introduction to structural optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/lnotes/l2.pdf ·...

26
Raymond Atta-Fynn Raymond Atta-Fynn (University of Texas, Arlington) NSF Summer School on Disordered Materials Modeling Summer 2019 [email protected] Introduction to Structural Optimization 6/3/2019 Introduction to Structural Optimization 1

Upload: others

Post on 30-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

RaymondAtta-Fynn(UniversityofTexas,Arlington)NSFSummerSchoolonDisorderedMaterialsModeling

[email protected]

IntroductiontoStructuralOptimization

6/3/2019 Introduction toStructuralOptimization 1

Page 2: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

=Whatisstructuraloptimization?

=Optimizationalgorithms=Steepestdescentalgorithm=Conjugategradientalgorithm=MonteCarlomethod

=Closingremarks

Outline

6/3/2019 Introduction toStructuralOptimization 2

Page 3: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

= Anatomisticstructure isasetatomswithwell-definedpositions(orcoordinates).

= Severalpropertiesofanatomisticstructurearebestdescribed whenthestructureisinaminimumenergystate;thisisamajorreasonwhystructuraloptimizationisperformed

Whatisstructuraloptimization?

Whatisstructuraloptimization?𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖𝑠𝑡ℎ𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑓𝑢𝑠𝑖𝑛𝑔𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠𝑡𝑜𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑡ℎ𝑒𝑒𝑛𝑒𝑟𝑔𝑦𝑜𝑓𝑎𝑛𝑎𝑡𝑜𝑚𝑖𝑠𝑡𝑖𝑐𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒.

Specifically, theatomicpositionsaredisplacedsequentially followingasetofrules untilaminimumenergystateisreached.

6/3/2019 Introduction toStructuralOptimization 3

Page 4: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

= Goalofstructuraloptimization:Minimizethetotalenergy𝐸 ofasetof𝑁 atomswithrespecttotheatomicpositions{𝐫S,𝐫T,….,𝐫U} ≡ 𝑥S, 𝑦S , 𝑧S , 𝑥T, 𝑦T, 𝑧T , , 𝑥U, 𝑦U, 𝑧U .

= 𝐸 isafunctionof{𝐫S,𝐫T,….,𝐫U},thatis:𝐸 ≡ 𝐸(𝐫S, 𝐫T,… , 𝐫U).𝐸 dependson3𝑁 variables.

= Theconditionfor𝐸 tobeaminimumis:𝛻𝐸 𝐫S, 𝐫T,… , 𝐫U = 𝟎[1]

where𝛻𝐸 isavectorknownasthegradientof 𝐸 givenby:

𝛻𝐸 =𝜕𝐸𝜕𝐫S

,𝜕𝐸𝜕𝐫T

, … ,𝜕𝐸𝜕𝐫U

=𝜕𝐸𝜕𝑥S

,𝜕𝐸𝜕𝑦S

,𝜕𝐸𝜕𝑥S

ded𝐫f

,𝜕𝐸𝜕𝑥T

,𝜕𝐸𝜕𝑦T

,𝜕𝐸𝜕𝑥T

ded𝐫g

,… . . ,𝜕𝐸𝜕𝑥U

,𝜕𝐸𝜕𝑦U

,𝜕𝐸𝜕𝑥U

ded𝐫h

Thusequation[1] isequivalenttosolvingthe3𝑁 equations:𝜕𝐸𝜕𝐫S

= 0;𝜕𝐸𝜕𝐫T

= 0;……𝜕𝐸𝜕𝐫U

= 0

Whatisstructuraloptimization?

6/3/2019 Introduction toStructuralOptimization 4

Page 5: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

= Example: Considerasystemwith𝑁 = 2 atoms.Supposethatatom1islocatedatposition𝐫S = (𝑥S, 0,0) andatom2islocatedat𝐫T = (𝑥T, 0,0)

= Supposethe(hypothetical)energy𝐸 ofthe2-particlesystemisgivenby:𝐸 𝑥S, 𝑥T = 𝑥ST + 2𝑥TT − 2𝑥S𝑥T − 2𝑥S − 𝑥T + 6

= Aplotof𝐸 isshownbelow:

Whatisstructuraloptimization?

6/3/2019 Introduction toStructuralOptimization 5

Page 6: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

Whatisstructuraloptimization?

