introduction to solar radiative transfer i · 2008. 6. 20. · this physical information is encoded...

42
Introduction to Solar Radiative Transfer: I Basic Radiative Transfer Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot NM, USA Summerschool Sunspot, Jun 18 2008

Upload: others

Post on 26-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Introduction to Solar Radiative Transfer:I Basic Radiative Transfer

Han UitenbroekNational Solar Observatory/Sacramento Peak

Sunspot NM, USA

Summerschool Sunspot, Jun 18 2008

Page 2: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Overview

• I Basic Radiative Transfer (Intensity, emission, absorption, sourcefunction, optical depth)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 3: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Overview

• I Basic Radiative Transfer (Intensity, emission, absorption, sourcefunction, optical depth)

• II Detailed Radiative Processes (Spectral lines, radiative transitions,collisions, continuum processes, Saha-Boltzmann, polarization)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 4: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 5: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

• Rybicki and Lightman: Radiative Processes in Astrophysics

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 6: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

• Rybicki and Lightman: Radiative Processes in Astrophysics

• Gray: Observation and Analysis of Stellar Photospheres

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 7: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

• Rybicki and Lightman: Radiative Processes in Astrophysics

• Gray: Observation and Analysis of Stellar Photospheres

• Mihalas: Stellar Atmospheres

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 8: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

• Rybicki and Lightman: Radiative Processes in Astrophysics

• Gray: Observation and Analysis of Stellar Photospheres

• Mihalas: Stellar Atmospheres

• Shu: The Physics of Astrophysics. I. Radiation

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 9: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Bibliography

• Rutten: Radiative Transfer in Stellear Atmospheres(http://www.astro.uu.nl/˜rutten/Astronomy lecture.html)

• Rybicki and Lightman: Radiative Processes in Astrophysics

• Gray: Observation and Analysis of Stellar Photospheres

• Mihalas: Stellar Atmospheres

• Shu: The Physics of Astrophysics. I. Radiation

• Allen: Astrophysical Quantities

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 10: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Short History

• 1802 Wollaston First to observe dark gaps in spectrum: spectral lines

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 11: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Short History

• 1802 Wollaston First to observe dark gaps in spectrum: spectral lines

• 1814 Fraunhofer rediscovers lines. Assigns names e.g.,C (Hα), D (Na i), G (CH molecules), F (Hβ), and H (Ca ii)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 12: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Short History

• 1802 Wollaston First to observe dark gaps in spectrum: spectral lines

• 1814 Fraunhofer rediscovers lines. Assigns names e.g.,C (Hα), D (Na i), G (CH molecules), F (Hβ), and H (Ca ii)

• 1823 Herschel realized spectra contain information on composition ofsource from flame spectra

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 13: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Short History

• 1802 Wollaston First to observe dark gaps in spectrum: spectral lines

• 1814 Fraunhofer rediscovers lines. Assigns names e.g.,C (Hα), D (Na i), G (CH molecules), F (Hβ), and H (Ca ii)

• 1823 Herschel realized spectra contain information on composition ofsource from flame spectra

• 1842 Becquerel photographs spectra, discovers UV lines beyond thevisible

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 14: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Short History

• 1802 Wollaston First to observe dark gaps in spectrum: spectral lines

• 1814 Fraunhofer rediscovers lines. Assigns names e.g.,C (Hα), D (Na i), G (CH molecules), F (Hβ), and H (Ca ii)

• 1823 Herschel realized spectra contain information on composition ofsource from flame spectra

• 1842 Becquerel photographs spectra, discovers UV lines beyond thevisible

• 1858 Bunsen and Kirchhoff discover wavelength correspondencebetween bright flame emission and dark solar absorption lines. Start ofquantitative spectroscopy.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 15: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Why Radiative Transfer?

• Information on astronomical objects in general has to be recovered fromthe electromagnetic radiation the object emits and/or reflects.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 16: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Why Radiative Transfer?

• Information on astronomical objects in general has to be recovered fromthe electromagnetic radiation the object emits and/or reflects.

• Spectroscopic observation (remote sensing) and analysis is the onlyavailable method to determine the physical conditions of theseastronomical objects.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 17: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Why Radiative Transfer?

• Information on astronomical objects in general has to be recovered fromthe electromagnetic radiation the object emits and/or reflects.

