00 / xxVQth ΔΔ

Headway profile(ρ=0.16)

Headway profile(ρ=0.20)

Theoretical current

( in the case of no jam at high sensitivity )

Steady state : Headways are the same.       Velocities are Optimal Velocity.

0.5

0.4

0.3

0.2

0.1

0.0

Cur

rent

0.60.50.40.30.20.10.0

Density

c

b

a

Current(Vg,down,max =0.5) Current(Vf,max =2.0) Current(Vg,up,max =0.5)d

e

Maximal value of the current of the Up Hill

12

10

8

6

4

2

0

Hea

dway

10008006004002000

Position

N1 N2D1 U1

lJL

b b

c

d e

Sag

12

10

8

6

4

2

0

Hea

dway

120010008006004002000

Position

N1 N2D1 U1

lJL

b b

c

a

e

Sag

Page 8: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

Velocity profile ( ρ=0.16 )

Headway profile ( ρ=0.16 )xc=xup,b≠xdown,b :「 the different case 」( ca

se1 ) xc=xup,b=xdown,b :「 the same case 」( case2 )

(3) of case2 is not consistent with that of case1 but (1) and (2) case 2 agree with those of case1. (1)Free traffic

(2)Traffic with saturated current

(3) Congested traffic

3 traffic states

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Vel

ocity

12001000800600400200

Position

N1 D1 U1 N2

lJL

case1 case2

12

10

8

6

4

2

0

Hea

ddw

ay

12001000800600400200

Position

N1 D1 U1 N2

lJL

case1 case2

B Ba

C

e E

A

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Cur

rent

0.60.50.40.30.20.10.0

Density

a=3.0 sag(xc=xup,b≠ xdown,b)

sag(xc=xup,b=xdown,b) Theory

xc=xup,b=4.0

xdown,b=2.0

xc=xup,b=xdown,b=4.0

xc=4.0

Fundamental diagram ( Xc=Xdown,b≠Xup,b )

Page 9: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

Relationship between headway profile and theoretical current ( Xc=Xdown,b≠Xup,b )

Headway profile(ρ=0.16)

Headway profile(ρ=0.20) The length of jam shorten.Headway get narrow.

In the case of Xc=Xdown,b≠Xup,b

0.5

0.4

0.3

0.2

0.1

0.0

Cur

rent

0.60.50.40.30.20.10.0

Density

A

Current(Vg,down,max=0.5,

xdown,b=2.0)

Current(Vf,max=2.0)

Current(Vg,up,max=0.5,

xup,b=4.0)

B

C DE

Maximal value of the current of the Up Hill

12

10

8

6

4

2

0

Hea

ddw

ay

12001000800600400200

Position

N1 D1 U1 N2

lJL

case1 case2

B Ba

C

e E

A

12

10

8

6

4

2

0

Hea

dway

1000800600400200

Position

N1 D1 U1 N2

lJL

case1 case2

B B

C

D

eE

Page 10: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

The dependence of traffic flow on the gradient

Velocity profile(ρ=0.20)

Headway profile(ρ=0.20)

  As the gradient is high, the maximum velocity become lower and higher on up- and down-hills respectively.  

0.8

0.6

0.4

0.2

0.0

Cur

rent

0.60.50.40.30.20.10.0

Density

a=3.0Sag(Vg,up,max=Vg,down,max=0.5)

Sag(Vg,up,max=Vg,down,max=1.0)

Sag(Vg,up,max=Vg,down,max=1.5) Theory

Vf,max=2.0

Vg,up,max=0.5

Vg,up,max=1.0

Vg,up,max=1.5

Vg,down,max=0.5

Vg,down,max=1.0

Vg,down,max=1.53.0

2.5

2.0

1.5

1.0

0.5

0.0

Vel

ocit

y

10008006004002000

Position

N1 N2D1 U1

Vf,max-Vg,up,max =0.5 Vf,max-Vg,up,max =1.0 Vf,max-Vg,up,max =1.5

35

30

25

20

15

10

5

0

Hea

dway

10008006004002000

Position

N1 N2D1 U1

Vf,max-Vg,up,max =0.5 Vf,max-Vg,up,max =1.0 Vf,max-Vg,up,max =1.5

The region of saturated flow extend.The maximum current is lower.

Page 11: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

Fundamental diagram of traffic flow with two uphills

Headway profile(ρ=0.20)

Headway profile(ρ=0.20)

The traffic jam occurs just before the highest gradient.

LN1 LU2LN3

LU1LN2

LN1

0.4

0.3

0.2

0.1

0.0

Cur

rent

0.60.50.40.30.20.10.0

Density

a=3.0 Current Theory

Vmax=2.0

Vmax=1.5

Vmax=1.0

16

14

12

10

8

6

4

2

0

Hea

dway

1400120010008006004002000

Position

N1 N2 N3U1 U2

lJL

14

12

10

8

6

4

2

0

Hea

dway

10008006004002000

Position

N1 N2 N3U1 U2

lJL

Page 12: Jam and Fundamental Diagram in Traffic Flow on Sag and Hill

Summary

●We have extended the optimal velocity model to take into account the gravitational force as an external force.

● We have clarified the traffic behavior for traffic flow on a highway with gradients

●We have showed where, when, and how the traffic jams occur on highway with gradients.

● We have studied the relationship between densities before and after the jam from the theoretical analysis.