introduction to x-ray spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...energy...

123

Upload: others

Post on 29-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000
Page 2: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Introduction to X-ray

Spectroscopy

Pieter Glatzel

Page 3: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Books

J. J. Sakurai:

“Advanced Quantum Mechanics”

Addison Wesley, 1967

G. Bunker:

“Introduction to XAFS”

Cambridge Press, 2010

F.M.F. de Groot and A. Kotani:

“Core level spectroscopy of solids”

Taylor and Francis, 2008

W. Schülke:

“Electron Dynamics by Inelastic X-ray

Scattering”

Oxford University Press, 2007

Michel van Veenendaal:

“Theory of Inelastic Scattering and

Absorption of X-rays”

Cambridge University Press, 2015

Page 4: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Reminder: The photon

hchE

Energy

0 100 000 eV5 eV 100 eV 1000 eV1 eV

4

Linear momentum

2, kkp

Page 5: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Photon intrinsic angular momentum

5Wikipedia

Page 6: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Energy

0 100 000 eV

Infrared

VUV

Raman

Soft X-ray Hard X-rayUV-Vis

5 eV 100 eV 1000 eV1 eV

Vibration

Valence shell Core levels

The response of the system that is probed by photons

depends on the photon energy.

6

Spectroscopy

Page 7: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

What may happen in the sample?

h

1s

3d

EF

A single electron energy diagram is simple and qualitative.

A simplified view: An electron is excited to an unoccupied orbital.

2p

Page 8: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Electronic and atomic structural information

Element specific

Bulk sensitive; compatible with

in-situ and extreme conditions

XAS XES

Why X-ray Spectroscopy

Page 9: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Soft X-Rays Hard X-Rays

Soft and hard X-rays to study electronic structure

Tender X-rays

Ideal for electronic structure studies Ideal for in situ studies

Improve in situ conditions Develop new techniques to study electronic structures

Page 10: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

L- and K-edges in 3d transition metals

10 Gilbert et al., J. Phys. Chem. A, Vol. 107, No. 16, 2003

2p → 3d 1s → np

Soft X-rays Hard X-rays

Page 11: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Why X-ray spectroscopy?

11

Spectroscopy does not require long range order.

Ideal tool for e.g. catalysis, environmental sciences, biology, …

Identify Cr(V)…

J. Bagar et al., SSRL

Page 12: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Electromagnetic radiation

trkieAA

ˆ0

Page 13: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Interaction of X-rays with matter

Describe photon with vector field:

q

q: scattering angle

kin-kout=q (momentum transfer)

in-out (energy transfer)

q

In first order, a term in

A2 is retained.

In second order, a term in

A∙p is retained.

A

)ˆ,,( outoutout k

)ˆ,,( ininin k

Perturbation Theory

Page 14: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Perturbation Theory: Two scattering terms

2A

Ap

)ˆ,,( ininin k

)ˆ,,( outoutout k

n

Page 15: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

The A2 term and the dynamic structure factor

Thomson scattering: in=out

Bragg scattering: in=out

Raman scattering: out<in

Compton Scattering: out<in

q

with

outin

i

rqikkqeO i

)ˆ,,( outoutout k

)ˆ,,( ininin k

Dynamic Structure Factor

f

outingfoutin

in

outoutin EEgOfF

2* ˆ),(

Page 16: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

THE RESONANT SCATTERING TERM: XES, RXES, RIXS, RXRS, HERFD

Page 17: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Perturbation Theory: Two scattering terms

2A

Ap

)ˆ,,( ininin k

)ˆ,,( outoutout k

n

Page 18: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

The A∙p term

(resonant) X-ray emission

(RXES, RIXS, fluorescence, XAS)

q

Kramers and Heisenberg

f

outingf

n ningnin

outoutin

KH EEiEE

gOnnOfF

2† ˆˆ

),(

)ˆ,,( outoutout k

)ˆ,,( ininin k

...))(ˆ(ˆ

ˆ

rkrr

epOj

rki

jj

Page 19: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

1s13dn+1

3p53dn+1

1s13dnp

3p53dnp

Tota

l En

ergy Kb

EF

1s

2p

3p

3d3d

nKb rKb

One-electron diagram Many body diagram

Transition schemes

1s23dn

Page 20: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Energy scheme and spectroscopy