• Spectroscopic observation (remote sensing) and analysis is the onlyavailable method to determine the physical conditions of theseastronomical objects.

• To analyze spectroscopic data meaningfully we need to understand howthis physical information is encoded in the radiation RadiativeTransfer.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 18: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Why Radiative Transfer?

• Information on astronomical objects in general has to be recovered fromthe electromagnetic radiation the object emits and/or reflects.

• Spectroscopic observation (remote sensing) and analysis is the onlyavailable method to determine the physical conditions of theseastronomical objects.

• To analyze spectroscopic data meaningfully we need to understand howthis physical information is encoded in the radiation RadiativeTransfer.

• Observational techniques need to be applied to obtain the relevantproperties of the radiation signal.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 19: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Why Radiative Transfer?

• Information on astronomical objects in general has to be recovered fromthe electromagnetic radiation the object emits and/or reflects.

• Spectroscopic observation (remote sensing) and analysis is the onlyavailable method to determine the physical conditions of theseastronomical objects.

• To analyze spectroscopic data meaningfully we need to understand howthis physical information is encoded in the radiation RadiativeTransfer.

• Observational techniques need to be applied to obtain the relevantproperties of the radiation signal.

• We need to understand how the radiative signal is modified as it travelsfrom the object to our instruments.

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 20: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Solar line spectrum

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 21: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Differences in Spectral Lines

391 392 393 394 395 396 397 398 399Wavelength [nm]

0

5.0•10−9

1.0•10−8

1.5•10−8

2.0•10−8

2.5•10−8

Inte

nsity

[J m

−2 s

−1 H

z−1 s

r−1 ]

588 589 590 591 592 593 594 595 596Wavelength [nm]

0

1•10−8

2•10−8

3•10−8

4•10−8

Inte

nsity

[J m

−2 s

−1 H

z−1 s

r−1 ]

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 22: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Molecular lines in the solar spectrum

429.0 429.5 430.0 430.5 431.0 431.5 432.0wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 23: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

In the UltraViolet the Spectral Lines are in Emission

126 128 130 132 134Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 24: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Spatially Resolved Spectral Lines

Intensity

0.5 0.6 0.7 0.8 0.9 1.0

Spectrum

0.2 0.4 0.6 0.8

Polarization

−1.0 −0.5 0.0 0.5

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 25: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Radiation Field

Specific Intensity:

dEν ≡ Iν(~r,~l, t) dtdA dν dΩ (1)

= Iν(x, y, z, θ, ϕ, t) cos θ dtdA dν dΩ

Units: J s−1 m−2 Hz−1 ster−1

Mean intensity:

Jν(~r, t) ≡1

∫Iν dΩ =

14π

∫ 2π

0

∫ π

0

Iν sin θ dθ dϕ (2)

Units: J s−1 m−2 Hz−1 ster−1

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 26: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Radiation Field

Flux:

Fν(~r, ~n, t) ≡∫Iν cos θ dΩ =

∫ 2π

0

∫ π

0

Iν cos θ sin θ dθ dϕ (3)

Units: J s−1 m−2 Hz−1

Flux in radial direction:

Fν(z) =∫ 2π

0

∫ π2

0

Iν cos θ sin θ dθ dϕ+∫ 2π

0

∫ π

π2

Iν cos θ sin θ dθ dϕ (4)

=∫ 2π

0

∫ π2

0

Iν cos θ sin θ dθ dϕ−∫ 2π

0

∫ π2

0

Iν(π − θ) cos θ sin θ dθ dϕ

≡ F+ν (z)−F−ν (z)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 27: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Local Changes

Emission:

dEν ≡ jν dV dtdν dΩ (5)

dIν = jν(s)ds

Units: J m−3 s−1 Hz−1 ster−1

Extinction:

dIν ≡ −ανIνds (6)

Units: m−1

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 28: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Local Changes

Source function:

Sν = jν/αν (7)

Units: J s−1 m−2 Hz−1 ster−1

Stotν =

∑jν/∑

αν (8)

Stotν =

jcν + jlναcν + αlν

=Scν + ηνS

1 + ην, ην ≡ αlν/αcν (9)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 29: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Transport Equation

Transport along a ray:

dIν(s) = Iν(s+ ds)− Iν(s) = jν(s)ds− αν(s)Iν(s)ds (10)

dIνds

= jν − ανIν

dIνανds

= Sν − Iν

Optical length and thickness:

dτν ≡ αν(s)ds (11)

