isztar zawadzki and bernat puigdomènech treserras mcgill...

33
Ensemble Retrievals Isztar Zawadzki and Bernat Puigdomènech Treserras McGill University Tuesday, 29 May, 12

Upload: others

Post on 22-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Ensemble Retrievals

Isztar Zawadzki and Bernat Puigdomènech TreserrasMcGill University

Tuesday, 29 May, 12

Page 2: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

There is never sufficient information in radar measurement to resolve unambiguously the complexity of microphysics.

Background

Thus, whatever model we use there will be a good deal of uncertainty in the quantitative interpretation of radar measurements.

Radar measurements are not proper measurements without a good assessment of their uncertainties.

When radar measurements are interpreted quantitatively we always use a model microphysics of the backscattering targets.

In radar data assimilation this is particularly fundamental.

Model microphysics is an approximation to a very complex reality

And all this applies to satellite measurements as well

Tuesday, 29 May, 12

Page 3: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

What do we call a Retrieval

Inference of atmospheric parameters from observations related but not equal to the parameters of interest.

Simplest example: retrieving LWC, M from Z

Tuesday, 29 May, 12

Page 4: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

What do we call a Retrieval

Inference of atmospheric parameters from observations related but not equal to the parameters of interest.

The correspondence between observations and retrieved parameters is established through physical equations. These equations are affected by uncertainties due to the natural

variability of the parameters in these equations. Thus, these are approximate “models” of the physical processes.

Simplest example: retrieving LWC, M from Z

Tuesday, 29 May, 12

Page 5: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

What do we call a Retrieval

Inference of atmospheric parameters from observations related but not equal to the parameters of interest.

The correspondence between observations and retrieved parameters is established through physical equations. These equations are affected by uncertainties due to the natural

variability of the parameters in these equations. Thus, these are approximate “models” of the physical processes.

Simplest example: retrieving LWC, M from Z

Simplest example: M = π6ρw D3

0

∫ N(D)dD ; Z = D60

∫ N(D)dD

N(D) has a good deal of natural variability

Tuesday, 29 May, 12

Page 6: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Ensemble Retrievals

Each combination of the possible values of the parameters leads to one set of physical relationships and to one corresponding retrieval.

N(D) = N0 Dµ exp(−λD)

Simplest example: for a given set of possible values of

we get one retrieval of M from ZN0 ,µ, λ

Tuesday, 29 May, 12

Page 7: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Ensemble Retrievals

Each combination of the possible values of the parameters leads to one set of physical relationships and to one corresponding retrieval.

By sweeping through all the possible values of the parameters we obtain the ensemble of possible models leading to the ensemble of retrievals. This ensemble contains all the

uncertainty of the physical model.

N(D) = N0 Dµ exp(−λD)

Simplest example: for a given set of possible values of

we get one retrieval of M from ZN0 ,µ, λ

Tuesday, 29 May, 12

Page 8: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Ensemble Retrievals

Each combination of the possible values of the parameters leads to one set of physical relationships and to one corresponding retrieval.

By sweeping through all the possible values of the parameters we obtain the ensemble of possible models leading to the ensemble of retrievals. This ensemble contains all the

uncertainty of the physical model.

N(D) = N0 Dµ exp(−λD)

Simplest example: for a given set of possible values of

we get one retrieval of M from ZN0 ,µ, λ

In our simplest example, the Z-M relationship, as an alternative we can use a set of observed DSDs to generate the ensemble.

Tuesday, 29 May, 12

Page 9: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

A particular precipitation event

From our entire disdrometer data base we select the days which the DSDs records had maximum values of dBZ and durations compatible with this

particular case, namely a mixture of convection and wide spread rain. We have ~200 days of DSD data of this type of events.

Tuesday, 29 May, 12

Page 10: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

A particular precipitation event

From our entire disdrometer data base we select the days which the DSDs records had maximum values of dBZ and durations compatible with this

particular case, namely a mixture of convection and wide spread rain. We have ~200 days of DSD data of this type of events.