Total

Energy

FeIII [Ar 3d5]

1s13d5(p)1

2p53d5(p)1

1s13d6

3d6MOn-1

|g>

|<n|Ô|g>|2

in

2p53d6

3p53d5(p)1

3p53d6

M-edge

Ka

Kb

Valence-to-core

UV-Vis

L-edge

out

|n>

HEtotalˆ

Page 21: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Single crystal

monochromator

Ei, I0

Sample

Ei, I1

Ee, I21

0ln)(I

IEi

2)( IEi

Photon-in/photon out spectroscopy

Fluorescence

Page 22: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Single crystal

monochromator

Ei, I0

Sample

Ei, I1

Ee, I2

Analyzer crystal

1

0ln)(I

IEi

X-ray Emission

Photon-in/photon-out spectroscopy

Fluorescence

2)( IEi

Page 23: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

ESRF ID26

)ˆ,,( outoutout k

)ˆ,,( ininin k

Page 24: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

What can inner-shell spectroscopy do?

Inner-shell spectroscopy probes electronic transitions and thus the electron

density or electron configuration. This may tell you about:

• The chemical environment

o bond distances

o bond angles

o type and number of ligands

• The spin-orbit term of the ground state: The measured spectrum represents

excited states that are linked to the ground state via the transition matrix

element. The transition probability depends on the ground state symmetry,

e.g. the spin state, formal oxidation state

|g>

|n>

1S

1P2S+1L

DS=0

DL=0;±1

Page 25: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

What is oxidation state: Atoms and electron density

When “measuring” oxidation state we often ask “what is the charge per atom?”

2r(r) and MO in a Ni complex

Is that the right question to ask?

Page 26: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

The idea of an atom

Wikipedia:

“Noumenon: An object knowable by the mind or intellect, not by the senses;”

… a noumenon in the sense of Kant.

… an experimentalist has no doubt that he or

she is measuring the properties of a single

atom…

Page 27: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Orbital relaxation

All electrons will adjust after excitation with X-rays:

Always consider ALL electrons when describing the energy levels.

The potential experienced by all electrons changes after photoexcitation.

Page 28: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Two-electron excitation

Valence Orbital

Empty Orbital

The orbitals may adjust non-adiabatically, i.e. electrons are excited to higher orbitals

upon orbital relaxation (additionally to the electron that is photo-excited).

Page 29: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

The inner-shell absorption proces

Energy

g

n

T lcaabs OSgOn r 2

2

0

2

Many-electron

wavefunction

One-electron

wavefunction

≈ 3d6

≈ 1s13d64p1

≈ 1s → 4p

h

Approximate multi-

electron effects by

scaling factor S02

Page 30: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Electronic structure calculations and inner-shell spectroscopy

Ligand field multiplet theory

Start with ion in spherical symmetry

Branch to real symmetry

Include covalency using

configuration interaction (CI)

Good treatment of core hole effect

and multi-electron excitation

Electron density calculations

Start with structure

Include core hole

Include multi-electron excitations

Good treatment of ligands/long

range order

1

N!

1(r

1 ) 1( r

2 ) 1(r

N )

2( r

1)

N ( r

1 ) N ( r

N )

empirical

approximative

(e.g. to Oh)

Page 31: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Multi-electron excitations

Multi-electron

excitation

Experiment: Ce L3 (2p3/2) edge

One-electron calculationSingle impurity Anderson model

~f0~f1

No multi-electron excitations

Correct crystal field splitting

Multi-electron excitations

Empirical crystal field splitting

Page 32: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

EXPERIMENTAL ARTEFACTS

Page 33: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Secondary process detection

t

dA

XESA

eEKII

t

1

sin

)(0

sin

)(

sin

)( Fttt

EEA

lsdscsfsfJK

4

J jumping ratio – PE of shell of interest

fluorescence yield per shell

f fractional yield per subshell

fs fraction of line measured with spectrometer

cs crystal efficiency

ds detector efficiency

ls losses due to absorption (windows, beam path in air)