τν(D) =∫ D

0

αν(s)ds

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 30: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Transport Equation

Transport along a ray:

dIνdτν

= Sν − Iν (12)

Iν(τν) = Iν(0)e−τν +∫ τν

0

Sν(t)e−(τν−t)dt

Homogeneous medium:

Iν(D) = Iν(0)e−τν(D) + Sν

(1− e−τν(D)

)(13)

Optically thick: Iν(D) ≈ SνOptically thin: Iν(D) ≈ Iν(0) + [Sν − Iν(0)] τν(D)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 31: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Homogeneous Medium

ν (D) >> 1

ν0

I ν

S ν

0ν ν

0

I ν

S ν

τν (D) < 1

I (0) = 0ν

ν0

I ν

S ν

I ν(0)0

ν

I (0) < Sν ν

τν (D) < 1

ν0

I ν(0)

S νI ν

τ

τν (D) > 10

τν (D) < 1

I (0) < Sν ν

ν0

S ν

I ν(0)I ν

τν (D) > 10

τν (D) < 1

ν νI (0) > S

ν0

S ν

I ν(0)I ν

τν (D) < 1

I (0) > Sν ν

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 32: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Through an Atmosphere

Optical depth:

dτµν = ανds ≡ −ανdz|µ|

(14)

τν(z1) =∫ z1

zsurf

−ανdz =∫ zsurf

z1

ανdz

Standard plane parallel transport equation:

µdIνdτν

= Iν − Sν (15)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 33: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Through an Atmosphere

Formal solution in upward direction:

I+ν (τν, µ) =

∫ ∞τν

Sν(t)e−(t−τν)/µdt/µ, µ > 0 (16)

Formal solution in downward direction:

I−ν (τν, µ) = −∫ τν

0

Sν(t)e−(t−τν)/µdt/µ, µ < 0 (17)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 34: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Eddington–Barbier

Emergent intensity at the surface:

I+ν (τν = 0, µ) =

∫ ∞0

Sν(t)e−t/µdt/µ (18)

Substitute power series:

Sν(τν) =N∑n=0

anτnν (19)

I+ν (τν = 0, µ) = a0 + a1µ+ 2a2µ

2 + . . .+ n!aNµN

Eddington–Barbier relation:

I+ν (τν = 0, µ) ≈ Sν(τν = µ) (20)

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 35: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Eddington–Barbier

Sν 0

1

2

0 1 2 3 40

−τνe

θ I

τ ν

ν

−τνeSν

ντ

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 36: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Eddington–Barbier

T [103 K]

6 8 10

−0.2

0.0

0.2

0.4

y [

Mm

]

0 1 2 3 4 5x [Mm]

µ = 0.93

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 37: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Basic Radiative Transfer: Limb Darkening

Sν a

b

h0

I ν

0

a

b

10 sin θ

θ

a

b

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 38: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

End Part I

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 39: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Molecular Oxygen in the Earth Atmosphere

Intensity

0.4 0.6 0.8

630.0 630.1 630.2 630.3 630.4Wavelength [nm]

Fe IFe I

O2 O2

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 40: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Differences in spectral lines

393.0 393.2 393.4 393.6 393.8 394.0Wavelength [nm]

0

2.0•10−9

4.0•10−9

6.0•10−9

8.0•10−9

1.0•10−8

1.2•10−8

Inte

nsity

[J m

−2 s

−1 H

z−1 s

r−1 ]

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 41: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Invariance of Specific Intensity along Rays

Specific Intensity has been defined in such a way as to be independent ofthe source and the observer.

dEν = Iν cos θ dt dAdν dΩ = I ′ν cos θ′ dtdA′ dν dΩ′

dΩ = dA′ cos θ′/R2

dΩ′ = dA cos θ/R2

Iν = I ′ν

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7

Page 42: Introduction to Solar Radiative Transfer I · 2008. 6. 20. · this physical information is encoded in the radiation Radiative Transfer. Observational techniques need to be applied

Spherical Coordinates

θ ∆ϕ

r ∆θ

r sin

ϕ

z

y

x

θ

Back

Han Uitenbroek, NSO/SP Introduction to Solar Radiative Transfer I y w ww wy p 7