6/3/2019 Introduction toStructuralOptimization 6

= Wewanttominimize𝐸 withrespectto𝑥S and𝑥T.Theconditionsare:

𝜕𝐸𝜕𝑥S

= 2𝑥S − 2𝑥T − 2 = 0

𝜕𝐸𝜕𝑥T

= 4𝑥T − 2𝑥S − 1 = 0

= Thesolutionstotheequationsare:𝑥S = 2.5 and𝑥T = 1.5;

= Theminimumenergyis𝐸 2.5, 1.5 = 2.75 [reddotis2.5, 1.5, 2.75 ]

= Giventheenergyofa2-atomsystem:𝐸 𝑥S, 𝑥T = 𝑥ST + 2𝑥TT − 2𝑥S𝑥T − 2𝑥S − 𝑥T + 6

Page 7: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

= Nowconsideramorerealisticscenario:beginwitharandom,highenergy𝑁-atomstructure[𝑁 = 1000 inthepictures]

= Theenergy𝐸(𝐫S, 𝐫T,… , 𝐫Srrr) ofthesystemcanbeabitcomplicated.= Optimizingtherandomstructureimplies:minimizing thetotalenergy 𝐸 byadjustingthepositionsoftheatomsseveraltimes toyieldanordered(orsemi-ordered),lowenergystructure.

Whatisstructuraloptimization?

6/3/2019 Introduction toStructuralOptimization 7

Random Ordered

Minimize𝐸 withrespecttopositions

𝛻𝐸(𝐫S, 𝐫T, … , 𝐫U) ≈ 𝟎

Page 8: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

Optimizationproblem:Given𝐸 ∶ 𝑅U → 𝑅,minimize𝐸 overallpossiblevaluesof�⃗� ∈ 𝑅U,where�⃗� = (𝐫S, 𝐫T, . . , 𝐫U).

Possibleoptimizationmethods

= Gradientbasedmethods= Steepestdescentmethod= Conjugategradientmethod= Quasi-Newtonmethods[willnotbediscussed]

= Stochasticbasedmethods= MetropolisMonteCarlomethod= Particleswarm/populationbasedmethods[willnotbediscussed]

OptimizationMethods

6/3/2019 Introduction toStructuralOptimization 8

Page 9: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

FirstaquickrefresheronTaylorseries:Supposethat𝑥 isaone-dimensionalvariableand𝑥r isaconstant.Ifthescalarfunction 𝐸 isdifferentiable,thentheTaylorexpansion of𝐸(𝑥 + 𝑎) is

𝐸 𝑥 + 𝑥r = 𝐸 𝑥r + 𝑥𝑑𝐸𝑑𝑥z{|{}

+ 𝑥T𝑑T𝐸𝑑𝑥T~

{|{}

+⋯ = 𝐸 𝑥r + 𝑥𝛻𝐸 𝑥r + 𝑥T𝛻T𝐸 𝑥r + ⋯

Nowsupposethat�⃗� isan𝑁-dimensionalvariablevectorand�⃗�r isaconstantvector.Then

𝐸 𝑥 + 𝑥r = 𝐸 𝑥r + 𝑥 � 𝐸 𝑥r +𝑥� � 𝛻T𝐸 𝑥r � 𝑥 +⋯

OptimizationMethods

6/3/2019 Introduction toStructuralOptimization 9

Page 10: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

Steepestdescentin1-dimension= Supposewewanttominimizea1-dimensionalfunction𝐸 𝑥 .

= Givenaninitialpoint𝑥r,thedirectionofsteepestdescent,i.e.directionofgreatestchangefrom𝑥r is−𝛻𝐸(𝑥r).

= Keypoint:ifwefollow−𝛻𝐸 inasmallenoughsteps,𝐸 isguaranteedtodecrease.Toseethis,considerthefirstorderTaylorexpansionof𝐸 𝑥r :

𝐸 𝑥r + 𝛿𝑥 = 𝐸 𝑥r + 𝛿𝑥𝛻𝐸 𝑥rwhere𝛿𝑥 isasmallchangein𝑥r [ignore (𝛿𝑥)T andhigherpowers]

= If𝛿𝑥 ischosentobe𝛿𝑥 = −𝛼𝛻𝐸 𝑥r ,where𝛼 isapositiveparametercalledthestepsize,thenthedecreasein𝐸 follows:

𝐸 𝑥r + 𝛿𝑥 = 𝐸 𝑥r − 𝛼 𝛻𝐸 𝑥r T < 𝐸 𝑥r

SteepestDescentAlgorithm

6/3/2019 Introduction toStructuralOptimization 10

Page 11: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

SteepestdescentinN-dimensions= WewanttominimizeaN-dimensional function𝐸 �⃗� ,where�⃗� ∈ 𝑅U isavectorof

dimensionN.