The goal is to determine (E) by recording the intensity of the scattered X-rays

Page 34: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Selective fluorescence detection in CoFe2O4

Total fluorescence

yield

Fe fluorescence

yieldt

dA

XESA

eEKII

t

1

sin

)(0

The total absorption appears in the denominator

Page 35: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

TFY and HERFD on CoFe2O4

Total fluorescence

yield

Fe fluorescence

yield

Experiment

Calculation using tabulated values

after edge

before edge

J. Synchrotron Rad. (2012). 19, 911–919

Page 36: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Incident Beam Self Absorption

Incident Beam Self Absorption

compresses the intensity of a

spectrum

Incident beam self absorption (IBSA) arises from a similar mechanism as the

dip seen in the previous slides but for the same element.

36

Page 37: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

RADIATION DAMAGE

Page 38: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

If a leaf can do it, we can do it too!

Lubitz and Messinger, Energy and Environmental Science, 2008

Photosynthesis

Page 39: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

The Sample

Spinacia oleracea

Page 40: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Photosystem IIMulti-protein complex Photosystem-II

Page 41: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Damage of the Mn cluster

41

6540 6550 6560 6570Incident Energy [eV]

Page 42: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Dealing with radiation sensitive samples on ID26

Page 42

Spectral change at fixed energy as function of time.

beam size: 700 x 100 m; ~2*1013 photons/second

Page 43: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Dealing with radiation sensitive samples

l Title of Presentation l Date of Presentation l AuthorPage 43

Each energy point measured in

different position of beam on

sample.

Take map of metal

fluorescence response.

Page 44: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Science 316, 1444-1448 (2007); Nature 406, 752-757 (2000)

Detect and Destroy at a free electron laser

Page 45: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Kern et al. Science 340 (2012) 491

PSII and the free electron Laser

Page 46: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

XFEL provides correct Kb spectra

Kern et al. Science 340 (2012) 491

1s

2p

3p

VS

Page 47: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

THE ENERGY LEVELS OF LOCALIZED ORBITALS

Page 48: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

3d orbitals in a crystal field

48

10Dq

atomict2g

eg

Oh

Page 49: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Octahedral and tetrahedral coordination

49

ChemWiki @ UC Davis

Page 50: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

3d orbitals in a crystal field

50

ChemWiki @ UC Davis

Page 51: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

MULTIPLET THEORY

Page 52: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

An open shell

Et = Erest + E3d

Et =Erest + ?

How can we treat open shells ? → MULTIPLET THEORY

3d orbitals

Page 53: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Treating electron-electron interactions

j>i

j>i

ij

ji|g|ijij|g|ij

|g|

"direct term" > 0 "exchange term" > 0

Matrix element for two-electron operator:

“Slater integrals or Racah parameters”

gijj1

i1

g( ri

i j

i 2

N

, rj

)two-electron operator:

Page 54: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

An open shell: 3d2

40

221

2121

21

L

ll

llllL

llL

The Racah parameters determine the magnitude of the splitting.

Angular momentum coupling

(Total Angular Momentum)

(for d-electrons)

(S,P,D,F,G)

d2

3F

1D3P

1G

1S

Notation: 2S+1L

Page 55: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Crystal Field Splitting: Tanabe-Sugano diagram

Atom Oh coordination

Additional splitting due to orbital hybridization (ligand field theory)

→ The spectra become very very complex already for d2

d2

3d

t2g

eg

Page 56: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Inner-shell spectra are often very complex

56

Intra-valence shell electron-electron interactions

Core hole – valence electron interactions

Multi-electron excitations

3d5

2p5

Page 57: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

RESONANT INELASTIC X-RAY SCATTERING: RIXS, HERFD

Page 58: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Hard X-ray Photon-in/Photon-out spectroscopy

Single crystal

monochromator

Ei, I0

Sample

Ei, I1

Ee, I2

I2~ (Ei)

1

0ln)(I

IEi

Incident Energy (Ei) [eV]

Ee

2p

3d

4f5d

Ei

2p

3d

4f5d

Second order process

Correctly treated with

Kramers-Heisenberg equation

CeO2

L3-edge

Page 59: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Hard X-ray Photon-in/Photon-out spectroscopy

