j. a. p. lopes, "the merge control concept - microgrids and evs - development of management...

25
J. A. Peças Lopes INESC Porto/FEUP ([email protected]) The MERGE control concept Microgrids and EVs Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions Electric Vehicle Integration Into Modern Power Networks 24 September 2010 DTU, Copenhagen

Upload: eamon-keane

Post on 21-Jan-2015

553 views

Category:

Documents


3 download

DESCRIPTION

 

TRANSCRIPT

Page 1: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

J. A. Peças LopesINESC Porto/FEUP([email protected])

The MERGE control concept ‐Microgrids and EVs ‐

Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions 

Electric Vehicle Integration Into Modern Power Networks

24 September 2010DTU, Copenhagen

Page 2: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

Introduction

Large Scale integration of EV in Electric Power Systems requires the adoption of an advanced management and control concept capable to deal with:• Market participation of EV consumers;• Technical grid restrictions;• Maximization of the integration of renewable power sources.

Microgrids can exploit the presence of EV to increase their robustness of operation, regarding:• Increased integration of local microgeneration from renewable power 

sources;• Improve islanding operating conditions in terms of:

• Dynamic behavior;• Extension of the islanding mode operating time.

A multi‐level hierarchical control and management concept needs to be developed

Page 3: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

Conceptual Framework for EV Integration Into Electric Power Systems

Type of charging points

Charging points can present different characteristics according to the location

Page 4: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

Conceptual Framework for EV Integration Into Electric Power Systems

Overview of the different information flows

An ICT model was developed, identifying the involved parties and the associated information flows. 

The supplier / aggregator

Page 5: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

Conceptual Framework for EV Integration Into Electric Power Systems

a) The grid structure (a possible representation)

Microgrids

Multi‐microgrids

Page 6: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

Conceptual Framework for EV Integration Into Electric Power Systems

b) The EV supplier/aggregator

Single EV do not have enough “size” to participate in electricity markets

If grouped through an aggregator agent, EV might sell several system services in the markets

The EV suppliers/aggregators:

are completely independent from the DSO

act as an interface between EV and electricity markets 

group EV, according to their owners’ willingness, to exploit business opportunities in the electricity markets

develop their activities along a large geographical area (e.g. a country)

Page 7: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

Conceptual Framework for EV Integration Into Electric Power Systems

b) The EV supplier/aggregator

EV supplier/aggregator structure:

Regional Aggregation Unit

Microgrid Aggregation Unit

Microgrid Aggregation Unit

CVC

CVC

CVC

Microgrid Aggregation Unit

MV Level

LV Level

Smart MeterVC

Smart MeterVC

Smart MeterVC

Smart MeterVC

Smart MeterVC

Smart MeterVC

EV Owner

EV Owner

EV Owner

EV Owner

EV Owner

EV Owner

SUPP

LIER

/AG

GR

EGA

TOR

Regional Aggregation Unit

Microgrid Aggregation Unit

Microgrid Aggregation Unit

CVC

CVC

CVC

Microgrid Aggregation Unit

MV Level

LV Level

Smart MeterVC

Smart MeterVC

Smart MeterVC

Smart MeterVC

Smart MeterVC

Smart MeterVC

EV Owner

EV Owner

EV Owner

EV Owner

EV Owner

EV Owner

• Regional Aggregation Unit (RAU) – located at the HV/MV substation level and covering a region (e.g. a large city) with ~20000 clients

• Microgrid Aggregation Unit (MGAU) – located at the MV/LV substation level and covering a LV grid with ~400 clients

Page 8: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

2. Conceptual Framework for EV Integration Into Electric Power Systems

b) The EV supplier/aggregator

To enable bidirectional communication between EV and suppliers/aggregators:

Single EV:

• Must have a specific interface unit  the Vehicle Controller (VC)

• Will be connected to LV networks through VC

• The VC enables bidirectional communication between the EV and the MGAU

• The VC may be located in the smart meter to which EV will connect to charge

Fleet of EV:

• Might be used only one controller for the entire fleet  the Cluster of Vehicles Controller (CVC)

• Will be connected to MV networks through CVC

• The CVC enables bidirectional communication between the EV and the RAU

Page 9: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

2. Conceptual Framework for EV Integration Into Electric Power Systems

b) The EV supplier/aggregator

Single EV bidirectional communication 

EV

AMM

µG

µG

Storage

Period during which a single EV will be connected to the

grid and the required battery SOC at the end of that time

EV Charger

EV is plugged-in and its owner defines the disconnection hour and the required battery SOC

Broadcast of set-points to adjust EV control parameters in accordance

with the market negotiations

DSOAggregator

Information about interruptions and disconnection orders in

case of grid problems

Power consumed

MarketResponsible for the

grid technical operation

Page 10: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

2. Conceptual Framework for EV Integration Into Electric Power Systems

c) Interconnected systems

Normal operation – Market environment

PLAYERS

TSO

GENCO

DSO

Elec

trici

ty M

arke

t O

pera

tors

Market Operation

Electric Energy

Technical Validation of the Market Negotiation (for the transmission system)