We treat the 200 days as equiprobable realizations of the same processTuesday, 29 May, 12

Page 11: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Data Base

From the 200 days of distrometric records we have this distribution of logM versus logZ

Typically an average Z-M relationship, obtained by

some kind of regression, is used in retrieving M from Z.

Let us apply ensemble retrieval to this problem.

10 20 30 40 50 60Z [dBZ]

0.001

0.01

0.1

1.0

10

100

M [g

/m3 ]

Tuesday, 29 May, 12

Page 12: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

ExampleHere we formulate the retrieval of M as

M = m p(m | [Z ±δ ]) dm∫

p(m | Z )and for each dBZ interval determine

δ = .5 dB if 10<35;1dBZ if 35<Z<42; 2.5dB if Z>42dBZLet us take

Tuesday, 29 May, 12

Page 13: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Example

M = 0.15 = m p(m | [29 − 30dBZ ]) dm∫

29.0 29.2 29.4 29.6 29.8 30.0Z [dBZ]

-1.5 -1.0 -0.5 0.0log10 (M)

0

50

100

150

200Pmean -9.16e-01

1 2 3 4 5D [mm]

10-4

10-2

100

102

104

N(D

)

Num

ber o

f DSD

s

0.1

1.0

M [k

g/m

3 ]

mean 0.151 [g/kg3]X2 =1.75e-02

Here we formulate the retrieval of M as

M = m p(m | [Z ±δ ]) dm∫

p(m | Z )and for each dBZ interval determine

δ = .5 dB if 10<35;1dBZ if 35<Z<42; 2.5dB if Z>42dBZLet us take

Tuesday, 29 May, 12

Page 14: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Data BaseFrom our sample of 200 days of disdrometric records we have this

expected value of logM versus logZ

10 20 30 40 50Z [dBZ]

0.1

1.0

10.0

M [g

/m3 ]

Z=12355M1.55

Tuesday, 29 May, 12

Page 15: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Data BaseFrom our sample of 200 days of disdrometric records we have this

expected value of logM versus logZ

10 20 30 40 50Z [dBZ]

0.1

1.0

10.0

M [g

/m3 ]

Z=12355M1.55

Tuesday, 29 May, 12

Page 16: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Data BaseFrom our sample of 200 days of disdrometric records we have this

expected value of logM versus logZ

10 20 30 40 50Z [dBZ]

0.1

1.0

10.0

M [g

/m3 ]

Z=12355M1.55Some small progress here!

We get a more complex relationship that in fact has

some physical sense:it is consistent with the

tendency to equilibrium DSDs at Z>40dBZ and the expected

behaviour at very low rates where cloud collection is the

prevailing mechanism od precipitation growth

Tuesday, 29 May, 12

Page 17: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Data BaseFrom our sample of 200 days of disdrometric records we have this

expected value of logM versus logZ

10 20 30 40 50Z [dBZ]

0.1

1.0

10.0

M [g

/m3 ]

Z=12355M1.55Some small progress here!

We get a more complex relationship that in fact has

some physical sense:it is consistent with the

tendency to equilibrium DSDs at Z>40dBZ and the expected

behaviour at very low rates where cloud collection is the

prevailing mechanism od precipitation growth

10-2

100

102

104

N [

m-3

mm

-1]

0 2 4 6D [mm]

45-50dBZ(68 min)

40-45 dBZ(208 min)35-40 dBZ(697 min)

Tuesday, 29 May, 12

Page 18: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Data BaseFrom our sample of 200 days of disdrometric records we have this

expected value of logM versus logZ

10 20 30 40 50Z [dBZ]

0.1

1.0

10.0

M [g

/m3 ]

Z=12355M1.55Some small progress here!