Single crystal

monochromator

Ei, I0

Sample

Ei, I1

Ee, I2

Ee

2p

3d

4f5d

I2~ (Ei)

1

0ln)(I

IEi

Incident Energy (Ei) [eV]

Analyzer crystal

Energy Transfer (Ei-Ee) [eV]

XES

Ei

2p

3d

4f5d

XAS

Page 60: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Hard X-ray Photon-in/Photon-out spectroscopy

Single crystal

monochromator

Ei, I0

Sample

Ei, I1

Ee, I2

I2~ (Ei)

1

0ln)(I

IEi

Incident Energy (Ei) [eV]

Analyzer crystal

Energy Transfer (Ei-Ee) [eV]

XAS

Page 61: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

CeO2 XAS

TFY

HERFD

Conventional TFY

High resolution XANES

Page 62: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

CeO2 XAS

Conventional TFY

High resolution

(HERFD-XAS)

Fine structure of 5d band

4f

5d

Resolve fine structure in 5d band (crystal field splitting)

Resolve 4f orbitals

High resolution XANES

Page 63: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

2p3d (La) RIXS plane in CeO2

2p3/2 hole

3d

ho

le

• The 3d and 2p core hole potentials are similar.

• Weak interaction of core hole with photoexcited

electron

Spectral features appear along diagonal streak.

Hämäläinen et al., Phys. Rev. Lett. 67 2850 (1991)

Carra et al. PRL 74 3700 (1995)

Glatzel et al., J. Electr. Spectr. Relat. Phenomena 188 (2013) 17-25

Kotani et al., J. Electr. Spectr. Relat. Phenomena 184 (2011) 210–215

z3d

Page 64: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Direct study of the valence shell

Ce 2p → 4f excitations

Kvashnina et al., JAAS 26 1265 (2011)

Page 65: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

p

p

2

2

d

d

3

3

Ground State

Intermediate (absorption) State

Final State

Tota

l E

nerg

y

Energy

transfer

Incident Energy

XAS

Emitted Energy

XES

Lifetime broadening and continuum excitations

Page 66: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

The RIXS planeTota

l E

nerg

y

Incident Energy

Energ

y T

ransfe

r

Energy

transfer

Page 67: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

The RIXS/RXES plane

Incident Energy

Energ

y T

ransfe

r n

fEnerg

y T

ransfe

r

n

f

Page 68: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

f

outingf

n ningnin

outoutin

KH EEiEE

gOnnOfF

2† ˆˆ

),(

Simplifying the Kramers-Heisenberg Formula

Ignore Interference and simplify:

f

outingf

n ningnin

outoutin

KH EEEE

gOnnOfF

22

22†

)(

ˆˆ

),(

|g>, Eg

|n>, En

|f>, Ef

in

Interference changes intensities but not energies.

out

Does the scattered photon forget?

Page 69: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

f

outingf

n ningnin

outoutin

KH EEiEE

gOnnOfF

2† ˆˆ

),(

Simplifying the Kramers-Heisenberg Formula

Ignore Interference and simplify:

|g>, Eg

|n>, En

|f>, Ef

Interference changes intensities but not energies.

XASXES

f

outingf

n ningnin

outoutin

KH EEEE

gOnnOfF

22

22†

)(

ˆˆ

),(

Page 70: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Tota

l E

nerg

y

Tota

l E

nerg

y

Atomic multiplet model calculations for 4f0

2p54f1 2p54f1

3d94f13d94f1

No 3d – 4f interaction With 3d – 4f interaction

4f0 4f0

4f0

Page 71: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

No 3d – 4f interaction With 3d – 4f interaction

Tota

l E

nerg

y

Tota

l E

nerg

y

2p54f2 2p54f2

3d94f23d94f2

4f1 4f1

Atomic multiplet model calculations for 4f1

4f1

Kvashnina et al., JAAS 26 1265 (2011)

Page 72: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

No 3d – 4f interaction With 3d – 4f interaction

Tota

l E

nerg

y

Tota

l E

nerg

y

2p54f2 2p54f2

3d94f23d94f2

4f1 4f1

Atomic multiplet model calculations for 4f1

4f1

Kvashnina et al., JAAS 26 1265 (2011)

Interference No Interference

Page 73: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Comparison with Experiment

4f0 4f1

Interference No Interference

Experiment

Theory

Kvashnina et al., JAAS 261265 (2011)

Page 74: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

A little history of Ceria

The Relevance of Ceria

The Spectroscopy on Ceria

The Theory applied to Ceria

The Confusion around Ceria

The Defects in Ceria

Page 75: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

The Relevance of CeO2

Solid oxide fuel cell

PNAS 2006;103:3495-3496

CeO2 ↔ CeO2- + /2 O2

Labeling of cancerous cells

Page 76: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Have we understood bulk CeO2?

