gyuwon lee, aldo bellon, and isztar zawadzki

34
Error structure in rain estimation by radar 1. Radar Calibration. 2. Attenuation. 3. Variability of drop size distribution. GyuWon Lee, Aldo Bellon, and Isztar Zawadzki

Upload: morela

Post on 19-Jan-2016

39 views

Category:

Documents


0 download

DESCRIPTION

Error structure in rain estimation by radar 1. Radar Calibration. 2. Attenuation. 3. Variability of drop size distribution. GyuWon Lee, Aldo Bellon, and Isztar Zawadzki. Disdrometer calibration. 7 %. Radar Calibration Error in the current calibration by gages. Gage calibration. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Error structure in rain estimation by radar1. Radar Calibration.2. Attenuation.3. Variability of drop size distribution.

GyuWon Lee, Aldo Bellon, and Isztar Zawadzki

Page 2: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Radar Calibration Error in the current calibration by gages

Gage calibration

34%

Disdrometer calibration

7%

Perfect gage

Per

fect

rad

ar

Page 3: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Radar Calibration Error in the polarimetric calibration

KDP: 1 dB

KDP & ZDR: 0.3 dB

The (specific) differential phase shift, DP (KDP) is immune to the radar calibration error whereas the reflectivity (Z) is affected by the calibration error.

Page 4: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Radar Calibration Calibration by disdrometer and polarimetry

by a disdrometer by polarimetry

Bias=1.5

Lee and Zawadzki (2002) Submitted to J. Hydrology

Page 5: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Polarimetric radar calibration Sensitivity to the drop deformation

date KDP calibration (dB) Disdrometric calibration

(dB)Pruppacher and Beard (1970)

Illingworth and Johnson

(1999)

Goddard et al. (1995)

Andsager et al. (1999)

2001. 9. 13. -1.92 -3.16 -4.27 -4.10 -1.73 2001. 9. 25.

1.72 1.24 0 -0.21 1.51

2001.10. 25.

-1.58 -2.14 -3.34 -3.58 -1.15

KDP = (3.5 ~ 8.8)x10-5 D4.6~5.2

Zh D6

Zh=(3.9 ~ 6.5)x105 KDP(1.0~1.2)

Ex: Due to the drop deformation,

dZh~2 dB at KDP=1 deg/km

Page 6: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Quantification of Wet-radome Attenuation Method 1 : Monitoring ground echoes with time

King City C-band radar

Page 7: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Quantification of wet-radome Attenuation Method 2 : Natural variability over a large area

< the variability caused by the precipitation at the radar

site

Franktown C-band radar

Page 8: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Attenuation & Calibration error.

H-B Correction

Gage Simulation

+ Random error

Minimization of

Cost function.

ATTENUATION SIMULATIONAND CORRECTION

Page 9: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

How many parameters are needed to describe the variability of DSDs?

N D N D( ) exp( ) 0 R

N D N D D( ) exp( ) 0

2/12)(1

R

RR

NT

R-Z

R-(Z,M2)

Page 10: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Scale dependence of the variability of drop size distribution

1. Climatological variability

A single Climatological Z-R relationship

SDfe ~ 37 %

Page 11: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Scale dependence of the variability of drop size distribution

2. Day-to-Day variability

A single Climatological Z-R relationshipSDfe= 34%

3. Variability within a day

Daily Z-R relationships

SDfe~ 31 %

Page 12: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Scale dependence of the variability of DSD

UHF profiler Reflectivity

Between different physical processes

Within a quasi-homogeneous

physical process

SDfe= 30%

SDfe= 10%Collocated disdrometer

Page 13: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Conclusion and Discussion

1. Three different methods of radar calibration

- accuracy

- consistency between methods

2. Quantification of attenuation & Correction method.

- QPE in C-band (?)