Reserves

Electricity Retailer

Electricity Consumer

Electric Energy

Communicates withSell offer

Buy offerTechnical validation of the market results

Reserves

PLAYERS

TSO

GENCO

DSO

EV Supplier/Aggregator

Elec

trici

ty M

arke

t O

pera

tors

Market Operation

Electric Energy

Technical Validation of the Market Negotiation (for the transmission system)

Reserves

EVOwner/Electricity

Consumer

Electricity Retailer

Electricity Consumer

Electric Energy

Communicates withSell offer

Buy offerTechnical validation of the market results

Reserves

PLAYERS

TSO

GENCO

DSO

EV Supplier/Aggregator

Elec

trici

ty M

arke

t O

pera

tors

Market Operation

Electric Energy

Electric Energy

Technical Validation of the Market Negotiation (for the transmission system)

Electric Energy

Reserves

Reserves

EVOwner/Electricity

Consumer

Electricity Retailer

Electricity Consumer

Electric Energy

Communicates withSell offer

Buy offerTechnical validation of the market results

Reserves

PLAYERS

RAU

MGAU

TSO

GENCO

DSO

EV Supplier/Aggregator

Elec

trici

ty M

arke

t O

pera

tors

Market Operation

Electric Energy

Electric Energy

Technical Validation of the Market Negotiation (for the transmission system)

Electric Energy

Reserves

Reserves

EVOwner/Electricity

Consumer

Electricity Retailer

Electricity Consumer

Electric Energy

Communicates withSell offer

Buy offerTechnical validation of the market results

Reserves

PLAYERS

RAU

MGAU

TSO

GENCO

DSO

EV Supplier/Aggregator

Elec

trici

ty M

arke

t O

pera

tors

Market Operation

Electric Energy

Electric Energy

Technical Validation of the Market Negotiation (for the transmission system)

Electric Energy

Reserves

Reserves

Parking Parking BatteryReplacement

BatteryReplacement

EVOwner/Electricity

Consumer

Parking Facilities

Battery Suppliers

Electricity Retailer

Electricity Consumer

Electric Energy

Communicates withSell offer

Buy offerTechnical validation of the market results

Reserves

• GENCO – Generation Company

• TSO – Transmission System Operator

• DSO – Distribution System Operator

• RAU – Regional Aggregation Unit

• MGAU – MicroGrid Aggregation Unit

Page 11: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

2. Conceptual Framework for EV Integration Into Electric Power Systems

c) Interconnected systems

Normal operation – Market environment

EV suppliers/aggregators forecast the EV market behaviour for the next day and prepare their buy/sell bids

Prior to market negotiations, to avoid lines overloading and voltage problems, the DSO evaluates the aggregators’ buy/sell bids  changes may be required

Aggregators will buy energy during low demand periods (cheaper) and sell in peak hours  will “flatten” the load diagram

Aggregators will buy/sell electricity and provide reserves  competing directly with GENCO

After market closure, TSO proceeds to the evaluation of the load/generation schedules  changes may be required

Every day the aggregator manages EV according to the market negotiations  through set‐points sent to VC and CVC

Every fixed period (~15 min), the EV SOC must be communicated to the aggregator, to assure that EV owners requests are met

Page 12: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

PLAYERS

RAU

MGAU

TSO

GENCO

DSO

EV Supplier/Aggregator

Market Operation

Electric Energy

Electric Energy

Technical Validation of the Market Negotiation (for the transmission system)

Electric Energy

Reserves

Reserves

Parking Parking BatteryReplacement

BatteryReplacement

EVOwner/Electricity

Consumer

Parking Facilities

Battery Suppliers

Electricity Consummer

Electricity Consumer

Electric Energy

Controls (in normal system operation) At the level ofCommunicates with

Sell offerBuy offer

Technical validation of the market resultsControls (in abnormal system operation/emergency mode)

Reserves

2. Conceptual Framework for EV Integration Into Electric Power Systems

c) Interconnected systems

Abnormal system operation or emergency mode – EV managed by the DSO  

PLAYERSCONTROL HIERARCHY

DMS

CAMC

CVC

MGCC

Control Level 3

VC

RAU

MGAU

TSO

GENCO

DSO

Control Level 1

Control Level 2

EV Supplier/Aggregator

Transmission System

Generation System

Technical Operation Market Operation

Electric Energy

Electric Energy

Technical Validation of the Market Negotiation (for the transmission system)

Electric Energy

Reserves

Reserves

Parking Parking BatteryReplacement

BatteryReplacement

EVOwner/Electricity

Consumer

Parking Facilities

Battery Suppliers

Electricity Consummer

Electricity Consumer

Electric Energy

Controls (in normal system operation) At the level ofCommunicates with

Sell offerBuy offer

Technical validation of the market resultsControls (in abnormal system operation/emergency mode)

Reserves

DMS – Distribution Management System          CAMC – Central Autonomous Management System          MGCC – MicroGrid Central Controller          CVC – Cluster of Vehicles Controller                 VC – Vehicle Controller