We get a more complex relationship that in fact has

some physical sense:it is consistent with the

tendency to equilibrium DSDs at Z>40dBZ and the expected

behaviour at very low rates where cloud collection is the

prevailing mechanism od precipitation growth

0 1D [mm]

100

102

104

N(D

) [m

-3 m

m-1

] 1 June 200413:15-14:04

105 15Z [dBZ]

0.1

0.5

R [m

m/h

r]

Z= 36 R1.04

10-2

100

102

104

N [

m-3

mm

-1]

0 2 4 6D [mm]

45-50dBZ(68 min)

40-45 dBZ(208 min)35-40 dBZ(697 min)

Tuesday, 29 May, 12

Page 19: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Variance is a function of intensity

10 20 30 40Z [dBZ]

0.18

0.20

0.22

0.24

0.26

0.28

0.30ST

DEV

(log 1

0(M))

10 20 30 40Z [dBZ]

0.01

0.10

1.00

STD

EV(M

)

10.013.116.219.422.525.628.831.935.038.141.244.447.550.653.856.960.0

dBZ

-200 -100 0 100 200[km]

-200

-100

0

100

200

[km

]

21/07/2010 18:24:53

0.010.010.020.030.060.100.170.280.480.821.402.404.096.99

11.9320.3834.80

STD

EV o

f M

-200 -100 0 100 200[km]

-200

-100

0

100

200

[km

]

Tuesday, 29 May, 12

Page 20: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Variance is a function of intensity

10 20 30 40Z [dBZ]

0.18

0.20

0.22

0.24

0.26

0.28

0.30ST

DEV

(log 1

0(M))

10 20 30 40Z [dBZ]

0.01

0.10

1.00

STD

EV(M

)

10.013.116.219.422.525.628.831.935.038.141.244.447.550.653.856.960.0

dBZ

-200 -100 0 100 200[km]

-200

-100

0

100

200

[km

]

21/07/2010 18:24:53

0.010.010.020.030.060.100.170.280.480.821.402.404.096.99

11.9320.3834.80

STD

EV o

f M

-200 -100 0 100 200[km]

-200

-100

0

100

200

[km

]

Here we have the diagonal terms of

the error covariance matrix

Tuesday, 29 May, 12

Page 21: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Extremes (shown here for logR)

29.5 30.5Z [dBZ]

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

log

R

e2

-0.2 0.0 0.2 0.4 0.6 0.8 1.0log R

0

10

20

30

40

50

Num

ber o

f day

s

Pmean:logR=0.43

Pmax:logR=0.42

1 2 3 4 5D [mm]

10-2

100

102

104

N(D

)

X

logR = log r p(log r | dBZ ±δ ) dr∫

Tuesday, 29 May, 12

Page 22: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Extremes (shown here for logR)

29.5 30.5Z [dBZ]

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

log

R

e2

-0.2 0.0 0.2 0.4 0.6 0.8 1.0log R

0

10

20

30

40

50

Num

ber o

f day

s

Pmean:logR=0.43

Pmax:logR=0.42

1 2 3 4 5D [mm]

10-2

100

102

104

N(D

)

X

logR = log r p(log r | dBZ ±δ ) dr∫

Tuesday, 29 May, 12

Page 23: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Extremes (shown here for logR)

Here are some extreme members of the ensemble. The last two are averages of all possibilities outside the SD of the entire population

0.050.080.140.230.400.691.182.023.455.92

10.1417.3429.7450.8187.09

149.18254.65

R [m

mh

-1]

-200 -100 0 100 200[km]

-200

-100

0

100

200

[km

]

Z-R

0.050.080.140.230.400.691.182.023.455.92

10.1417.3429.7450.8187.09

149.18254.65

-200 -100 0 100 200[km]

-200

-100

0

100

200

[km

]

Z-Rupper mean

0.050.080.140.230.400.691.182.023.455.92

10.1417.3429.7450.8187.09

149.18254.65

-200 -100 0 100 200[km]

-200

-100

0

100

200

[km

]

Z-Rlower mean

R [m

mh

-1]

R [m

mh

-1]

mean

29.5 30.5Z [dBZ]