Page 77: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Atomic Structure of Ceria

CeO2

Formally: CeIV 4f0

Cubic

One Ce site

Page 78: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Bulk Ceria during the 80’s

Ce 4f and O 2p mix

4f levels are populated in ground state

n4f ~ 0.5

1983

Homogeneous mixed valence

4f0

Page 79: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Bulk Ceria during the 80’s

3d XPS

Fujimori, PRB 28 2281 (1983)

Homogeneous mixed

valence

Bianconi et al., PRB 35 806 (1987)

4f0

2p3/2 XAS

Page 80: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Bulk Ceria during the 80’s

Wuilloud et al. PRL 53 202

(1984)

« a mixed valence can be

definitely excluded »

Nakano et al. JPSJ 56 2201

(1987)

« The number of 4f electrons is

between 0.36 and 0.54 «

Homogeneous mixed

valence

4f0

4f0

Page 81: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Bulk Ceria in the 21st century

4f0

4f0

RIXS:

Sham et al. Phys Rev B 72, 035113 (2005):

“… CeO2 in the initial state is Ce4+ (4f0) ...”

Hybrid DFT:

Graciani et al. J. Chem. Theory and Comp. 7 56 (2011)

“All valence Ce states, including the 4f states, are empty”

Almost all publications presenting DFT calculations

Bond Valence Method:

Shoko et al. Phys Rev B 79, 134108 (2009):

“… we conclude that CeO2 is a mixed-valent

compound....”

RIXS:

Kvashnina, Kotani, Butorin, Glatzel

J. Electr. Spectr. Relat. Phenomena 184 (2011) 210–215

Sadly, very little new insight over the past 30 years.

Page 82: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Can we determine the charge per atom?

Cococcioni et al. (PRB 71 035105 (2005)) :

“… there is no unique or rigorous way to define occupation of localized atomic levels

in a multiatom system…”

Ce d-DOS

Ce f-DOS

O p-DOS

Page 83: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Metal ionLigand

e-

+ + e-

photoexcitation

Metal ionLigand

Ground State Excited State

e

a

e

b

screened

Non-screened

The Single Impurity Anderson Model

4sin4cos 10 Lffg

b bb

Gunnarsson and Schönhammer, PRB 28 4315 (1983)

e-

Page 84: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Multi-electron excitations in CeO2

~f0

~f1L Total fluorescence yield

High resolution XAS

One-electron calculations

Page 85: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Surface reduction observed using TEM-EELS

Turner et al.,

Nanoscale 3 3385

(2011)

Page 86: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

CeO2 on Pt (111) under vacuum

with L. Amidani, F. Pagliuca, F. Boscherini

Page 87: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

In-situ study of CeO2 nanoparticle synthesis

10 mM

ACS Nano, 2013, 7 (12), pp 10726–10732

Page 88: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

IN-SITU STUDY OF CEO2 NANOPARTICLE SYNTHESIS

5710 5720 5730 5740 5750 5760 5770 5780

5716 5718 5720 5722

Inte

nsity/a

.u

Energy /eV

Inte

nsity/a

.u

Energy /eV

Reaction time/hr

Ce(NO3)3.6H2O

CeO2

Pre-edge

2p → 4f

0 5 10 15 200.0

0.2

0.4

0.6

0.8

1.0

Ce4+

Ce3+

We

ight

fra

nctio

nReaction time/h

Ce(NO3)3

CeO2 NP

60 seconds one scan

ACS Nano, 2013, 7 (12), pp 10726–10732

Page 89: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

BLURRING OF 5D BAND STRUCTURE

5.72 5.73 5.74 5.75 5.76

NPs 25 nm

NPs belt

NPs 15 nm

NPs 10 nm

NPs 3.2 nm

No

rma

lize

d in

ten

sity (

a.u

.)

