j v º > | g ¥ v º É Þ î º ' !Õ º n þ > e fc-72 v · 9 6õ m %Ê...

6
32 ǫǰǡǟ Vol. QY HRPQTI=RQZRV 俔埣秋ぬóば乗埣秋」′U“遭躍詳今細ずぬほ¿ fcMWR 埣迄仆抹ず座よ¿庶姉 FC-72 椌樅 焜烋 *1 ⅕嘆闌 離佗 *2 ⅕鐚槖 雄糧 *1 Investigation on FC-72 Flow Boiling in Parallel- and Counter-flow Plate Heat Exchangers Kohei KOYAMA *1 Yuya NAKAMURA *2 , and Hirofumi ARIMA *1 *1 Institute of Ocean Energy, Saga University 1-48 Hirao, Kubara-aza, Yamashiro-cho, Imari, Saga 849-4256 *2 Department of Mechanical Engineering, Saga University 1 Honjo-machi, Saga, 840-8502 This study investigates FC-72 flow boiling in a plate heat exchanger. Bubble behavior and flow pattern in the heat exchanger are directly visualized. The heat exchanger is tested as parallel- and counter-flow configurations to compare hydraulic and thermal performances. Experimental result shows that the region of churn flow in parallel-flow heat exchanger is wider than that on counter-flow one. Overall heat transfer coefficient of the parallel-flow plate heat exchanger is larger than that of counter-flow one due to destruction of thermal boundary layer. The results mean that configuration of plate heat exchanger with flow boiling affects its performances. Key Words : Heat exchanger, Boiling, Flow pattern, Heat transfer enhancement, Visualization 1. h 莵6療1作1抵燦├4際傘冴薩⅕冨ブ療1嗣資識子実匙昨1抵ɚ盪歳珽擦榊崎採三⅕罪昨嘆埼雑⅕⑼♤鯖㏈ 菟作鷺削斂圻際傘椌㏈燵滔燦母ぁ際傘æ鴈臘△歳鑢瘤細参崎哉傘ḿ椌㏈燵滔母ぁæ鴈削採哉崎朔⅕治執寺⅕鋗凋 蜃咏θ3æ咏χ⅕祉実似執⅕文た咏燦端作├耨ギ標碕際傘斯旨至痔不燦転湊㍿典歳皓ク裁⅕祉実似執削’1細参冴 æ鴈㎏埼æ鴈燦⊕妻ḿ椌㏈燵滔æ鴈棡評透禍昨冴薩削朔⅕砺ぁ際傘鋗凋蜃咏燦椌夂尤⅕珽亦ò尤裁⅕æ鴈斯旨至 痔廟典昨思旨詞燦託砦傘祭碕歳麥ギ埼再傘ḿ 椌㏈燵滔æ鴈昨3æ咏削採哉崎朔⅕鋗凋蜃亦ò鯖磁執至試執旨磽昨ヌ珵埼鐚母作寺鴫実詞瑟鋗凋蜃咏歳ぁ哉晒 参傘ḿHsieh (1) Gasparella (2, 3) Táboas (4) 作鷺朔⅕寺鴫実詞瑟鋗凋蜃咏削檮際傘曚滽燦⊕哉⅕嫻鑚ɚ作提鋗Y 磽昨ミ軛鯖⅕転湊㍿典ョ褻㍿阨⅕盆鋗鋗㍿阨作鷺昨殺¹阯鍔歳提鋗Y磽削諾彩傘痣壚削肴哉崎鶺ヹ裁崎哉傘ḿ 寺鴫実詞瑟鋗凋蜃咏朔⅕癩陋⅕転湊㍿典碕⅕転湊㍿典燦盆鋗際傘㏈靱碕歳檮塁裁崎㍿参傘塁㍿夂鯖⅕転湊㍿典 碕盆鋗歳注哉削`凋際傘`凋㍿夂削皿傘殺¹歳篶暼細参崎済冴ḿ祭参朔⅕噓澧燦締撒作哉寺鴫実詞瑟鋗凋蜃咏削 採哉崎⅕塁㍿夂鯖`凋㍿夂昨鋗凋蜃亦ò昨跏歳⅕転湊㍿典碕㏈靱碕歳輪載跏塁削㍿参傘狸㍿夂皿三雑被参崎哉傘 碕哉妻癩陋昨îゖ削嫻咲采雑昨埼再傘ḿ裁栽裁0烝⅕狸㍿夂寺鴫実詞瑟鋗凋蜃咏歳⅕直昨夂瑟碕柺Ï裁崎珽亦ò 埼再傘碕際傘€お1霙歳 Djordjevic (5) 削皿榊崎寤櫓細参冴ḿ祭参朔癩陋昨îゖ碕朔b律際傘雑昨埼再傘ḿ瀧跏⅕ Djordjevic (5) 昨曚滽1霙朔⅕寺鴫実詞瑟鋗凋蜃咏昨夂瑟削皿榊崎⅕罪昨提鋗Y磽歳彳済采廸尤際傘祭碕燦1伜裁 崎哉傘ḿ 祭祭埼⅕寺鴫実詞瑟鋗凋蜃咏昨鋗㍿湊噓澧Y磽燦Xミ際傘冴薩削朔⅕鋗凋蜃咏不使燦療ズ尤際傘祭碕歳裴ギ碕 作傘ḿ寺鴫実詞瑟3æ咏不使昨療ズ尤朔⅕ Baba (5) ⅕濯歹晒 (6) 作鷺削皿榊崎⊕撒参崎哉傘歳⅕鋗凋蜃咏不使昨 ㍿湊噓澧Qょ歳友便削Xミ細参冴碕朔ヮ哉飫哉ḿ * 淀Ⅺ溜沈 2014 7 31 *1 轍ミ彳旄⑼♤嗣資識子実€お止執祉実θ昆849-4256 轍ミp停拓裘滲樅鎚か団淀數烋楙 1-48χ *2 轍ミ彳旄 溷旄㋷€お5 ㎏鮨斯旨至痔溷旄梵謾θ昆840-8502 轍ミp轍ミ滲鑚燻か 1χ E-mail: [email protected]