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

log

R

e2

-0.2 0.0 0.2 0.4 0.6 0.8 1.0log R

0

10

20

30

40

50

Num

ber o

f day

s

Pmean:logR=0.43

Pmax:logR=0.42

1 2 3 4 5D [mm]

10-2

100

102

104

N(D

)

X

logR = log r p(log r | dBZ ±δ ) dr∫

Tuesday, 29 May, 12

Page 24: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Extremes (shown here for R)

0.070.130.220.370.621.051.793.045.158.77

14.8725.2242.8772.63

123.41209.56354.66

Z = 199 R1.24

0.070.130.220.370.621.051.793.045.158.77

14.8725.2242.8772.63

123.41209.56354.66

Z = 686 R1.63

R [m

mh

-1]

-200 -100 0 100 200[km]

-200

-100

0

100

200

[km

]

-200 -100 0 100 200[km]

-200

-100

0

100

200

[km

]

R [m

mh

-1]

The second pair of extremes comes from taking the DSDs that give the maximum and minimum amount of precipitation

Tuesday, 29 May, 12

Page 25: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Non-diagonal terms of the ECM

We can only estimate the time correlations of the perturbations around the Z-R relationship and invoke the Taylor Hypothesis for estimation of the space correlation.

10 20 30 400

10

20

30

40

50

Nº o

f day

s

7.5241.548

Y of {log(R)-log(RZR)} [min]0 10 20 30 40Y of {log(R)-log(RZR)} [min]

0

10

20

30

40

Y (1

/e) o

f dBZ

[min

]

Y=decorrelationtime to 1/e

Tuesday, 29 May, 12

Page 26: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Non-diagonal terms of the ECMFor R in linear scale we do our best to measure decorrelation

time as a function of reflectivity:

700 800 900 1000 1100 1200time [min]

15

20

25

30

35

40Z

[dBZ

]

700 800 900 1000 1100 1200time [min]

-6

-4

-2

0

2

4

R -

RZ-

R

0 10 20 30 40time [min]

0.0

0.2

0.4

0.6

0.8

1.0

Cor

rela

tion

10-20 dBZ20-30 dBZ30-40 dBZ >40 dBZ

10 20 30 40 50Z [dBZ]

0.1

1.0

10

100

R [m

mh-1

]

Tuesday, 29 May, 12

Page 27: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Non-diagonal terms of the ECM

For R in linear scale we get a decorrelation time varying with reflectivity:

10 20 30 40 50Z [dBZ]

5

10

15

20

25Y(

1/e)

of {

R -

RZ-

R}

Tuesday, 29 May, 12

Page 28: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Conclusions

Ensemble retrievals reduce biases

Tuesday, 29 May, 12

Page 29: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Conclusions

Ensemble retrievals reduce biases

Give information on the error covariance matrix

Tuesday, 29 May, 12

Page 30: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Conclusions

Lead to new insight

Ensemble retrievals reduce biases

Give information on the error covariance matrix

Tuesday, 29 May, 12

Page 31: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Are as simple to perform as common retrievals

Conclusions

Lead to new insight

Ensemble retrievals reduce biases

Give information on the error covariance matrix

Tuesday, 29 May, 12

Page 32: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Are as simple to perform as common retrievals

Conclusions

Lead to new insight

Ensemble retrievals reduce biases

Give information on the error covariance matrix

Help to establish a common language between observational and numerical teams of researchers

Tuesday, 29 May, 12

Page 33: Isztar Zawadzki and Bernat Puigdomènech Treserras McGill …web2.sca.uqam.ca/~wgne/CMOS/PRESENTATIONS/links/5617.pdf · 2012. 7. 4. · 0 Dµexp(−λD) Simplest example: for a given

Are as simple to perform as common retrievals

Conclusions

Lead to new insight

There is no reason for not doing things this way

Ensemble retrievals reduce biases

Give information on the error covariance matrix

Help to establish a common language between observational and numerical teams of researchers

Tuesday, 29 May, 12