Incident energy (keV)

5d band

3 nm

Paun et al., J. Phys. Chem. C 2012,

116, 7312-7317

Page 90: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Ce ion Ligand

e-

SPIN MULTIPLICITY AND ORBITAL MOMENT

4sin4cos 10 Lffg

b bb

1S

Ce ion Ligand

e-

14 fg

b

2F2S+1L

CeO2 CeO2-

Page 91: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

DIRECT STUDY OF THE VALENCE SHELL

1S

2F

Kvashnina et al., JAAS 26 1265 (2011)

Page 92: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

THE CE 4F LEVEL IN NANOPARTICLES

5.718 5.720 5.722 5.724 5.726

No

rma

lize

d in

ten

sity (

a.u

.)

Ce(NO3)3

NPs 25 nm

NPs belt

NPs 15 nm

NPs 10 nm

NPs 3.2 nm

Incident energy (keV)

2F

1S

No Ce 2F in nanoparticles → Are they chemically active?

Page 93: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

CHEMICAL ACTIVITY: ADDING H2O2

Celardo et al., Nanoscale 3 1411 (2011)

1

2

6 5

4

3

7

Balancing ROS levels

Page 94: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

CHEMICAL ACTIVITY: ADDING H2O2

5710 5720 5730 5740 5750 5760

3nm CeO2

25nm CeO2

Inte

nsity/a

.u

Energy/eV

f1L f0

H2O2

0 5 10 15 20

0.48

0.52

0.56

0.60

f-o

ccu

pancy

Time/hrs

4f-

occupancy

3nm, 25 nm

Time/ hrs

“Reduction”0 5 10 15 20 25 30

3.0

3.5

4.0

4.5

5.0

5.5

CeO2NPs (3nm) + H

2O

2

CeO2NPs (3nm)

pH

Days

Page 95: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

IS THERE ANY CE3+ 2F ?

Consistent with initial increase of electron density on Ce and subsequent “oxidation”

No observation of Ce3+ 2F

5716 5718 5720 5722

3nm CeO2

25nm CeO2

Inte

nsity/a

.u

Energy/eV

2p – 4f

0 5 10 15 20

0.48

0.52

0.56

0.60

f-occup

ancy

Time/hrs

4f-

occupancy

3nm, 25 nm

Time/ hrs

ACS Nano, 2013, 7 (12), pp 10726–10732

Electron Sponge

Page 96: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Core-to-core RIXS

Ground State

Intermediate (absorption) State

Final State

Tota

l E

nerg

y

Energy transfer

Incident Energy

XAS

Emitted Energy

XES

~900 eV

Page 97: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Core-to-valence RIXS

Ground State

Intermediate (absorption) State

Final State

Tota

l E

nerg

y

Incident Energy

XAS

Emitted Energy

XES

~1 eV

No core hole in the

final state !

Page 98: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Photon-in/photon-out spectroscopic techniques

1s

2p

3p

L, (3d)

3dEF

vtcKb rvtcrKb

Non-resonant Resonant

Page 99: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

TS-1

Titanium in Silicalite – TS-1

NH3

Page 100: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

DFT calculations

NH3

Exp. Theory

1 2

ChemPhysChem 14, 79-83 (2013)

Page 101: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

DFT and vtc XES

E. Gallo and P. Glatzel, Advanced Materials (2014)

VBs MOrMO

1

Ti silicalite

Use Kohn-Sham orbitals:

Page 102: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Application of RIXS: Combine with magnetic circular dichroism

Page 103: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

3d TM X-ray Magnetic Circular Dichroism

L-edge MCD is a great success because of sum rules to determine spin and

orbital angular moments.

In situ experiments at the L-edge very challenging or impossible.

Hard X-rays at the K-edge probe the p-DOS → very weak MCD effect

K-edge MCD difficult to interpret (no spin-orbit split edge)

Compatible with in situ experiments

Page 104: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Magnetic circular dichroism

Energy

g

n

B

B

1Dm 1Dm

XMCD arises from removing the

degeneracy with respect to the magnetic

quantum number m by more than kT and

macroscopically orienting the moments.

