jakob b. sørensen research group leader “molecular mechanism of exocytosis” max-planck-institut...

30
Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen Vesicle membrane fusion mediating fast signal transmission - molecular aspects The Graduate School of Neuroscience, Faculty of Health Sciences, University of Copenhagen Ph.D. course: Molecular Neurobiology

Post on 20-Dec-2015

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Jakob B. SørensenResearch group leader “Molecular mechanism of exocytosis”

Max-Planck-Institut für biophysikalische ChemieAm Fassberg 1137077 Göttingen

Vesicle membrane fusion mediating fast signal transmission - molecular aspects

The Graduate School of Neuroscience,Faculty of Health Sciences, University of Copenhagen

Ph.D. course: Molecular Neurobiology

Page 2: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

109 neurons1013 synapses1015 synaptic vesicles

Page 3: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

The quantal hypothesis

Bernard KatzHeuser and Reese

The fusion of one synaptic vesicle corresponds to one spontaneous electrical event

Page 4: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Heuser and Reese, 1981, J. Cell Biol. 88, 564-580

Fixed atrest

Fixed 5msafterstimulation

Synaptic vesicles fuse with the plasma membrane

Page 5: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Südhof TC. 2004. Annu. Rev. Neurosci 27:509-554

Synaptic vesicles engage in a cycle of exo- and endocytosis

Page 6: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

How can we measure the fusion of secretory/synaptic vesicles in real time?

Detection of added membrane: membrane capacitance

Detection of released neurotransmitter: amperometry

Detection using the postsynaptic cell: autaptic hippo-campal neurons

Detection using fluorescent tracers: next talk by Jürgen Klingauf

Example 3: neuronal studies of synaptotagmin 1

Stimulation method: calcium uncaging

Example 1: calyx of HeldExample 2: chromaffin cell studies of SNAP-25

Viral overexpression techniques: knock-out and rescue

Page 7: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Technique 1: capacitance measurements Time domain technique

1 nA

1 ms

V = 10 mV

i(t) = (I0-Iss) exp(-t/) + Iss

I0 = V/Rs

Iss = V/(Rs+ RM)

= CM RsRM/(Rs+ RM)

IRM = V/RM

ICM = CM(dV(t)/dt)

1 F/cm2

I

Page 8: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Technique 1: capacitance measurementsSine-wave technique

1 ms

50 mV

90o

IRM

ICM

IRM + ICM

Phase sensitive detector (PSD) splits the current in real and imaginary part and calculates R s, RM and CM

IRM = V/RM ICM = CM(dV(t)/dt)

V(t)=Vosin(2f t)

V(t)=(1/RM) Vosin(2f t)

V(t)= CMVosin(2f t + 90o)

1 F/cm2

Page 9: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Technique 1: capacitance measurementsFusion of large secretory vesicles

Page 10: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Technique 1: capacitance measurements Limitations

In most neurons, the release of synaptic vesicles occur at the end of a long axon, which does not allow electrical measurements.

However, some synapses are so large that the presynaptic terminalcan be patched directly

Calyx of HeldExample:

Wölfel et al, 2003, J. Neurosci. 23:7059-7063.

Capacitance changes report on both exocytosis and endocytosis

Page 11: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

How can we measure the fusion of secretory/synaptic vesicles in real time?

Detection of added membrane: membrane capacitance

Detection of released neurotransmitter: amperometry

Detection using the postsynaptic cell: autaptic hippo-campal neurons

Detection using fluorescent tracers: next talk by Jürgen Klingauf

Example 3: neuronal studies of synaptotagmin 1

Stimulation method: calcium uncaging

Example 1: calyx of HeldExample 2: chromaffin cell studies of SNAP-25

Viral overexpression techniques: knock-out and rescue

Page 12: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Technique 2: amperometry

modified from Westerink, 2004, Neurotoxicology 25, 461-470

+650 mV

Page 13: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Technique 2: amperometryAmperometry gives information about the release process

Analysis of single spikes

‚stand-alone foot‘

‚kiss-and-run‘

full fusion

Page 14: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Technique 2: amperometry combined with capacitance measurements (patch-amperometry)

Albillos et al., 1997, Nature 389: 509-512.