Page 13: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

2. Conceptual Framework for EV Integration Into Electric Power Systems

c) Interconnected systems

Abnormal system operation or emergency mode – EV managed by the DSO

When grid normal technical operation is compromised, market management is overridden by the DSO

Within a LV microgrid, a single MGCC controls all EV batteries through VC the MGCC is installed in the MV/LV substation

Within a multi‐microgrid environment, all CVC and MGCC in a given MV grid are managed by a single CAMC  the CAMC is installed in the HV/MV substation

If needed, CAMC may also control EV, sending set‐points directly to VC

All the CAMC are under the supervision of a single DMS  directly controlled by the DSO

Page 14: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

2. Conceptual Framework for EV Integration Into Electric Power Systems

c) Interconnected systems

Low voltage microgrids environment:

Storage Device

MV

LV

MGCC

Wind Generator

Microturbine

Fuel Cell

PV Panel

Load Controller (LC)

Vehicle Controller (VC)

MicroGrid Central Controller (MGCC)

Microgeneration Controller (MC)

Load

EV EV

EV

EV

Page 15: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

2. Conceptual Framework for EV Integration Into Electric Power Systems

c) Interconnected systems

Medium voltage multi‐microgrid management architecture:

DMS

CAMC

LC

MGCC

Control Level 1

Control Level 2

Control Level 3

MCLoadSVC OLTCDG CVC VC

LV / Microgrid level

MV level

Page 16: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

2. Conceptual Framework for EV Integration Into Electric Power Systems

d) Isolated systems

System operator is responsible for the management of an isolated system regarding local generation, transmission and distribution levels

In the absence of an electricity market, aggregators are useless 

Normal system operation:

VC and CVC are controlled by the system operator  through MGCC and CAMC

Day‐ahead, the system operator optimizes EV charging using forecasted data on load and generation profiles

During the day, it updates this solution providing real time pricing  consumers shift EV charging for cheaper electricity periods harmonizing the load/generation diagram

In some cases, EV response to the system operator’s request may be mandatory  to provide safety of operation and to allow increasing the intermittent RES penetration

Page 17: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

2. Conceptual Framework for EV Integration Into Electric Power Systems

d) Isolated systems

Abnormal system operation or emergency mode:

The system is controlled in the same way as described for interconnected systems

ONTROL IERARCHY

DMS

CAMC

CVC

MGCC

Control Level 3

VC

Control Level 1

Control Level 2

Transmission System

Generation System

Page 18: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

3. Microgrid Islanded Operation 

PEV are controllable charges and  mobile storage devices that need to be controlled and managed.

Grid connection through inverters (VSI or PQ control mode)

Microgrid Central Controller

Page 19: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

3. Microgrid Islanded OperationGrid Interface for PEV

Defining inverter control is a key issue  for Smart Charging during normal operation and to ensure MG stable operation during islanding mode.

In interconnected normal mode PEV inverters can be operated in a PQ control mode

During islanding emergency operation a modified PQ control solution should be adopted, provided that a VSI is controlling the MG frequency

actireacti

QP,

1sT1

Q

)ii(kvv ref* i ,v i,v

P battery settings are definedfrom a droop control mode responding to:a) Frequency or voltage changesb) or responding to a hierarchicalsignal.

Page 20: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

3. Microgrid Islanded OperationGrid Interface for PEV

• The control law during islanding operation

actireacti

QP,

1sT1

Q

)ii(kvv ref* i,v i,v

MG frequency

Setting point for the battery active power

Additionally an active power voltage droop model can be also adopted.

Page 21: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

Defining the set point: Local generation scarcity is taken into account with priority regarding local voltage

3. Microgrid Islanded OperationGrid Interface for PEV – controlling frequency and voltage

Different control laws and droops

otherwise

if

_

___

Vset

Vsetfsetfsetset P

PPPP

Set poit of the inverter

Page 22: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

3. Microgrid Islanded Operation 

Example

An Example in a three‐phase unbalanced system with single phase EV grid connection (V2G devices)

StorageBalancing unit

Page 23: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

• Control of EV batteries 

3. Microgrid Islanded OperationResults

Different control laws and droops

Disturbance: One single-phase and one three-phase load were disconnected and reconnected

Page 24: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

3. Microgrid Islanded Operation 

The control of the EV charging discharging can also take into account the need to balance the system, regarding voltage unbalance

Voltage balancing canbe obtained by changingthe charging rate of EV batteriesin the different phases.

Page 25: J. A. P. Lopes, "The MERGE control concept - Microgrids and EVs - Development of management solutions for integrating EV in microgrids for normal and islanding operating conditions,"

4. Conclusions 

New management and control architectures are required to deal with large scale integration of EV in electrical distribution grids.

Smart metering can be adopted to support the development of this control / management concept and serve to provide metering solutions uder this framework.

Combined management of EV charging / discharging together with the control of microgeneration sources brings resilience to microgrid operation, namely in islanding mode.