3. The variability of drop size distribution

- scale dependence of DSD variability

- categorization of different physical processes

: using morphological characteristics

& polarimetric information

Page 14: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Error structure in rain estimation by radar4. AP & Ground Echoes5. Range effects6. VPR & Optimal Surface Precipitation (OSP)

Aldo Bellon, GyuWon Lee, and Isztar Zadwadzki

Page 15: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Eliminate GE and AP

a) Radial velocity at one or more elevation angles

b) Vertical gradient of reflectivity c) Horizontal gradient of reflectivity

d) Preferred location of AP echoes.

AP

GE

Page 16: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

AP & GE Elimination

From Polarimetric Information

a) SD of ZDR

b) SD of ΦDP

c) SD of Z

d) Radial Velocity

Radial velocity & Reflectivity

(1km x 1deg.)

Polarization (150 m)

Page 17: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

VPR CORRECTION ===> SURFACE RAINFALL

1. Accumulations based on CAPPIs at a pre-defined height (1.5 to 2.5 km) (Correction applied to the 1-h accumulations as a function of range)

a) dBZ = dBZ [ CAPPI height ] - dBZ [ Ref. height ]

b) Beyond 110 km, apply Gaussian smoother (vertical) to last profile

dBZ = dBZG [ H(range) ] – dBZLast VPR [ Ref. height ]

c) Interpolate dBZ at every km and convert it into a rainfall rate factor

- multiply uncorrected 1-h accumulations and integrate for total rainfall

Page 18: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

2. Accumulations based on OSP maps(Optimum Surface Precipitation)

(Correction performed at every radar cycle and for every pixel)

a) Lowest pixel (~1.0 km) above the 3-D average ground echo mask

- Radial velocity used to reach any precip. above stationary targets - If this height is close to echo top, perform horizontal interpolation ELSE

- dBZ is obtained as in (1) to modify reflectivity at selected height

b) Automatic VPR identification and correction

- Avoids rather than corrects for bright band Data is taken from height sufficiently below BB bottom or above BB top c) No dBZ adjustment for convective pixels ( > 30 dBZ 1.5 km above BB height)

- Separate Z-R for stratiform and convective pixels

d) Knowledge of 0º isotherm would prevent correction in cases of low bright band - identifies low level growth due to warm rain or snow

3. Simulations of high resolution volume scan (3-D) data

Page 19: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Rainfall Accumulation Correction

Original 1hr accum.

Optimal 1hr accum.

BB contamination

VPR correction

Page 20: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Range Effects

Page 21: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

CAPPI SimulationH= 1.1 km H= 1.9 km

H= 2.7 km H= 3.7 km

120 km

240 km

Page 22: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Error Structure: Instant. F(range, height)

Before Correction

Aft

er C

orr

ecti

on

1x1 km2

9x9 km2

2/12)(1

R

RR

NSDfe E

Page 23: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Range-Dependent Errors

Bias

BIAS

Measurement in snow

Contamination by the BB

Random error after bias correction

A stratiform case with a weak bright band at 3.5 km

Page 24: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Animation of 1-hr Accum.

Page 25: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Error Structure: 1-hr Accum. F (range, height)Before Correction After Correction

1 km x 1 km

9 km x 9 km

Page 26: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

CONVECTIVE

Page 27: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

A Convective Case Error Structure: 1-hr Accum. F (range, height)

1 km x 1 km 9 km x 9 km

Page 28: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

A Convective Case Error Structure: 1-hr Accum. F (range, height)

Before Correction After Correction

Page 29: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

A Snow Case

Page 30: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

A Snow Case Error Structure: 1-hr Accum. F (range, height)

Before Correction After Correction

Page 31: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Snowfall Correction

Before Correction After Correction

Page 32: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Thank you!

Page 33: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Low Bright Band (Worst Case Scenario)

Uncorrected Erroneously Corrected

Page 34: GyuWon Lee, Aldo Bellon, and  Isztar Zawadzki

Radar Composite