Upload: others

Post on 03-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: j v º > | g ¥ v º É Þ î º ' !Õ º n þ > E FC-72 v · 9 6õ M %Ê '2portal.dl.saga-u.ac.jp/bitstream/123456789/122756/1/...540 414 Working fluid Inlet port Outlet port Unit:

Vol.

FC-72

*1 *2 *1

Investigation on FC-72 Flow Boiling in Parallel- and Counter-flow Plate Heat Exchangers

Kohei KOYAMA*1 Yuya NAKAMURA*2, and Hirofumi ARIMA*1

*1 Institute of Ocean Energy, Saga University 1-48 Hirao, Kubara-aza, Yamashiro-cho, Imari, Saga 849-4256

*2 Department of Mechanical Engineering, Saga University 1 Honjo-machi, Saga, 840-8502

This study investigates FC-72 flow boiling in a plate heat exchanger. Bubble behavior and flow pattern in the heat exchanger are directly visualized. The heat exchanger is tested as parallel- and counter-flow configurations to compare hydraulic and thermal performances. Experimental result shows that the region of churn flow in parallel-flow heat exchanger is wider than that on counter-flow one. Overall heat transfer coefficient of the parallel-flow plate heat exchanger is larger than that of counter-flow one due to destruction of thermal boundary layer. The results mean that configuration of plate heat exchanger with flow boiling affects its performances.

Key Words : Heat exchanger, Boiling, Flow pattern, Heat transfer enhancement, Visualization

1.

Hsieh (1) Gasparella(2, 3) Táboas (4)

Djordjevic (5)

Djordjevic (5)

Baba (5) (6)

* 2014 7 31 *1 849-4256 1-48 *2 840-8502 1 E-mail: [email protected]

Page 2: j v º > | g ¥ v º É Þ î º ' !Õ º n þ > E FC-72 v · 9 6õ M %Ê '2portal.dl.saga-u.ac.jp/bitstream/123456789/122756/1/...540 414 Working fluid Inlet port Outlet port Unit:

2.

2 1 1 1(a) 1(b)

3

Keyence, FD-SS2A, ±1%F.S.Kofloc RK1950AP, ±2%F.S. T

2

150mm 400mm 2mm150mm 400mm 10mm 3

300 m 30 m

1. Plate heat exchanger (Test section) 2. Working fluid tank 3. Working fluid pump4. Mass flow meter 5. Pre-heater 6. Chiller 7. Hot water tank 8. Heater 9. Hot water pump 10. Volumetric flow meter

Hot water loop

FC-72 loop

Cold water loop

1

6 2

7

8

5

4

10

3

9

T

T

T

T

Hot water loop

FC-72 loop

Cold water loop

1

6 2

7

8

5

4

10

3

9

T

T

T

T

150275

414

540

Working fluid

Inlet port

Outlet port

Unit: mm

Titanium heat transfer plate

Transparent acrylic cover

plate

2 1040 30 40

400

Fig. 1 Scheatic diagram of experimental setup.