= Givenaninitialpoint�⃗�r,thedirectionofsteepestdescentfrom�⃗�risthevector−𝛻𝐸(�⃗�r).

= Taylorexpansion:thefirstorderTaylorexpansionof𝐸 �⃗�r :𝐸 �⃗�r + 𝛿�⃗� = 𝐸 �⃗�r + 𝛿�⃗� � 𝛻𝐸 �⃗�r

= Thechoiceof𝛿�⃗� = −𝛼𝛻𝐸 �⃗�r ,where𝛼 > 0,ensuresthat 𝐸 decreasesteadilytowardtheminimum.

SteepestDescentAlgorithm

6/3/2019 Introduction toStructuralOptimization 11

Page 12: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

SteepestDescentAlgorithm

6/3/2019 Introduction toStructuralOptimization 12

SteepestdescentalgorithmPickaninitialpoint�⃗�r𝑖 → 0𝛼 → 0.5𝜀 = 0.000001loop

−𝛻𝐸(�⃗��) → ∆if ∆ < 𝜀 stop𝛼 → 2𝛼

while𝐸 �⃗�� + 𝛼∆ ≥ 𝐸 �⃗��𝛼 → 𝛼 2⁄

endwhile�⃗�� + 𝛼∆→ �⃗���S𝑖 + 1 → 𝑖

endloop

Page 13: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

SteepestDescentAlgorithm

6/3/2019 Introduction toStructuralOptimization 13

Steepestdescentminimization:𝐸 𝑥S, 𝑥T = 𝑥ST + 𝑥TT

Theminimumvalueof𝐸 is𝐸��� = 0;thisoccursatthelocation𝑥S, 𝑥T = (0,0)

Leftplot: 3Dgraph.

Rightplot:correspondingprojectionontothe2Dplanespannedby𝑥Sand𝑥T (contourplot).

Page 14: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

SteepestDescentAlgorithm

6/3/2019 Introduction toStructuralOptimization 14

Steepestdescentminimization:Rosenbrock function𝐸 𝑥S, 𝑥T = (1− 𝑥S)T + 100(𝑥TT − 𝑥S)T

TheminimumvalueoftheRosenbrockfunctionis𝐸��� = 0;thisoccursatthelocation 𝑥S, 𝑥T =(1,1)

Leftplot: 3Dgraph.

Rightplot: Contourplotinthe2Dplanespannedby𝑥S and𝑥T.

Page 15: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

Steepestdescentadvantages= Easytoimplement.

= Manyothermethodsswitchtosteepestdescentwhentheydonotmakesufficientprogress.

Steepestdescentadvantages

= Picking thestepsize𝛼 isabitofadarkart.Asmall𝛼 makesthedeterminationofthesolutionlonger;alargeα canmakethealgorithmworse

= Theconvergenceofsteepestdescentalgorithmsclosetotheminimumcanbequiteslow.

SteepestDescentAlgorithm

6/3/2019 Introduction toStructuralOptimization 15

Page 16: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

Conjugategradientmethod= Thesteepestdescent minimizationalgorithm:

�⃗���S = �⃗�� − 𝛼�𝛻𝐸 �⃗�� = �⃗�r − 𝛼S𝛻𝐸 �⃗�S − 𝛼T𝛻𝐸 �⃗�T −⋯− 𝛼�𝛻𝐸 �⃗��Until𝛻𝐸 �⃗���S ≈ 0

where𝑖 = 0, 1, 2,…oftenfindsitselftakingstepsinthesamedirectionasearliersteps.

= Thismakesthesteepestdescentmethodwoefullyinefficient!Itwillbemoreefficientifastepistakenonlyonce(butoptimally).Thisliesattheheartoftheconjugategradientmethod.

= Originalphilosophyofconjugategradientmethod:pickasetofdirections{𝑑r,𝑑S,….,𝑑U�S}, knownasconjugatedirections,suchthatatonlyonestepistakenalongeachdirection𝑑� toreachtheminimum.

ConjugateGradientAlgorithm

6/3/2019 Introduction toStructuralOptimization 16

Page 17: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

Conjugategradientmethod:exactarithmetics= Foragivenfunction𝐸 �⃗� withN variables,youareguaranteedtoreachtheminimum𝐸 �⃗�∗ inexactlyN stepsif𝐸 �⃗� isquadratic.