Page 15: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Technique 2: Amperometry Limitations

No access to the release site in synapses

Only a few neurotransmitters/hormones (adrenaline, noradrenaline, dopamine, serotonine, histamine) can be oxidized

Other methods: detection of neurotransmitter type usingfast cyclic voltammetry

Page 16: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Technique 3: calcium uncagingThe distribution of vesicles and calcium channels

Page 17: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Nitrophenyl-EGTAKD = 80 nM

Break-down productsKD ~ 2 mM

p(Ca)

ICa

Ca -DMN photoproducts + Ca2+

Flash

Technique 3: calcium uncagingCa2+-uncaging results in a homogeneous

calcium concentration

Page 18: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Schneggenburger and Neher, 2000, Nature 406: 889-893

Calyx of Held

Example 1: photorelease of caged-calcium reveals the true calcium-dependence of fast release

Page 19: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Data:Experimental setup:

NP-EGTAFura-2/Furaptra

30

20

10

0

543210Time (s)

8.0

7.8

7.6

7.4

7.2

200

100

0

1.21.00.80.60.4Time (s)

Fast burst

Slow burst

= 18 ms

= 132 ms

Preflash calcium

Flash

Technique 1-3: capacitance measurements, amperometry and calcium uncaging

Page 20: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Getting to the molecular questionsWhich proteins are doing what?

Munc18-1

AT Brunger, 2001

Page 21: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Example 2: knock-out of SNAP-25 abolishes secretion - overexpression rescues secretion

3020100

[Ca2+

] (

M)

80

60

40

20

0

I Am

p (p

A)

543210Time (s)

300

200

100

0

Cm

(fF

)

Control (+/+; +/-)Knock-out (-/-)

300

200

100

0

Cm

(fF

)

60

40

20

0

I Am

p (

pA

)

543210Time (s)

403020100

[Ca2+

] (

M)

Control (+/+;+/-)Knock-out (-/-) overexpressing SNAP-25A

eGFPSNAP-25

Snap-25

Sørensen J.B., Nagy G. et al. 2003, Cell 114, 75-86.

SNAP-25 knock-out

Page 22: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Technique 4: Viral overexpression‘knock-out and rescue’

• Semliki Forest virus: RNA virus, very high expression level, lethal

Adenovirus 5: DNA virus, moderate expression level, fast onset

Lentivirus: retrovirus (HIV-1), moderate expression level, slower onset

Page 23: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

How can we measure the fusion of secretory/synaptic vesicles in real time?

Detection of added membrane: membrane capacitance

Detection of released neurotransmitter: amperometry

Detection using the postsynaptic cell: autaptic hippo-campal neurons

Detection using fluorescent tracers: next talk by Jürgen Klingauf

Example 3: neuronal studies of synaptotagmin 1

Stimulation method: calcium uncaging

Example 1: calyx of HeldExample 2: chromaffin cell studies of SNAP-25

Viral overexpression techniques: knock-out and rescue

Page 24: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Technique 5:Autaptic Microisland Culture of Hippocampal Neurons

1 nA5 ms

Postsynaptic current

AP

Synaptic plasticity Yes No

Hippocamp.autaptic

Chromaffincells

Molecular manipulationKnock-out mice Yes YesOverexpression Yes Yes

Direct Presynaptic measurements No Yes

Distinction of vesicle pools (No) Yes

Page 25: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Koh and Bellen, 2003, Trends in Neurosci. 26, 413-422

Südhof, 2002, J. Biol. Chem. 277, 7629-7632.

Synaptotagmins are calcium sensors

Page 26: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

Rhee et al., 2005,PNAS 102, 18664-9

Example 3: synaptotagmin 1 is the fast calcium sensor for synaptic release

Page 27: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

• Presynaptic

- number of synapses/active zones

- action potential waveform

- modulation of Ca-currents

- Ca++ buffers

- loading of synaptic vesicles

- Fusion of vesicles

• Synaptic

- morphology of synaptic cleft

• Postsynaptic

- desensitization of receptors

- number and clustering of receptors

- block by Polycations

Limitations of using postsynaptic neurons for the detection of neurotransmitter release

Factors that could modify measured postsynaptic currents

Page 28: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen

How can we measure the fusion of secretory/synaptic vesicles in real time?

Detection of added membrane: membrane capacitance

Detection of released neurotransmitter: amperometry

Detection using the postsynaptic cell: autaptic hippo-campal neurons

Detection using fluorescent tracers: next talk by Jürgen Klingauf

Example 3: neuronal studies of synaptotagmin 1

Stimulation method: calcium uncaging

Example 1: calyx of HeldExample 2: chromaffin cell studies of SNAP-25

Viral overexpression techniques: knock-out and rescue

Page 29: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen
Page 30: Jakob B. Sørensen Research group leader “Molecular mechanism of exocytosis” Max-Planck-Institut für biophysikalische Chemie Am Fassberg 11 37077 Göttingen