(a) Counter-flow arrangement. (b) Parallel-flow arrangement.

Fig. 2 Dimension of plate heat exchanger. Fig. 3. Heat transfer surface with pin-fin.

Page 3: j v º > | g ¥ v º É Þ î º ' !Õ º n þ > E FC-72 v · 9 6õ M %Ê '2portal.dl.saga-u.ac.jp/bitstream/123456789/122756/1/...540 414 Working fluid Inlet port Outlet port Unit:

Nikon D800 AF-S NIKKOR 35mm f/1.4G1/4000s

2 2

(1) (2)

(3) (4) 2 3

(1) 4 (2) (3) (4)

TG NN (1)

NG NT

2 4

U lmTAQU (2)

Q w

outwinwwpw TTcmQ ,,, (3)

Tlm

satoutw

satinw

outwinwlm

TTTT

TTT

,

,

,,

ln (4)

Liquid-phaseGas-phase

Fig. 4. Image processing for two-phase flow.

Page 4: j v º > | g ¥ v º É Þ î º ' !Õ º n þ > E FC-72 v · 9 6õ M %Ê '2portal.dl.saga-u.ac.jp/bitstream/123456789/122756/1/...540 414 Working fluid Inlet port Outlet port Unit:

2 5

G = 90kg/m2s q = 3kW/m2 T = 52 Psat = 0.1MPa

3.

3 1 5

6

6(a)

6(b)

6(c)

7

7(a)

Fig. 5. Instantaneous picture of FC-72 flow boiling in the parallel-flow plate heat exchanger.

Fig. 6. Observed two-phase flow pattern.

(a) Bubbly flow. (b) Slug flow. (c) Churn flow.

Page 5: j v º > | g ¥ v º É Þ î º ' !Õ º n þ > E FC-72 v · 9 6õ M %Ê '2portal.dl.saga-u.ac.jp/bitstream/123456789/122756/1/...540 414 Working fluid Inlet port Outlet port Unit:

7(b)

3 2

8 7z = 0 mm

7

Bubbly flow

Slug flow

Churn flow

Bubbly flow

Slug flow

Churn flow

Fig. 7. Classifications of flow pattern. (a) Counter-flow arrangement. (b) Parallel-flow arrangement.

0.0

0.2

0.4

0.6

0.8

0 100 200 300 400z (mm)

0.0

0.2

0.4

0.6

0.8

0 100 200 300 400z (mm)

Fig. 8. Void fraction along direction of FC-72 fluid flow.

(a) Counter-flow arrangement. (b) Parallel-flow arrangement.

Page 6: j v º > | g ¥ v º É Þ î º ' !Õ º n þ > E FC-72 v · 9 6õ M %Ê '2portal.dl.saga-u.ac.jp/bitstream/123456789/122756/1/...540 414 Working fluid Inlet port Outlet port Unit:

3 3

9

6% Djordjevic (5)

4.

FC-72

(1) Hsieh, Y.Y. and Lin, T.F., “Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger”, International Journal of Heat and Mass Transfer, Vol. 45 (2002), pp. 1033-1044.

(2) Longo, G.A. and Gasparella, A., “HFC-410A vaporisation inside a commercial brazed plate heat exchanger”, Experimental Thermal and Fluid Science, Vol. 32 (2007), pp. 107-116.

(3) Longo, G.A. and Gasparella, A., “Refrigerant R134a vaporisation heat transfer and pressure drop inside a small brazed plate heat exchanger”, International Journal of Refrigeration, Vol. 30 (2007), pp. 821-830.

(4) Táboas, F., Vallès, M., Bourouis, M., and Coronas, A., 2010, “Flow boiling heat transfer of ammonia/water mixture in a plate heat exchanger”, International Journal of Refrigeration, Vol. 33 (2010), pp. 695-705.

(5) Djordjevic E. and Kabelac, S., “Flow boiling of R134a and ammonia in a plate heat exchanger”, International Journal of Heat and Mass Transfer, Vol. 51 (2008), pp. 6235-6242.

(6) Baba, T., Harada, S., Asano, H., Sugimoto, K., Takenaka, N. and Mochiki, K., “Nondestructive inspection for boiling flow in plate heat exchanger by neutron radiography”, Nuclear Instruments and Methods in Physics Research, Vol.605, No, 1-2 (2009), pp.142-145.

(7) OTEC Vol.16 (2011) pp. 19-32

200

225

250

275

300

Counter-flow Parallel-flow

U(W

/m2 K

)

Fig. 9. Comparison of overall heat transfer coefficient