= Specifically,givenaninitialpoint�⃗�r andasetofN conjugatedirections{𝑑r,𝑑S,….,𝑑U�S},𝐸attainsaminimumat�⃗� = �⃗�∗ givenby:

�⃗�∗ = �⃗�r + 𝛼r𝑑r + 𝛼S𝑑S +⋯+ 𝛼U�S𝑑U�S = �⃗�r +� 𝛼�𝑑�U�S

�|r𝛻𝐸 �⃗�∗ = 0

where𝛼� isthestepsizealongtheconjugatedirection𝑑� .

= Thustheemploymentoftheconjugategradientmethodboilstothedeterminationofthedirections{𝑑r,𝑑S,….,𝑑U�S} andthestepsizes{𝛼r,𝛼S,….,𝛼U�S}.

= Lateron,wewillpresentmethodsfordetermining{𝑑�}and{𝛼�}.

ConjugateGradientAlgorithm

6/3/2019 Introduction toStructuralOptimization 17

Page 18: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

Conjugategradientmethod:inpractice

= Advantage: Theconjugategradientmethodismuchfasterthanthesteepestdescentmethod;itrequiresmuchlessstepstoconverge.

= Disadvantage:(i) Itsimplementationisslightlymoreinvolvingcomparedtothesteepestdescentmethod;(ii) Duetoroundingerrors,theconjugategradientmethodmaytakelongertoconverge(iii) Forhighlydisorderedstructures,theconjugatemethodcanfailmiserably.

= Implementation:Wewillpresenttwoiterativeconjugategradientmethodsthatcanbeappliedinpractice;theyareFletcher–ReevesmethodandthePolak–Ribiere method.

ConjugateGradientAlgorithm

6/3/2019 Introduction toStructuralOptimization 18

Page 19: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

ConjugateGradientAlgorithm

6/3/2019 Introduction toStructuralOptimization 19

Fletcher–ReevesandPolak–Ribiere conjugategradientalgorithmStep1Pickaninitialpoint�⃗�r andcalculate�⃗�r = 𝛻𝐸(�⃗�r);set𝑑r = −�⃗�rStep2For 𝑖 = 0, 1, 2, …:

(a)Findthevalueof𝛼� whichminimizes 𝐸(�⃗�� + 𝛼�𝑑�)(b)Set�⃗���S = �⃗�� + 𝛼�𝑑� andcomputethegradient�⃗���S = 𝛻𝐸(�⃗���S)(c)Testforconvergence:if 𝛻𝐸 �⃗���S < 𝜀 then stop [𝜀 = 10��].(d)Computethenextconjugatedirection𝑑��S givenby𝑑��S = −�⃗���S + 𝛽�𝑑�,where

𝛽� =�⃗���S T

�⃗�� T[Fletcher–Reevesmethod]

𝛽� =�⃗���S − �⃗�� � �⃗���S

�⃗�� T[Polak–Ribieremethod;preferred]

Endfor

Page 20: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

ConjugateGradientAlgorithm

6/3/2019 Introduction toStructuralOptimization 20

conjugategradientmethodandthesteepestdescentmethodcomparison:Rosenbrockfunction

Leftplot:contourplotofsteepestdescentminimization;itrequires3300iterationstoconverge

Rightplot: contourplotofconjugategradientminimization;itrequiresonly15iterationstoconverge

Page 21: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

StochasticOptimization:MetropolisMonteCarloMethod(MMC)= TheMMC employsrandommoves tominimizeafunction;itisquitecheap [butnot

necessarilyefficient]asnogradientsarerequired.ItisbasedontheconceptofMarkovchains.

= Asequenceof𝑁 + 1successivemoves or events or states�⃗�r, �⃗�S, �⃗�T … �⃗�U�S, �⃗�U formaMarkovchainif thepresentstate�⃗�U dependsononlytheimmediatepaststate�⃗�U�Sregardlessofalltheotherpaststates�⃗�r, �⃗�S, �⃗�T … �⃗�U�T:

𝑃 �⃗�U �⃗�r, �⃗�S, �⃗�T … �⃗�U�S = 𝑃 �⃗�U �⃗�U�S= Here𝑃 𝐵 𝐴 istheconditionalprobabilitythattheevent𝐵 occursgiventhat𝐴 has

occurred.

= InMonteCarlolanguage,theconditionalprobability𝑃 𝐵 𝐴 isalsoknownasthetransitionprobabilityfromevent𝐴 toevent𝐵 (𝐴 isthepresentevent,while𝐵 futureevent).

MonteCarloAlgorithm

6/3/2019 Introduction toStructuralOptimization 21

Page 22: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

StochasticOptimization:MetropolisMonteCarloMethod(MMC)

= MMC operatesontwokeyprinciples,namely,egordicity anddetailedbalance.