Different final states are reached

following the selection rules.

Derive sum rules using ligand field

multiplet theory.

Page 105: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

The RIXS-MCD Energy Scheme

Magnetite (Fe3+)tetra (Fe3+)octa (Fe2+)octa O4

Page 106: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

RIXS-MCD Experimental Setup

Page 107: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

The first RIXS-MCD plane

Experiment Theory

M. Sikora, A. Juhin, et al. PRL 105, 037202 (2010)

Page 108: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Constant emission energy scans

CEE

Sharpening of spectral features

(decreased lifetime broadening)

XMCD enhanced by factor of ~10-20

Page 109: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Direct evidence for the existence of an intermediate interdiffusedlayer

APPLICATION OF RIXS-MCD

A. Juhin, A. Lopez Ortega, M. Sikora, …, J. Nogues, under review

Mn MCD signal!

Page 110: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Kb X-RAY EMISSION SPECTROSCOPY (XES)

Page 111: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

x 8

x 500

Kb

The K fluorescence lines in 3d transition metals

1s

2p

3p

VS

Page 112: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

The exchange interaction

3p

VS

Acts only between

electrons with parallel

spins and lowers the

total Energy

Etotal

Fluorescence

Exchange energy lowers total

energy

For 3d transition metals the strong chemical sensitivity of core levels does

NOT arise from screening!

Mn4+

Mn3+

Chemically sensitive !!

Page 113: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Chemical sensitivity of Kb Emission

Kb1,3

Kb’

MnF2: S=5/2

MnF3: S=2

MnF4: S=3/2

Wang et al. Phys. Rev. B 56, 4553 (1997)

Screening effect very small (unlike Sulfur!!).

(3p,3d) interactions are dominating.

Page 114: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Model systems and multiplet theory

LS

HS

Crystal field

multiplet model

Experiment

Fe2O3 S=5/2

K3Fe(CN)6 S=1/2

K4Fe(CN)6 S=0

Page 115: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Mn-Mg pairs in GaN

Th. Devillers, M. Rovezzi, et al. Scientific Reports 2 722 (2012)

Page 116: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Kb

Th. Devillers, M. Rovezzi, et al. Scientific Reports 2 722 (2012)

Mn-Mg pairs in GaN

Page 117: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

(Mn3+)

(Mn4+)

XAS and XES in a layered Mn perovskite

x XANES

The La1-xSr1+xMnO4 series: doping dependence in powders

Kb

Emission Energy [eV]Absorption Energy [eV]

Replace La3+ by Sr2+ Formally: Mn3+ → Mn3.5+

Page 118: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Linear Dichroism in XES

Single crystal

monochromator

Ei, I0

SampleEi, I1

Ee, I2

e

Single crystal

monochromator

Ei, I0

SampleEi, I1

Ee, I2

e

Page 119: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

VALENCE-TO-CORE X-RAY EMISSION SPECTROSCOPY (VTC XES)

Page 120: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

x 8

Valence-to-Core X-Ray Emission in 3d Transition Metals

x 500

1s

2p

3p

VS

Page 121: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

XES and XAS: Complementary Techniques

Occupied

states

Unoccupied

states

Fermi Energy

XES

XAS

Mn(V)N

1s

2p

3p

VSEF

Page 122: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Fine structure of valence-to-core emission lines

M

M

Transitions from:

Ligand 2p

Ligand 2s

ungerade symmetry with

respect to metal centerBergmann et al., Chem. Phys. Lett. 302 119 (1999)

Safonov et al., J. Phys. Chem. B 110 23192 (2006)

Mainly sensitive to orbitals that are centered on ligands.

Page 123: Introduction to X-ray Spectroscopypages.cnpem.br/synclight2015/wp-content/uploads/sites/46/...Energy 0 100 000 eV Infrared VUV Raman UV-Vis Soft X-ray Hard X-ray 1 eV 5 eV 100 eV 1000

Degree of ligand protonation

Lassalle-Kaiser et al., Inorg. Chem. 2013, 52, 12915−12922

ID26