= Egordicity: Foragivensystem,agivenstate�⃗�� canbereachedfromthestate�⃗�� inafinitenumberofsteps.

= Detailedbalance: Foragivensystem,theaveragenumberoftimesthestate�⃗�� canbereachedfromthestate�⃗�� equalstheaveragenumberoftimes�⃗��canbereachedfrom�⃗��.

MonteCarloAlgorithm

6/3/2019 Introduction toStructuralOptimization 22

Page 23: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

StochasticOptimization:MetropolisMonteCarloMethod(MMC)PhilosophybehindthepracticalapplicationofMMCminimization(i)Supposethatanatomicstructurebeginsinastatewithcoordinates�⃗�r andenergy𝐸(�⃗�r).Weassignafictitioustemperature𝑇 tothesystemtomeasureits“hotness.”

(ii)Conceptually,MMCoperatesbygraduallycooling thesystemtofroma“hot,unstable”state�⃗�r toa“cold,minimumenergy”state �⃗�S usingrandomatomicdisplacements.This“hot-to-cool”processinfallsunderageneralminimizationmethod knownassimulatedannealing.

(iii)Thetransitionprobability𝑃(�⃗�S �⃗�r from�⃗�r to�⃗�S isgivenbytheMetropoliscriterion:

𝑃(�⃗�S �⃗�r = min 1, 𝑒���e

where𝛽 = 1 (𝑘�𝑇)⁄ and𝑘� isafundamentalconstantknownasBoltzmann’sconstant.

MonteCarloAlgorithm

6/3/2019 Introduction toStructuralOptimization 23

Page 24: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

OptimizationMethods

6/3/2019 Introduction toStructuralOptimization 24

TheMetropolisMonteCarloalgorithmStep1: Pickafictioustemperature𝑇 andbegininaninitialstate�⃗�r withtotalenergy𝐸(�⃗�r).

Step2: Generateanewstate�⃗�S from�⃗�r viarandom displacementsoftheatomicpositions.Denotethetotalenergyof�⃗�S by𝐸(�⃗�S).

Step3: ComputetheenergydifferenceΔ𝐸 = 𝐸(�⃗�S) − 𝐸(�⃗�r) andcomputethetransitionprobabilityfromstate�⃗�r tostate�⃗�S as𝑃(�⃗�S �⃗�r = min 1, 𝑒���e ,where𝛽 = 1 (𝑘�𝑇)⁄ .

Step4: Generateauniformrandomnumber𝑟 suchthat0 ≤ 𝑟 < 1.(a)If𝑟 < 𝑃(�⃗�S �⃗�r ,thenreplace�⃗�r with�⃗�S and𝐸(�⃗�r) with𝐸(�⃗�S) andgotostep2.(a)If𝑟 ≥ 𝑃(�⃗�S �⃗�r ,thendiscard�⃗�S andgotostep2.

Additionalinformation:Asthesimulationproceeds,thetemperature𝑇 isgraduallyreduced.Convergenceisestablishedbycloselymonitoring𝐸.

Page 25: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

MonteCarloAlgorithm

6/3/2019 Introduction toStructuralOptimization 25

MetropolisMonteCarlomethodinaction:minimizingtheRosenbrock function

TheminimumvalueoftheRosenbrockfunctionis𝐸��� = 0;thisoccursatthelocation 𝑥S, 𝑥T =(1,1)

Leftplot: 3Dgraph.

Rightplot: Contourplotinthe2Dplanespannedby𝑥S and𝑥T.

Page 26: Introduction to Structural Optimizationsaraswati.phys.usm.edu/nsf-hbcu2019/LNOTES/L2.pdf · 6/3/2019 Introduction to Structural Optimization 4. Raymond Atta-Fynn = Example:Consider

RaymondAtta-Fynn

= Threeminimizationschemes,allofwhicharefairlyeasytoimplementincomputercodes,werepresented:(i)steepestdescent (ii)conjugategradient (iii)MetropolisMonteCarlo

= Thesteepestdescent andconjugategradient methodsaregradient-based (i.e.basedontheevaluationoffirstpartialderivative),whiletheMonteCarlo methoddoesnotrequiregradients.

= Forpracticalapplications,theconjugategradientmethodispreferred;steepestdescentcanbeusedasasupplement ininstanceswheretheconjugategradientmethodgets“stuck.”

= For“quickandapproximateresults,”theMonteCarlomethod, whichistheeasiesttoimplement,canbeemployed.

ConcludingRemarks

6/3/2019 Introduction toStructuralOptimization 26